
INTRODUCTION TO LOGIC PROGRAMMING

Agostino Dovier

Università di Udine
CLPLAB

Udine, November 20, 2018

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 1 / 52

WHERE DID LOGIC PROGRAMMING COME FROM?

Logic Programming was born 1972 (circa), presaged by related
work by Ted Elcock (left), Cordell Green, Pat Hayes and Carl
Hewitt (right) on applying theorem proving to problem solving
(planning) and to question-answering systems.

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 2 / 52

WHERE DID LOGIC PROGRAMMING COME FROM?

It blossomed from Alan Robinson’s (left) seminal contribution,
including the Resolution Principle, all the way into a practical,
declarative, programming language with automated deduction at
its core, through the vision and efforts of Alain Colmerauer and
Bob Kowalski (right) .

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 3 / 52

WHERE DID LOGIC PROGRAMMING COME FROM?
DEDUCTIVE REASONING AND FORMAL LOGIC

Two basic ingredients: Modus Ponens (if p implies q is true and p is
true, then q is true) and Generalization (if something is true of a class
of things in general, this truth applies to all legitimate members of that
class) allows to state the syllogism by Aristotele:

All human beings are mortal. Socrates is human.
Therefore, Socrates is mortal.

Formal Logic is a formal version of human deductive logic. It provides
a formal language with an unambiguous syntax and a precise
meaning, and it provides rules for manipulating expressions in a way
that respects this meaning.

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 4 / 52

WHERE DID LOGIC PROGRAMMING COME FROM?
COMPUTATIONAL LOGIC

The existence of a formal language for representing information and
the existence of a corresponding set of mechanical manipulation rules
together make automated reasoning using computers possible.
Computational logic is a branch of mathematics that is concerned with
the theoretical underpinnings of automated reasoning. Like Formal
Logic, Computational Logic is concerned with precise syntax and
semantics and correctness and completeness of reasoning.
Decidability and complexity issues arise.

mortal(X) :- human(X).
human(socrates).
?- mortal(socrates).
?- yes
?- mortal(Y).
?- Y = socrates ? ;
no

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 5 / 52

WHERE DID LOGIC PROGRAMMING COME FROM?
THEOREM PROVING

From (Gottfried Wilhelm von) Leibniz dream of mechanizing human
reasoning using machines to modern computer-based automatic
theorem proving

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 6 / 52

WHERE DID LOGIC PROGRAMMING COME FROM?
AI

John McCarthy (1927–2011)

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 7 / 52

WHERE DID LOGIC PROGRAMMING COME FROM?
PROGRAMMING LANGUAGES (LATE SIXITIES, EARLY SEVENTIES)

Predicate/Function definition in imperative languages
〈HEAD 〉 〈BODY 〉
Niklaus Wirth: Program = Algorithm + Data Structure
[Prentice-Hall, 1976]

Predicate Logic as a Programming Language
〈HEAD 〉 ← 〈BODY 〉
Bob Kowalski: Algorithm = Logic+Control

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 8 / 52

WHAT IS LOGIC PROGRAMMING?

The language Prolog, from the beginning, is a programming
paradigm useful for Knowledge Representation and Reasoning,
Deductive Databases, Computational linguistic,
Prolog is often identified with Logic Programming (correct in the
seventies, wrong nowadays)
The first efficient implementation of Prolog is due to

D.H.D. Warren (WAM–1983)
Now we have many: BProlog, SICStus Prolog, SWI Prolog, Yap
Prolog, CIAO Prolog, . . . all of them based on the WAM
SWI Prolog (Jan Wielemaker et al) will be used in this course
http://www.swi-prolog.org/

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 9 / 52

http://www.swi-prolog.org/

WHAT IS LOGIC PROGRAMMING?

A small subset of Prolog (definite clause programming) is already
Turing complete.

delta(q0,0,qi,1,left).
. . .
delta(qn,1,qj,0,right).

turing(Left,halt,S,Right,Left,halt,S,Right).
turing([L|L_i],Q,S,R_i,L_o,Q_o,S_o,R_o) :-

delta(Q,S,Q1,S1,left),
turing(L_i,Q1,L,[S1|R_i],L_o,Q_o,S_o,R_o).

turing(L_i,Q,S,[R|R_i],L_o,Q_o,S_o,R_o) :-
delta(Q,S,Q1,S1,right),
turing([S1|L_i],Q1,R,R_i,L_o,Q_o,S_o,R_o).

turing([],Q,S,R_i,L_o,Q,S_o,R_o) :-
turing([0],Q,S,R_i,L_o,Q,S_o,R_o).

turing(L_i,Q,S,[],L_o,Q,S_o,R_o) :-
turing(L_i,Q,S,[0],L_o,Q,S_o,R_o).

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 10 / 52

WHAT IS LOGIC PROGRAMMING?

Moreover, the same subclass (definite clause programming) has lovely
semantical properties.

P has a model⇔ P has a Herbrand model

MP =
⋂

M is a Herbrand model of P
= TP ↑ ω(∅)

MP = {A : there is a SLD resolution for A from P}

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 11 / 52

WHAT IS LOGIC PROGRAMMING?

The declarative nature allows extensions/variations such as
constraint logic programming, functional logic programming,
probabilistic logic programming, inductive logic programming, . . .
All current Prolog systems have a large set of built-ins and
complete interfaces with other languages and/or OS primitives,
graphics, DB, etc.
Search in logic programming is naturally parallelized.
Inference techniques are inherited by part of big systems (e.g.,
IBM Watson)
And, since 1999 we have Answer Set Programming (Knowledge
Representation and Reasoning tool with a fast solver)

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 12 / 52

LOGIC PROGRAMMING IN THE WORLD
ALP (1986)

website www.logicprogramming.org

International meeting (ICLP) since 1982
International Journal Theory and Practice of Logic Programming
Other meetings (PADL, LOPSTR, ILP, LPNMR, . . .)
International Schools
Newsletter (every 3 months – ask for being included in the mailing
list)

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 13 / 52

www.logicprogramming.org

LOGIC PROGRAMMING IN ITALY
GULP (1985)

website: www.programmazionelogica.it
GULP is the Italian Association for Logic Programming (Gruppo
Utenti e ricercatori di Logic Programming)
GULP is affiliated to ALP (but older!)
AIM: to keep the interest in LP and related themes alive by
promoting various initiatives both in research and education; an
opportunity for young researchers to be introduced into an active
and challenging research area in a very informal and friendly way
Annual meeting (last one in Sept 2017 in Bolzano), summer/winter
schools, workshops, student’s grants, PhD theses prizes, . . .

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 14 / 52

www.programmazionelogica.it

Syntax of Logic Programming

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 15 / 52

TERMS

Let C be a set of constant symbols
(e.g., a, b, c, socrate, uomo, . . .)
Let V be a set of variable symbols
(e.g., X, Y, Z, X1, X2, . . .)
Let F be a set of function symbols
(e.g., f, g, h, sqrt, piu, per, . . .)
Each symbol f ∈ F has its own arity (number of arguments)
ar(f) > 0 (e.g., ar(sqrt) = 1,ar(piu) = 2).
We assume that ar(c) = 0 for c ∈ C and ar(X) = 0 for X ∈ V

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 16 / 52

TERMS

If c ∈ C then c is a term
If X ∈ V then X is a term
If f ∈ F and ar(f) = n and t1, . . . , tn are terms,
then f (t1, . . . , tn) is a term.

A term without variables is said a ground term
E.g., 0, s(s(0)), s(s(X)),sqrt(piu(s(s(Y)), s(0))) are terms
E.g., 0, s(s(0)),sqrt(piu(s(s(0)), s(0))) are ground terms
(ar(s) = ar(sqrt) = 1,ar(piu) = 2)

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 17 / 52

TERMS

If c ∈ C then c is a term
If X ∈ V then X is a term
If f ∈ F and ar(f) = n and t1, . . . , tn are terms,
then f (t1, . . . , tn) is a term.

A term without variables is said a ground term
E.g., 0, s(s(0)), s(s(X)),sqrt(piu(s(s(Y)), s(0))) are terms
E.g., 0, s(s(0)),sqrt(piu(s(s(0)), s(0))) are ground terms
(ar(s) = ar(sqrt) = 1,ar(piu) = 2)

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 17 / 52

TERMS

If c ∈ C then c is a term
If X ∈ V then X is a term
If f ∈ F and ar(f) = n and t1, . . . , tn are terms,
then f (t1, . . . , tn) is a term.

A term without variables is said a ground term
E.g., 0, s(s(0)), s(s(X)),sqrt(piu(s(s(Y)), s(0))) are terms
E.g., 0, s(s(0)),sqrt(piu(s(s(0)), s(0))) are ground terms
(ar(s) = ar(sqrt) = 1,ar(piu) = 2)

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 17 / 52

ATOMIC FORMULAS (ATOMS)

Let P be a set of predicate symbols (e.g., p, q, r, genitore,
allievo, coetaneo, eq, leq, integer,. . .)
Each symbol p ∈ P has its own arity (number of arguments)
ar(p) ≥ 0
(e.g., ar(leq) = 2,ar(father) = 2,ar(integer) = 1).
If p ∈ P, ar(p) = n, and t1, . . . , tn are terms, then p(t1, . . . , tn) is
an atomic formula (or, simply, an atom)
E.g., integer(s(s(s(0)))),leq(0, s(s(0))),
father(abramo,isacco),p(X ,Y ,a) are atoms.
A literal is either an atom or not A where A is an atom.
We’ll make use of 0-ary atoms. E.g. p,q, r , . . . This way, we can
encode propositional logics (vs first-order logic)

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 18 / 52

ATOMIC FORMULAS (ATOMS)

Let P be a set of predicate symbols (e.g., p, q, r, genitore,
allievo, coetaneo, eq, leq, integer,. . .)
Each symbol p ∈ P has its own arity (number of arguments)
ar(p) ≥ 0
(e.g., ar(leq) = 2,ar(father) = 2,ar(integer) = 1).
If p ∈ P, ar(p) = n, and t1, . . . , tn are terms, then p(t1, . . . , tn) is
an atomic formula (or, simply, an atom)
E.g., integer(s(s(s(0)))),leq(0, s(s(0))),
father(abramo,isacco),p(X ,Y ,a) are atoms.
A literal is either an atom or not A where A is an atom.
We’ll make use of 0-ary atoms. E.g. p,q, r , . . . This way, we can
encode propositional logics (vs first-order logic)

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 18 / 52

ATOMIC FORMULAS (ATOMS)

Let P be a set of predicate symbols (e.g., p, q, r, genitore,
allievo, coetaneo, eq, leq, integer,. . .)
Each symbol p ∈ P has its own arity (number of arguments)
ar(p) ≥ 0
(e.g., ar(leq) = 2,ar(father) = 2,ar(integer) = 1).
If p ∈ P, ar(p) = n, and t1, . . . , tn are terms, then p(t1, . . . , tn) is
an atomic formula (or, simply, an atom)
E.g., integer(s(s(s(0)))),leq(0, s(s(0))),
father(abramo,isacco),p(X ,Y ,a) are atoms.
A literal is either an atom or not A where A is an atom.
We’ll make use of 0-ary atoms. E.g. p,q, r , . . . This way, we can
encode propositional logics (vs first-order logic)

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 18 / 52

ATOMIC FORMULAS (ATOMS)

Let P be a set of predicate symbols (e.g., p, q, r, genitore,
allievo, coetaneo, eq, leq, integer,. . .)
Each symbol p ∈ P has its own arity (number of arguments)
ar(p) ≥ 0
(e.g., ar(leq) = 2,ar(father) = 2,ar(integer) = 1).
If p ∈ P, ar(p) = n, and t1, . . . , tn are terms, then p(t1, . . . , tn) is
an atomic formula (or, simply, an atom)
E.g., integer(s(s(s(0)))),leq(0, s(s(0))),
father(abramo,isacco),p(X ,Y ,a) are atoms.
A literal is either an atom or not A where A is an atom.
We’ll make use of 0-ary atoms. E.g. p,q, r , . . . This way, we can
encode propositional logics (vs first-order logic)

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 18 / 52

RULES (DEFINITE)

H︸︷︷︸
head

← B1, . . . ,Bm︸ ︷︷ ︸
body

(1)

where H,B1, . . . ,Bm are atoms, m ≥ 0 is said a definite rule.
The comma “,” stands for ∧ (and). The arrow “←” is written “:-”

If m = 0 the rule is said a fact

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 19 / 52

RULES AND PROGRAMS

H ← B1, . . . ,Bm

From a logical point of view it is equivalent to:

H ∨ ¬B1 ∨ · · · ∨ ¬Bm

namely, a disjunction of literals (a.k.a. a clause) with exactly one
positive literal (Horn clauses have at most one positive literal).

A program is simply a set of rules (order does not matter, in principle).

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 20 / 52

PROGRAMS
DATABASES

Here is a simple program giving information about the British Royal
family:

parent(elizabeth,charles).
parent(philip,charles).
parent(diana,william).
parent(diana,harry).
parent(charles,william).
parent(charles,harry).

Here parent is a predicate. All names are (terms consisting of)
constant symbols.
These above rules have empty bodies and thus they are facts. They
allow to populate extensionally a Database.

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 21 / 52

PROGRAMS
DATABASES

Let us write some rules, trying to define intensionally a predicate:

grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

This is a definite clause. How can we interpret such a “Z”?

VIEW 1 : (Given X and Y) if there exists a Z such that X is parent
of Z, and Z is parent of Y, then X is a grandparent of Y.

VIEW 2 : (Given X and Y and Z) if X is parent of Z, and Z is parent
of Y, then X is a grandparent of Y.

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 22 / 52

PROGRAMS
DATABASES

Let us write some rules, trying to define intensionally a predicate:

grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

This is a definite clause. How can we interpret such a “Z”?

VIEW 1 : (Given X and Y) if there exists a Z such that X is parent
of Z, and Z is parent of Y, then X is a grandparent of Y.

VIEW 2 : (Given X and Y and Z) if X is parent of Z, and Z is parent
of Y, then X is a grandparent of Y.

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 22 / 52

PROGRAMS
DATABASES

Let us write some rules, trying to define intensionally a predicate:

grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

This is a definite clause. How can we interpret such a “Z”?

VIEW 1 : (Given X and Y) if there exists a Z such that X is parent
of Z, and Z is parent of Y, then X is a grandparent of Y.

VIEW 2 : (Given X and Y and Z) if X is parent of Z, and Z is parent
of Y, then X is a grandparent of Y.

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 22 / 52

PROGRAMS
DATABASES

Let us write some rules, trying to define intensionally a predicate:

grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

This is a definite clause. How can we interpret such a “Z”?

view 1:

(∀X)(∀Y)
(
(∃Z)(parent(X,Z) ∧ parent(Z,Y))→ granparent(X,Y)

)
view 2:

(∀X)(∀Y)(∀Z)
(
parent(X,Z) ∧ parent(Z,Y)→ granparent(X,Y)

)
Luckily, they are equivalent (exercise!)

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 23 / 52

PROGRAMS
DATABASES

Let us write some rules, trying to define intensionally a predicate:

grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

This is a definite clause. How can we interpret such a “Z”?

view 1:

(∀X)(∀Y)
(
(∃Z)(parent(X,Z) ∧ parent(Z,Y))→ granparent(X,Y)

)
view 2:

(∀X)(∀Y)(∀Z)
(
parent(X,Z) ∧ parent(Z,Y)→ granparent(X,Y)

)
Luckily, they are equivalent (exercise!)

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 23 / 52

PROGRAMS
DATABASES

Let us write some rules, trying to define intensionally a predicate:

grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

A solver should be able to deduce:

grandparent(elizabeth,william).
grandparent(elizabeth,harry).
grandparent(philip,william).
grandparent(philip,harry).

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 24 / 52

PROGRAMS
DATABASES

Let us enlarge the database (order does not matter)

parent(william,george).
parent(william,charlotte).
parent(kate, george).
parent(kate, charlotte).

We can define now the “ancestor” predicate.

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

This is the first use of “recursion”. Recursion is fundamental in
declarative programming (either functional or logic).

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 25 / 52

PROGRAMS
DATABASES

Let us define the “married” and “sibling” predicates:

married(X,Y) :- parent(X,Z), parent(Y,Z).
sibling(X,Y) :- parent(Z,X), parent(Z,Y).

Is this definition completely correct?

Are you sibling of yourself?

Patch:

married(X,Y) :- parent(X,Z), parent(Y,Z), X \= Y.
sibling(X,Y) :- parent(Z,X), parent(Z,Y), X \= Y.

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 26 / 52

PROGRAMS
DATABASES

Let us define the “married” and “sibling” predicates:

married(X,Y) :- parent(X,Z), parent(Y,Z).
sibling(X,Y) :- parent(Z,X), parent(Z,Y).

Is this definition completely correct?

Are you sibling of yourself?

Patch:

married(X,Y) :- parent(X,Z), parent(Y,Z), X \= Y.
sibling(X,Y) :- parent(Z,X), parent(Z,Y), X \= Y.

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 26 / 52

PROGRAMS
DATABASES

Let us define the “married” and “sibling” predicates:

married(X,Y) :- parent(X,Z), parent(Y,Z).
sibling(X,Y) :- parent(Z,X), parent(Z,Y).

Is this definition completely correct?

Are you sibling of yourself?

Patch:

married(X,Y) :- parent(X,Z), parent(Y,Z), X \= Y.
sibling(X,Y) :- parent(Z,X), parent(Z,Y), X \= Y.

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 26 / 52

PROGRAMS
(INFINITE) ARITHMETICS

Let us add some extra information:

female(elizabeth). female(diana).
female(kate). female(charlotte).
male(philip). male(charles).
male(william). male(harry).
male(george).

Then we can define other predicates, e.g.

isfather(X) :- parent(X,Y), male(X).
ismother(X) :- parent(X,Y), female(X).
brother(X,Y) :- sibling(X,Y), male(X).
has_a_sister(X) :- sibling(X,Y), female(Y).

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 27 / 52

PROGRAMS
(INFINITE) ARITHMETICS

Let us define the notion of being a natural number “nat”:

nat(0).
nat(s(X)) :- nat(X).

What are we expecting?

nat(0), nat(s(0)), nat(s(s(0))), ...

An infinite set of answers (is it viable?)

In the following, let us denote s(s(· · · (s(︸ ︷︷ ︸
n

0)) · · ·)) by n.

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 28 / 52

PROGRAMS
(INFINITE) ARITHMETICS

Let us define the notion of being a natural number “nat”:

nat(0).
nat(s(X)) :- nat(X).

What are we expecting?

nat(0), nat(s(0)), nat(s(s(0))), ...

An infinite set of answers (is it viable?)

In the following, let us denote s(s(· · · (s(︸ ︷︷ ︸
n

0)) · · ·)) by n.

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 28 / 52

PROGRAMS
(INFINITE) ARITHMETICS

Let us define now the “sum” predicate:

sum(X,0,X) :- nat(X).
sum(X,s(Y),s(Z)) :- sum(X,Y,Z).

What are we expecting?

E.g., sum(5,0,5)
sum(2,4,6)
sum(2,4,Z) 7→ Z = 6
sum(X ,4,6) 7→ X = 2

Last line is interesting . . .

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 29 / 52

PROGRAMS
(INFINITE) ARITHMETICS

Let us define now the “sum” predicate:

sum(X,0,X) :- nat(X).
sum(X,s(Y),s(Z)) :- sum(X,Y,Z).

What are we expecting?

E.g., sum(5,0,5)
sum(2,4,6)
sum(2,4,Z) 7→ Z = 6
sum(X ,4,6) 7→ X = 2

Last line is interesting . . .

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 29 / 52

Semantics of Logic Programs

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 30 / 52

UNIVERSES AND INTERPRETATIONS

p(a).
p(b).

A program (or in general, a first-order theory) P is a built from a list of
symbols.
In this case constants a and b, and one unary predicate symbol p
We would like to assign a meaning (interpretation) to these symbols on
a universe of objects.

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 31 / 52

UNIVERSES AND INTERPRETATIONS

p(a).
p(b).

A program (or in general, a first-order theory) P is a built from a list of
symbols.
In this case constants a and b, and one unary predicate symbol p
We would like to assign a meaning (interpretation) to these symbols on
a universe of objects.

a

b

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 31 / 52

UNIVERSES AND INTERPRETATIONS

p(a).
p(b).

A program (or in general, a first-order theory) P is a built from a list of
symbols.
In this case constants a and b, and one unary predicate symbol p
We would like to assign a meaning (interpretation) to these symbols on
a universe of objects.

a

b

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 31 / 52

UNIVERSES AND INTERPRETATIONS

p(a).
p(b).

A program (or in general, a first-order theory) P is a built from a list of
symbols.
In this case constants a and b, and one unary predicate symbol p
We would like to assign a meaning (interpretation) to these symbols on
a universe of objects.

a

b

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 31 / 52

UNIVERSES AND INTERPRETATIONS

Different interpretations for constant symbols induce different
interpretations for first-order formulas (with equality)

a

b

a

b

a

b

a 6= b ∃X (X 6= a ∧ X 6= b) a = b

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 32 / 52

UNIVERSES AND INTERPRETATIONS

p(a).
p(s(X)) ← p(X).
q(g(X,Y)) ← p(X),p(Y).

Constant a and function symbols s/1 and g/2. Function symbols must
be interpreted as functions (g(x , y) = z means (x , y , z) ∈ G, where G
is the interpretation viewed as set of triples)

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 33 / 52

UNIVERSES AND INTERPRETATIONS

p(a).
p(s(X)) ← p(X).
q(g(X,Y)) ← p(X),p(Y).

Constant a and function symbols s/1 and g/2. Function symbols must
be interpreted as functions (g(x , y) = z means (x , y , z) ∈ G, where G
is the interpretation viewed as set of triples)

a

0 1 2 3 4

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 33 / 52

UNIVERSES AND INTERPRETATIONS

p(a).
p(s(X)) ← p(X).
q(g(X,Y)) ← p(X),p(Y).

Constant a and function symbols s/1 and g/2. Function symbols must
be interpreted as functions (g(x , y) = z means (x , y , z) ∈ G, where G
is the interpretation viewed as set of triples)

a

0 1 2 3 4

s

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 33 / 52

UNIVERSES AND INTERPRETATIONS

p(a).
p(s(X)) ← p(X).
q(g(X,Y)) ← p(X),p(Y).

Constant a and function symbols s/1 and g/2. Function symbols must
be interpreted as functions (g(x , y) = z means (x , y , z) ∈ G, where G
is the interpretation viewed as set of triples)

a

0 1 2 3 4

s

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 33 / 52

UNIVERSES AND INTERPRETATIONS

p(a).
p(s(X)) ← p(X).
q(g(X,Y)) ← p(X),p(Y).

Constant a and function symbols s/1 and g/2. Function symbols must
be interpreted as functions (g(x , y) = z means (x , y , z) ∈ G, where G
is the interpretation viewed as set of triples)

a

0 1 2 3 4

s

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 33 / 52

UNIVERSES AND INTERPRETATIONS

p(a).
p(s(X)) ← p(X).
q(g(X,Y)) ← p(X),p(Y).

Constant a and function symbols s/1 and g/2. Function symbols must
be interpreted as functions (g(x , y) = z means (x , y , z) ∈ G, where G
is the interpretation viewed as set of triples)

a

0 1 2 3 4

s

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 33 / 52

UNIVERSES AND INTERPRETATIONS

p(a).
p(s(X)) ← p(X).
q(g(X,Y)) ← p(X),p(Y).

Constant a and function symbols s/1 and g/2. Function symbols must
be interpreted as functions (g(x , y) = z means (x , y , z) ∈ G, where G
is the interpretation viewed as set of triples)

a

0 1 2 3 4

g

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 33 / 52

UNIVERSES AND INTERPRETATIONS

Predicate symbols (e.g. p/1,q/n) should be interpreted (as 1-ary,
n-ary relations).

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 34 / 52

UNIVERSES AND INTERPRETATIONS

Predicate symbols (e.g. p/1,q/n) should be interpreted (as 1-ary,
n-ary relations).

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 34 / 52

UNIVERSES AND INTERPRETATIONS

Predicate symbols (e.g. p/1,q/n) should be interpreted (as 1-ary,
n-ary relations).

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 34 / 52

UNIVERSES AND INTERPRETATIONS

Predicate symbols (e.g. p/1,q/n) should be interpreted (as 1-ary,
n-ary relations).

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 34 / 52

UNIVERSES AND INTERPRETATIONS

Different interpretations for predicate symbols induce different
interpretations for first-order formulas (with equality)

∀X ¬p(X) ∃X p(X)∧ ∃X (¬p(X))∧ ∀X p(X)
∃X∃Y (X 6= Y ∧ ¬p(X) ∧ ¬p(Y)) ∃X∃Y (X 6= Y ∧ p(X) ∧ p(Y))

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 35 / 52

MODELS

Some of the various interpretations of constant, function, and
predicate symbols can be models of the program (or of the theory) P.

p(a).
q(b).
r(X) ← p(X).

a

b

Let us denote a =triangle and b =square. Let use denote with P,Q,R
the interpretations of the predicate symbols p,q, r .
An interpretation that satisfies the logical meaning of all the formulas of
P is a model.
P = {a},Q = {b},R = {a,b} is a model.
P = {a,b},Q = {b},R = {a} is NOT a model.

An atom q(t1, . . . , tn) is a logical consequence of a program/theory P if
(t1, . . . , tn) ∈ Q in all (interpretations that are) models of P.
We say that P |= q(t1, . . . , tn).

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 36 / 52

MODELS

Some of the various interpretations of constant, function, and
predicate symbols can be models of the program (or of the theory) P.

p(a).
q(b).
r(X) ← p(X).

a

b

Let us denote a =triangle and b =square. Let use denote with P,Q,R
the interpretations of the predicate symbols p,q, r .
An interpretation that satisfies the logical meaning of all the formulas of
P is a model.
P = {a},Q = {b},R = {a,b} is a model.
P = {a,b},Q = {b},R = {a} is NOT a model.

An atom q(t1, . . . , tn) is a logical consequence of a program/theory P if
(t1, . . . , tn) ∈ Q in all (interpretations that are) models of P.
We say that P |= q(t1, . . . , tn).

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 36 / 52

MODELS

Some of the various interpretations of constant, function, and
predicate symbols can be models of the program (or of the theory) P.

p(a).
q(b).
r(X) ← p(X).

a

b

Let us denote a =triangle and b =square. Let use denote with P,Q,R
the interpretations of the predicate symbols p,q, r .
An interpretation that satisfies the logical meaning of all the formulas of
P is a model.
P = {a},Q = {b},R = {a,b} is a model.
P = {a,b},Q = {b},R = {a} is NOT a model.

An atom q(t1, . . . , tn) is a logical consequence of a program/theory P if
(t1, . . . , tn) ∈ Q in all (interpretations that are) models of P.
We say that P |= q(t1, . . . , tn).

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 36 / 52

MODELS

The set of logical consequences seems to be what we expect from the
program.

P |= q(t1, . . . , tn)
An atom q(t1, . . . , tn) is a logical consequence of a program/theory P if
(t1, . . . , tn) ∈ Q in all (interpretations that are) models of P.

The questions are: Does it exist always? If yes, how to compute it?

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 37 / 52

HERBRAND INTERPRETATIONS

Let us consider the set of all ground terms that can be built with
constant and function symbols in a program P.
This set can be used as a Universe for interpretations (the Herbrand
Universe or HP).
Ground terms are interpreted as themselves

a

b

a

b
0 s(0) s(s(0)) s(s(s(0)))

0
s(0) s(s(0)) s(s(s(0)))

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 38 / 52

HERBRAND MODELS

Interpretations on the Herbrand Universe can be (or not) models
(Herbrand models)

p(a).
q(b).
r(X) ← p(X).

a

b

a

b

Now, a = a and b = b. Let us denote with P,Q,R the interpretations of
the predicate symbols p,q, r .

1 P = {a},Q = {b},R = {a,b} is a model.
2 P = {a,b},Q = {b},R = {a} is NOT a model.

Herbrand interpretations and models can be represented uniquely by
set of atoms:

1 {p(a),q(b), r(a), r(b)} (model)
2 {p(a),p(b),q(b), r(a)} (not a model)

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 39 / 52

HERBRAND MODELS

Interpretations on the Herbrand Universe can be (or not) models
(Herbrand models)

p(a).
q(b).
r(X) ← p(X).

a

b

a

b

Now, a = a and b = b. Let us denote with P,Q,R the interpretations of
the predicate symbols p,q, r .

1 P = {a},Q = {b},R = {a,b} is a model.
2 P = {a,b},Q = {b},R = {a} is NOT a model.

Herbrand interpretations and models can be represented uniquely by
set of atoms:

1 {p(a),q(b), r(a), r(b)} (model)
2 {p(a),p(b),q(b), r(a)} (not a model)

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 39 / 52

HERBRAND MODELS

Interpretations on the Herbrand Universe can be (or not) models
(Herbrand models)

p(a).
q(b).
r(X) ← p(X).

a

b

a

b

Now, a = a and b = b. Let us denote with P,Q,R the interpretations of
the predicate symbols p,q, r .

1 P = {a},Q = {b},R = {a,b} is a model.
2 P = {a,b},Q = {b},R = {a} is NOT a model.

Herbrand interpretations and models can be represented uniquely by
set of atoms:

1 {p(a),q(b), r(a), r(b)} (model)
2 {p(a),p(b),q(b), r(a)} (not a model)

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 39 / 52

A LATTICE OF INTERPRETATIONS

Given a program P, the corresponding Herbrand Universe HP is
determined uniquely

p(a). q(b).
r(X) ← p(X).

a

b

a

b

nat(0).
nat(s(X)) ← nat(X). 0 s(0) s(s(0)) s(s(s(0)))

0
s(0) s(s(0)) s(s(s(0)))

Let BP = {p(t1, . . . , tn) : p is a predicate symbol in P, tis are
ground terms made with constant and function symbols in P }
BP is called the Herbrand base.
Any subset of BP uniquely determines an Herbrand Interpretation
(some of them can be models)
(℘(BP),⊆) forms a complete lattice

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 40 / 52

THE FUNDAMENTAL THEOREM(S)

THEOREM

Let P be a set of clauses. Then P admits a model if and only if it
admits a Herbrand model.

THEOREM

Let P be a (definite clause) program. Then P admits a (unique)
minimum Herbrand model MP (MP is the semantics of P, it is also the
intersection of all Herbrand models).
(i.e., if I is a Herbrand model of P, then MP ⊆ I).

THEOREM

Let P be a (definite clause) program and A ∈ BP be a ground atom.
Then P |= A if and only if A ∈ MP .

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 41 / 52

COMPUTING MP

1 Top-Down: using SLD resolution (Prolog).
Query the SLD interpreter with the goal :−A.
Use the following (meta) rule untile the goal becomes empty.

:−A1, . . . ,Ai−1,Ai ,Ai+1, . . . ,Am H :−B1, . . . ,Bn
:− (A1, . . . ,Ai−1,B1, . . . ,Bn,Ai+1, . . . ,Am)θ

where H :−B1, . . . ,Bn is the renaming of a clause in P and θ is
the most general unifier of Ai and H. Non-determinism and failures
are handled via backtracking. i = 1 in actual implementations.
“Derivations” leading to an empty goal are searched.

2 Bottom-Up: using the TP (immediate consequence) operator
(Datalog/ASP).

TP(I) = {a : a← b1, . . . ,bn ∈ ground(P), {b1, . . . ,bn} ⊆ I}

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 42 / 52

COMPUTING MP
TOP-DOWN

EXAMPLE

Let P be the program:

r(a).
r(b).
p(a).
q(X) :- r(X),p(X).

We can produce the successful SLD derivation

:−q(a). q(X1) :− r(X1),p(X1). θ = [X1/a]
:− r(a),p(a). r(a).

:−p(a). p(a).
2

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 43 / 52

COMPUTING MP
BOTTOM-UP

EXAMPLE

Let P be the program:

r(a).
r(b).
p(a).
q(X) :- r(X),p(X).

Then:

TP(∅) = {r(a), r(b),p(a)}
TP({r(a), r(b),p(a)}) = {q(a), r(a), r(b),p(a)}

TP({q(a), r(a), r(b),p(a)}) = {q(a), r(a), r(b),p(a)} ⇐ Fixpoint!

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 44 / 52

COMPUTING MP
TOP-DOWN

EXAMPLE

Let P be the program:

p(a).
q(X) :- q(X).

SLD might loop

:−q(a). q(X1) :−q(X1). θ = [X1/a]
:−q(a). q(X2) :−q(X2). θ = [X2/a]

:−q(a). q(X3) :−q(X3). θ = [X3/a]
. . .

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 45 / 52

COMPUTING MP
BOTTOM-UP

EXAMPLE

Let P be the program:

p(a).
q(X) :- q(X).

Then:
TP(∅) = {p(a)}

TP({p(a)}) = {p(a)} ⇐ Fixpoint!

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 46 / 52

COMPUTING MP
TOP-DOWN

EXAMPLE

Let P be the program:

nat(0).
nat(s(X)) :- nat(X).

Then:

:−nat(s(s(s(0)))). nat(s(X1)) :−nat(X1). θ = [X1/s(s(0))]
:−nat(s(s(0))). nat(s(X2)) :−nat(X2). θ = [X1/s(0)]

:−nat(s(0)). nat(s(X3)) :−nat(X3). θ = [X3/0]
:−nat(0). nat(0).

2

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 47 / 52

COMPUTING MP
BOTTOM-UP

EXAMPLE

Let P be the program:

nat(0).
nat(s(X)) :- nat(X).

Then:

TP(∅) = {nat(0)}
TP({nat(0)}) = {nat(0), nat(s(0))}

TP({nat(0), nat(s(0))}) = {nat(0), nat(s(0)), nat(s(s(0)))}
...

...
...

TP({nat(0), nat(s(0)), nat(s(s(0))), . . . }) = {nat(0), nat(s(0)), nat(s(s(0))), . . . }
⇑ Fixpoint!

Basically, it might loop.

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 48 / 52

COMPUTING MP
EQUIVALENCE OF THE THREE SEMANTICS

TP is monotone: I ⊆ J → TP(I) ⊆ TP(J) and
upward continuous: if I0 ⊆ I1 ⊆ I2 · · · then TP(

⋃
i≥0 Ii) =

⋃
i≥0 TP(Ii)

Let us define

TP ↑ 0 = ∅
TP ↑ n + 1 = TP(TP ↑ n)

TP ↑ ω =
⋃

n≥0 TP ↑ n

THEOREM

If P is a definite clause program, then TP ↑ ω = MP = TP(TP ↑ ω).

THEOREM

If P is a definite clause program, then MP is the set of ground atoms
that admit a successful SLD derivation.

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 49 / 52

COMPUTING MP
EQUIVALENCE OF THE THREE SEMANTICS

TP is monotone: I ⊆ J → TP(I) ⊆ TP(J) and
upward continuous: if I0 ⊆ I1 ⊆ I2 · · · then TP(

⋃
i≥0 Ii) =

⋃
i≥0 TP(Ii)

Let us define

TP ↑ 0 = ∅
TP ↑ n + 1 = TP(TP ↑ n)

TP ↑ ω =
⋃

n≥0 TP ↑ n

THEOREM

If P is a definite clause program, then TP ↑ ω = MP = TP(TP ↑ ω).

THEOREM

If P is a definite clause program, then MP is the set of ground atoms
that admit a successful SLD derivation.

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 49 / 52

SUMMARY

The semantics of definite clause logic programming is based on the
minimum Herbrand model MP . It is the set of logical consequences. It is
computable, i.e. it is a recursively enumerable set. You can compute it
top down by SLD resolution (as in Prolog) or bottom up by TP ↑ ω (the
least fixpoint). It is recursive (PTIME) if there are not function symbols in
P. [J.W. Lloyd: Foundations of Logic Programming; K.R. Apt: From
Logic Programming to Prolog]

Focusing on definite clause logic programming one can be interested in
the greatest fixpoint of TP for coinductive reasoning (Coinductive Logic
Programming). This set is not computable (it is a productive set) but can
be under approximated. [D. Ancona, A. Dovier: A theoretical perspective
of Coinductive Logic Programming. 2015]

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 50 / 52

NEGATION

Allowing negation in Body introduces a number of issues

H ← B1, . . . ,Bm,not C1, . . . ,not Cn

TP is no longer monononic: a minimum model is not ensured to
exist
The notion of Stable Model (Gelfond-Lifschitz) is introduced.
Semantics is bottom-up (finiteness restrictions are imposed)
A new dialect of logic programming called Answer Set
Programming (ASP), emerged for Knowledge Representation
(where non monotonicity is needed)

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 51 / 52

See you next week

AGOSTINO DOVIER (CLPLAB) INTRODUCTION TO LOGIC PROGRAMMING UDINE, NOVEMBER 20, 2018 52 / 52

	Logic Programming
	Where
	What
	Logic Programming in The World
	Logic Programming in Italy

	Syntax
	Terms and Atoms
	Examples

	Semantics
	Models
	The minimum model
	Fixpoints

	Conclusions

