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Logic

@ Useful to model domains with complex relationships among
entities
@ Various forms:

o First Order Logic
o Logic Programming
o Description Logics
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|
First Order Logic

@ Very expressive
@ Open World Assumption
@ Undecidable

Vx Intelligent(x) — GoodMarks(x)
Vx,y Friends(x,y) — (Intelligent(x) < Intelligent(y))
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Logic Programming

@ Closed World Assumption
@ Turing complete
@ Prolog
flu(bob).
hay_fever(bob).
sneezing(X) <« flu(X).
sneezing(X) < hay_fever(X).
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Description Logics

@ Subsets of First Order Logic
@ Open World Assumption
@ Decidable, efficient inference

@ Special syntax using concepts (unary predicates) and roles
(binary predicates)

fluffy : Cat cat(fluffy).

tom: Cat cat(tom).

Cat C Pet pet(X) < cat(X).

JhasAnimal.Pet T NatureLover natureLover(X) < hasAnimal(X,Y), pet(Y).
(kevin, fluffy) : hasAnimal hasAnimal(kevin, fluffy).

(kevin, tom) : hasAnimal hasAnimal(kevin, tom).
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Uncertainty

@ Logic: representing relationships, powerful inference
@ but the real world is often uncertain

Vx Intelligent(x) — GoodMarks(x)
Vx,y Friends(x,y) — (Intelligent(x) « Intelligent(y))

F. Riguzzi (UNIFE) Introduction to PLP 7/78



@ Often convenient to describe a domain using a set of random
variables.
@ Example: home intrusion detection system
o Earthquake E
o Burglary B
o Alarm A
o Neighbor call N
@ Questions:
o What is the probability of a burglary? (compute P(B = t), belief
computation)
o What is the probability of a burglary given that the neighbor called?
(compute P(B = t|N = t), belief updating)
o What is the probability of a burglary given that there was an
earthquake and the neighbor called? (compute
P(B =t|N = t,E =t), belief updating)
o What is the most likely value for burglary given that the neighbor_ .
called? (arg max, P(b|N = t), belief revision) e
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Handling Uncertainty

@ When assigning a causal meaning to the variables, the problems
are also called
o Diagnosis: computing P(cause|symptom)
o Prediction: computing P(symptom|cause)
o Classification: computing arg max,¢s P(class|data)

i Matematica
Informatica
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Handling Uncertainty

@ In general, we want to compute
P(qle)

of a query q (assignment of values to a set of variables Q) given
the evidence e (assignment of values to a set of variables E).

@ Inference.
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|
Rules of Probability Theory

@ Product rule: P(a,b) = P(a|b)P(b)
o Implies Bayes rule:

P(alb)P(b) = P(bla)P(a)
P(alb) = 2E5FE

@ Sumrule: P(a) =", P(a,b)
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|
Handling Uncertainty

@ X: set of all variables describing the domain

@ Joint probability distribution P(X): P(x) for all x

@ We can answer all types of queries using the definition of
conditional probability and the sum rule:

Plale) = i) =
Zy,Y:X\Q\E P(y.q,e)

Ez,Z:X\E P(z )
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Handling Uncertainty

@ If we have n binary variables (|X| = n), knowing the joint
probability distribution requires storing O(2") different values.

@ Even if we had the space, computing P(q|e) would require O(2")
operations.

F. Riguzzi (UNIFE) Introduction to PLP 13/78



|
Handling Uncertainty

@ Avalue of Xis (x1,...,Xp):

P(x) = P(x1,...,xp) =
P(xnlxp—1,. -y X1)P(Xp_1,...,X1) =

P(xn|Xp_1y.--,%1) ... P(x2|x1)P(x1) = (1)

n
HP(Xi|X/—17"'7X1)
i=1

by repeated application of the product rule.
@ Chain rule.
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|
Handling Uncertainty

o If, for each variable X;, Pa; is a subset of {X;_1,...,X1} such that
X is conditionally independent of {X;_+,...,X;} \ Pa; given Pa;,
i.e,

P(X,"X,’_1 e ,X1) = P(x,~|pa,-) whenever P(X,’_1, e ,X1) > O,
then we could write

P(X) = P(X1,...,Xn)=
P(xn|xp—1,.-.,x1) ... P(x2|x1)P(x1) =
P(xn|pay) ... P(xz|pa;)P(x1|pa;) =

n
[T P(xilpay)
i1
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Handling Uncertainty

@ P(x;|pa;): conditional probability table, much smaller than
{Xi1,.., X1},

@ If k is the maximum size of Pa;, then the storage requirements are
O(n2¥) instead of O(2").
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Probabilistic Graphical Models

@ Taking into account independencies among the variables enables
faster inference.

o Graphical models: graph structures that represent
independencies.

@ Bayesian network [Pearl 88]: directed acyclic graph with a node
per variable and an edge from X, to X; only if X; € Pa;.

@ A BN together with the set of CPTs P(x;|pa;) defines a joint
probability distribution.
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Example - Alarm

burg t f earthquake t f

f
b 0.0
b=t 0.2
call b=f, e 802
a=t | 09 | 01 b=f,e=f | 0.1 | 0.9
a=f | 0.05 | 0.95 @
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Markov Networks

@ Undirected graphical models

I1; 9i(xi)

P(x) = =—>——

Z
Z = [[six)
X i

GoodMarks

TeachAbility

@ Each clique in the graph is associated with a potential ¢; > 0

Intelligent | GoodMarks | ¢:(/, G)
false false 4.5
false true 4.5

true false 1.0
true true 4.5

Introduction to PLP




Markov Networks

o If all the potential are strictly positive, we can use a log-linear
model (where the fis are features)

P(X) — eXP(ZiZWifi(xi))
Z =3 xexp(D2; wifi(xi)))

f,(Intelligent, GoodMarks) = { (1) gt;Lr:’(jilggent\/GoodMarks

W,':1.5
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Combining Logic and Probability

@ Logic does not handle well uncertainty
@ Graphical models do not handle well relationships among entities
@ Solution: combine the two

@ Many approaches proposed in the areas of Logic Programming,
Uncertainty in Al, Machine Learning, Databases, Knowledge
Representation
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Probabilistic Logic Programming

@ Distribution Semantics [Sato ICLP95]

@ A probabilistic logic program defines a probability distribution over
normal logic programs (called instances or possible worlds or
simply worlds)

@ The distribution is extended to a joint distribution over worlds and
interpretations (or queries)

@ The probability of a query is obtained from this distribution
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Probabilistic Logic Programming (PLP) Languages
under the Distribution Semantics

(7]

Probabilistic Logic Programs [Dantsin RCLP91]

Probabilistic Horn Abduction [Poole NGC93], Independent Choice
Logic (ICL) [Poole Al97]

PRISM [Sato ICLP95]

Logic Programs with Annotated Disjunctions (LPADs) [Vennekens
et al. ICLP04]

ProbLog [De Raedt et al. IJCAI07]

They differ in the way they define the distribution over logic
programs

(7]
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I
PLP Online

@ http://cplint.eu
o Inference (knwoledge compilation, Monte Carlo)
o Parameter learning (EMBLEM)
o Structure learning (SLIPCOVER)

@ https://dtai.cs.kuleuven.be/problog/

o Inference (knwoledge compilation, Monte Carlo)
o Parameter learning (LFI-ProbLog)

i Matematica
Informatica
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http://cplint.eu
https://dtai.cs.kuleuven.be/problog/

N
PRISM

sneezing(X) <« flu(X), msw(flu_sneezing(X),1).

sneezing(X) < hay_fever(X), msw(hay_fever_sneezing(X),1).
flu(bob).

hay_fever(bob).

values(flu_sneezing(_X), [1,0]).
values(hay_fever_sneezing(_X), [1,0]).

: —set_sw(flu_sneezing(_X),[0.7,0.3]).

: —set_sw(hay_fever_sneezing(_X),[0.8,0.2]).

@ Distributions over msw facts (random switches)
@ Worlds obtained by selecting one value for every grounding of

each msw statement @ =

F. Riguzzi (UNIFE) Introduction to PLP
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Logic Programs with Annotated Disjunctions

http://cplint.eu/e/sneezing_simple.pl

sneezing(X) : 0.7 ; null : 0.3 « flu(X).
sneezing(X) : 0.8 ; null : 0.2 « hay_fever(X).
flu(bob).

hay_fever(bob).

o Distributions over the head of rules
@ null does not appear in the body of any rule

@ Worlds obtained by selecting one atom from the head of every
grounding of each clause
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|
ProblLog

sneezing(X) « flu(X), flu_sneezing(X).

sneezing(X) < hay_fever(X), hay_fever_sneezing(X).
flu(bob).

hay_fever(bob).

0.7 :: flu_sneezing(X).

0.8 :: hay_fever_sneezing(X).

@ Distributions over facts

@ Worlds obtained by selecting or not every grounding of each
probabilistic fact
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Distribution Semantics

@ Case of no function symbols: finite Herbrand universe, finite set of
groundings of each switch/clause/fact

@ Atomic choice: selection of the i-th atom for grounding C6 of
switch/clause C

o represented with the triple (C, 9, i)
@ Example C; = sneezing(X) : 0.7 ; null : 0.3 < flu(X).,
(C1,{X/bob},1)
@ A ProblLog fact p:: Fisinterpretedas F:pVvnull : 1 —p.
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Distribution Semantics

@ Selection o: a total set of atomic choices (one atomic choice for
every grounding of each clause)

@ A selection ¢ identifies a logic program w,, called world
@ The probability of w, is P(w,) = H(C,G,i)eU Po(C, i)

@ Finite set of worlds: Wr = {wy, ..., wn}

o P(w) distribution over worlds: >_ . P(w) =1
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Distribution Semantics

@ Ground query Q
o P(Q|w) =1if Qis true in w and 0 otherwise

° P(Q) =2y P(Qw) =3, P(QW)P(W) =3, q P(W)
@ You can see P(Q) as the probability that Q is true in a world
sampled at random from P(w)

o for each choice, sample a value to get a world
o test the query in the world
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Example Program (LPAD) Worlds

http://cplint.eu/e/sneezing_simple.pl

sneezing(bob) « flu(bob). null < flu(bob).
sneezing(bob) < hay_fever(bob). sneezing(bob) « hay_fever(bob).
flu(bob). flu(bob).
hay_fever(bob). hay_fever(bob).
P(w1) =0.7 x 0.8 P(wz) = 0.3 x 0.8
sneezing(bob) « flu(bob). null < flu(bob).
null < hay_fever(bob). null + hay_fever(bob).
flu(bob). flu(bob).
hay_fever(bob). hay_fever(bob).
P(ws) = 0.7 x 0.2 P(ws) = 0.3 x 0.2

P@Q= Y P@Qw)= > PQWPw)= > Pw)

weWr weWr weWr:wE=Q

@ sneezing(bob) is true in 3 worlds B
o P(sneezing(bob)) = 0.7 x 0.8 + 0.3 x 0.8 + 0.7 x 0.2 = 0.64 T
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I
Example Program (ProbLog) Worlds

@ 4 worlds
sneezing(X) < flu(X), flu_sneezing(X).
sneezing(X) + hay_fever(X), hay_fever_sneezing(X).
flu(bob).
hay_fever(bob).

flu_sneezing(bob).
hay_fever_sneezing(bob). hay_fever_sneezing(bob).

P(wy) =0.7 x 0.8 P(wz) = 0.3 x0.8
flu_sneezing(bob).
P(ws) =0.7 x 0.2 P(ws) =0.3x0.2

@ sneezing(bob) is true in 3 worlds
@ P(sneezing(bob)) =0.7 x 0.8 +0.3 x 0.8 +0.7 x 0.2 = 0.94
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Logic Programs with Annotated Disjunctions

http://cplint.eu/e/sneezing.pl

strong_sneezing(X) : 0.3 ; moderate_sneezing(X) : 0.5 + flu(X).
strong_sneezing(X) : 0.2 ; moderate_sneezing(X) : 0.6 < hay_fever(X).

flu(bob).
hay_fever(bob).

@ 9 worlds
@ strong_sneezing(bob) is true in 5

@ P(strong_sneezing(bob)) =
03-02+03-06+03-02+05-02+0.2-0.2=0.44
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I
Monty Hall Puzzle

@ A player is given the opportunity to select one of three closed
doors, behind one of which there is a prize.

@ Behind the other two doors are empty rooms.

@ Once the player has made a selection, Monty is obligated to open
one of the remaining closed doors which does not contain the
prize, showing that the room behind it is empty.

@ He then asks the player if he would like to switch his selection to
the other unopened door, or stay with his original choice.

@ Does it matter if he switches?
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N
Monty Hall Puzzle
http://cplint.eu/e/monty.swinb

:— use_module (library(pita)) .

:— endif.

- pita.

:— begin_lpad.

prize(l):1/3; prize(2):1/3; prize(3):1/3.

open_door (2):0.5 ; open_door(3):0.5:- prize(l).
open_door (2) :— prize(3).
open_door (3) :— prize(2).

win_keep:— prize(l).

win_switch:—
prize(2),
open_door (3) .

win_switch:-
prize(3),
open_door (2) .
:— end_lpad.
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http://cplint.eu/e/monty.swinb

Examples

Throwing coins http://cplint.eu/e/coin.swinb

heads (Coin) :1/2 ; tails(Coin):1/2 :-—
toss (Coin), \+biased (Coin) .

heads (Coin) :0.6 ; tails(Coin) :0.4 :-—
toss (Coin) ,biased (Coin) .

fair(Coin):0.9 ; biased(Coin) :0.1.

toss (coin) .

di Matematica
e Informatica
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http://cplint.eu/e/coin.swinb

Examples

Mendel’s inheritance rules for pea plants
http://cplint.eu/e/mendel.pl

color (X,purple) :—cg(X,_A,p) .

color (X,white) :—cg(X,1,w),cg(X,2,w) .

cg(X,1,A):0.5 ; cg(X,1,B):0.5 :—
mother (Y,X),cg(Y,1,A),cqg(¥Y,2,B).

cg(X,2,A):0.5 ; cg(X,2,B):0.5 :—
father(Y,X),cg(¥,1,A),cg(¥,2,B).

Probability of paths http://cplint.eu/e/path.swinb

path (X, X) .

path(X,Y) :-path(X,2),edge (Z,Y) .

edge (a,b) :0.3.

edge (b, c) :0.2.

edge(a,c) :0.6. ) i

F. Riguzzi (UNIFE) Introduction to PLP 37/78


http://cplint.eu/e/mendel.pl
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Encoding Bayesian Networks

alarm t f

b=te=t | 1.0 | 0.0
b=te=f | 0.8 | 0.2
b=fe=t | 0.8 | 0.2
b=fe=f | 0.1 | 0.9

Burglary Earthquake

burg | t f earthq | t f
0.1 (0.9 02|08

http://cplint.eu/e/alarm.pl

burg(t):0.1 ; burg(f):0.9

earthg(t) :0.2 ; earthg(f): O 8.

alarm(t) :-burg(t),earthg(t) .

alarm(t):0.8 ; alarm(f):0.2:-burg(t),earthg(f).

alarm(t) :0.8 ; alarm(f):0.2:-burg(f),earthg(t).

alarm(t) :0.1 ; alarm(f):0.9:-burg(f),earthg(f). Dipartimento
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http://cplint.eu/e/alarm.pl

Expressive Power

@ All languages under the distribution semantics have the same
expressive power

@ LPADs have the most general syntax

@ There are transformations that can convert each one into the
others

@ PRISM, ProbLog to LPAD: direct mapping
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LPADs to ProbLog

@ Clause C; with variables X
H1 p1 \/.\/ann<—B
is translated into

H1 (—B f,1(7)
H2<—B not(f; 1(X)), f; 2(X).

Hn «— B’L]Ot(fiﬂ (7))’ SO nOt(fi,n—1 (7))
w1 fi1(X).

Tp—q = fi,n—1(X)-
where ™ = P11, T2 = 1’_)2ﬂ_1 , T3 = (1_W1§?1_ﬂ2), e

o Ingeneral m; = ﬁ%
j=1 j

F. Riguzzi (UNIFE) Introduction to PLP 40/78




Conversion to Bayesian Networks

@ PLP can be converted to Bayesian networks
@ Conversion foran LPAD T

@ For each ground atom A a binary variable A
@ For each clause C; in the grounding of T

Hiy:piVv...VHy:pp+ By,...Bn,—Cy,...,—C

a variable CH; with By, ..., Bn, Cy,...,C;as parents and Hy, ...,
Hy and null as values
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Conversion to Bayesian Networks

Hy:piV...VHy:pn+ By,...Bpn,—Cy,...,0C

@ The CPT of CH; is

. [Bi=1,....Bn=1,0,=0,....C,=0] ...
CHi=H; | 0.0 P4 0.0
CHi=H, | 0.0 Pn 0.0
CH;=null | 1.0 1-— 2721 Pi 1.0
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Conversion to Bayesian Networks

o Each variable A corresponding to atom A has as parents all the
variables CH; of clauses C; that have A in the head.

@ The CPT for Ais:

at least one parent = A | remaining cols
1.0 0.0
0.0 1.0

> >
Il
o —

F. Riguzzi (UNIFE) Introduction to PLP 43/78



|
Conversion to Bayesian Networks

Ci = x1:04vx2:0.6.

C, = x2:0.1vx3:0.9.

C; = x4:06Vx5:04 <« x1.
Cs = x5:04 <+ x2,x3.

Cs = x6:03Vx7:0.2+« x2,x5.

|} di Matematica
| elnformatica
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Conversion to Bayesian Networks

F. Riguzzi (UNIFE)

Introduction to PLP

CH;,CH, | x1,x2 | x1,x3 | x2,x2 | x2,x3
x2 =1 1.0 0.0 1.0 1.0
x2=0 0.0 1.0 0.0 0.0

x2,x5 1,111,001 | 0,0
CHs=x6 | 0.3 | 0.0 | 0.0 | 0.0
CHs=x7 | 02| 0.0 | 0.0 0.0
CHs=null | 05 |1.0| 10| 1.0

di Matematica
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Function Symbols

What if function symbols are present?

Infinite, countable Herbrand universe

Infinite, countable Herbrand base

Infinite, countable grounding of the program T
Uncountable W7

Each world infinite, countable

P(w) =0

Semantics not well-defined

© 6 6 6 06 6 o o
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Game of dice

n(0,1):1/3 ; on(0,2):1/3 ; on(0,3):1/3.
n(T,1):1/3 ; on(T, ) 1/3 ; on(T,3):1/3 :-
Tl is T-1, T1> 0, n(T1l,F), \+ n(T1l,3).

|} di Matematica
7| elnformatica
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I
Hidden Markov Models

hmm (S, 0) : ~hmm(gl, []1,S,0) .
hmm (end, S, S, [1) .
hmm (Q, SO, S, [L10]) : =
O\= end,
next_state(Q,Q1,S0),
letter(Q,L,S0),
hmm (Q1, [Q]S0],S,0) .
next_state(gl,qgl,_S):1/3;next_state(gl, g2
next_state(gl,end,_S):1/3.
next_state(g2,q9l,_S) :1/3;next_state(g2,92,_S) :1/3;
next_state(g2,end,_S):1/3.
letter(gl,a,_S):0.25;letter(qgl,c,_S):0.25;
letter(gl,g,_S):0.25;letter(gl,t,_S):0.25.
letter(g2,a,_S):0.25;letter(g2,c,_S) :0.25;
letter(g2,g,_S):0.25;letter(g2,t,_S) :0.25.

S):1/3;

—r

Dipartimento
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——
Hybrid Programs

@ Up to now only discrete random variables and discrete probability
distributions.

@ Hybrid Probabilistic Logic Programs: some of the random
variables are continuous.

@ cplint allows the specification of density functions over arguments
of atoms in the head of rules
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——
Hybrid Programs

@ A probability density on an argument var of an atom A is
specified with
A : Density :- Body.
where Density is a special atom
@ uniform(Var, L, U): Var is uniformly distributed in [L, U]
@ gaussian (Var,Mean, Variance): Gaussian distribution
o dirichlet (Var, Par): Dirichlet distribution with parameters «
specified by the list Par
@ gamma (Var, Shape, Scale) : gamma distribution
beta (Var,Alpha, Beta) : beta distribution
o + others (see the manual)

©

artimento
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——
Hybrid Programs

@ Also discrete distributions, with either a finite or countably infinite
support:
o discrete(Var,D) or finite (Var,D): D is a list of couples
Value:Prob assigning probability Prob to value
e uniform(Var,D):D is a list of values each taking the same
probability (1 over the length of D).
@ poisson (Var, Lambda) : Poisson distribution

|} di Matematica
| elnformatica
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Semantics

@ For each random variable, sample a value, obtaining a world
@ Test Q in the world
@ P(Q) is the probability that Q is true in the world
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Examples

g(X) : gaussian(X,0,1).

g(X) : gaussian(X, [0,0],[ [1,0],[0,11 1).

Dipartimento
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Gaussian Mixture Example

@ http://cplint.eu/e/gaussian_mixture.pl defines a
mixture of two Gaussians:

heads:0.6;tails:0.4.
g(X): gaussian(X,0, 1).
h(X): gaussian(X,5, 2).
mix (X) :- heads, g(X).
mix (X) :— tails, h(X).
@ The argument x of mix (X) follows a distribution that is a mixture
of two Gaussian, one with mean 0 and variance 1 with probability
0.6 and one with mean 5 and variance 2 with probability 0.4.
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Description Logics

@ DISPONTE: “Dlstribution Semantics for Probabilistic ONTologiEs”
[Riguzzi et al. SWJ15]
@ Probabilistic axioms:
o p: E
e.g., p:: C C D represents the fact that we believe in the truth of
C C D with probability p.
o DISPONTE applies the distribution semantics of probabilistic logic
programming to description logics
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N
DISPONTE

@ World w: regular DL KB obtained by selecting or not the
probabilistic axioms

@ Probability of a query Q given aworld w: P(Q|w) =1ifw = Q, 0
otherwise

@ Probability of Q
P(Q) =22, P(Qw) =3, P(QIW)P(W) = > . P(W)
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Example

0.4 :: fluffy . Cat

0.3 :: tom: Cat

0.6 :: Cat C Pet
JhasAnimal.Pet C NatureLover
(kevin, fluffy) : hasAnimal
(kevin, tom) : hasAnimal

@ P(kevin: NatureLover) =
0.4x03x06+0.4x0.7x%x06+0.6x0.3x0.6=0.348
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Knowledge-Based Model Construction

@ The probabilistic logic theory is used directly as a template for
generating an underlying complex graphical model [Breese et al.
TSMC94].

@ Languages: CLP(BN), Markov Logic
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|
CLP(BN) [Costa UAI02]

@ Variables in a CLP(BN) program can be random
@ Their values, parents and CPTs are defined with the program

@ To answer a query with uninstantiated random variables, CLP(BN)
builds a BN and performs inference

@ The answer will be a probability distribution for the variables

@ Probabilistic dependencies expressed by means of CLP
constraints

{ Var = Function with p(Values, Dist) }
{ Var = Function with p(Values, Dist, Parents) }
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CLP(BN)

course_difficulty (Key, Dif) :-

{ Dif = difficulty(Key) with p([h,m, 1],
[0.25, 0.50, 0.257]) 1.
student_intelligence (Key, Int) :-

{ Int = intelligence(Key) with p([h, m, 1],
[0.5,0.4,0.1]) 1}.

registration(r0,cl6,s0
registration(rl,cl0,s0
registration(r2,c57,s0
registration(r3,c22,sl

)
) .
) -
)

di Matematica
e Informatica

F. Riguzzi (UNIFE) Introduction to PLP 60/78



|
CLP(BN)

registration_grade (Key, Grade) :-—
registration (Key, CKey, SKey),
course_difficulty (CKey, Dif),
student_intelligence (SKey, Int),
{ Grade = grade (Key) with
p(la,b,c,d],
$h h hm hl mh mm m1l1 1 h 1Im 11
(0.20,0.70,0.85,0.10,0.20,0.50,0.01,0.05,0.10,
0.60,0.25,0.12,0.30,0.60,0.35,0.04,0.15,0.40,
0.15,0.04,0.02,0.40,0.15,0.12,0.50,0.60,0.40,
0.05,0.01,0.01,0.20,0.05,0.03,0.45,0.20,0.10 1,
[Int,Dif]))

|} di Matematica
| elnformatica
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CLP(BN)

?— [school_32].
?—- registration_grade(r0,G).
p(G=a)=0.4115,
p (G=b)=0.356,
p(G=c)=0.16575,
p(G=d)=0.06675 ?
?- registration_grade (r0,G),
student_intelligence(s0,h).
G=a)=0.6125,
G=b)=0.305,
G=c)=0.0625,
G=d)=0.02 2

|} di Matematica
| elnformatica
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|
Markov Logic

@ A Markov Logic Network (MLN) [Richardson, Domingos MLO06] is
a set of pairs (F, w) where F is a formula in first-order logic w is a
real number

@ Together with a set of constants, it defines a Markov network with

o One node for each grounding of each predicate in the MLN
o One feature for each grounding of each formula F in the MLN, with
the corresponding weight w
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Markov Logic Example

1.5 Vx Intelligent(x) — GoodMarks(x)
1.1 Vx,y Friends(x, y) — (Intelligent(x) < Intelligent(y))

@ Constants Anna (A) and Bob (B)

Friends(A,B)

Friends(A,A)

F. Riguzzi (UNIFE) Introduction to PLP 64/78



Markov Networks

@ Probability of an interpretation x

P(X) _ eXp(Zi;/ini(xi))

@ n;(x;) = number of true groundings of formula F; in x

@ Typed variables and constants greatly reduce size of ground
Markov net
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Reasoning Tasks

o Inference: we want to compute the probability of a query given the
model and, possibly, some evidence, or find assignments of the
random variables with the highest probability

@ Weight learning: we know the structural part of the model (the
logic formulas) but not the numeric part (the weights) and we want
to infer the weights from data

@ Structure learning we want to infer both the structure and the
weights of the model from data
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@ EVID: compute an unconditional probability P(e), the probability
of evidence (also query in this case).

@ COND: compute the conditional probability distribution of the
query given the evidence, i.e. compute P(q|e)

@ MPE or most probable explanation: find the most likely value of all
non-evidence atoms given the evidence, i.e. solving the
optimization problem arg max, P(q|e)

@ MAP or maximum a posteriori: find the most likely value of a set of
non-evidence atoms given the evidence, i.e. finding
arg max, P(qgle). MPE is a special case of MAP where
QUE = Hy.

@ DISTR: compute the probability distribution or density of the
non-ground arguments of a conjunction of literals q, e.g.,
computing the probability density of X in goal mix(X) ofthe_
Gaussian mixture S
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I
Weight Learning

@ Given
o model: a probabilistic logic model with unknown parameters
o data: a set of interpretations
@ Find the values of the parameters that maximize the probability of
the data given the model
@ Discriminative learning: maximize the conditional probability of a
set of outputs (e.g. ground instances for a predicate) given a set
of inputs
@ Alternatively, the data are queries for which we know the
probability: minimize the error in the probability of the queries that
is returned by the model

F. Riguzzi (UNIFE) Introduction to PLP 68/78



Structure Learning

@ Given
o language bias: a specification of the search space
o data: a set of interpretations

@ Find the formulas and the parameters that maximize the likelihood
of the data given the model

@ Discriminative learning: again maximize the conditional likelihood
of a set of outputs given a set of inputs
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Conclusions

@ Handling relationships

@ Handling uncertainty
@ Open problems

o Semantics for hybrid programs with

function symbols

o Learning hybrid progams
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Resources

@ Online course on cplint
o Moodle https://edu.swi-prolog.org/
o Videos of lectures https://www.youtube.com/playlist?
1ist=PLJPXEHOboeNDOUGWIxBRWs7qzzKpC—-FkN
@ ACAI summer school on Statistical Relational Al
http://acai2018.unife.it/
@ Videos of lectures https://www.youtube.com/playlist?
1ist=PLJPXEHOboeNDWINWWTWnVEfXi5XwAjlmb
@ Videos of lecture Probabilistic Inductive Logic Programming
o Part1 https://youtu.be/mLdPGS1gNxU
o Part2 https://youtu.be/DR10Oft0Y_Ng
@ cplint in Playing with Prolog https://www.youtube.com/
playlist?1ist=PLJPXEHOboeNA1k6QnfvGl1AGRQxXFY_LCE3

tica
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