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Probabilistic Logic Programming: a Recap Syntax

Logic Programs with Annotated Disjunctions (LPADs)

sneezing(X ) : 0.7 ∨ null : 0.3← flu(X ).
sneezing(X ) : 0.8 ∨ null : 0.2← hay_fever(X ).
flu(bob).
hay_fever(bob).

Distributions over the head of rules
null does not appear in the body of any rule, and is usually omitted
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Probabilistic Logic Programming: a Recap Syntax

ProbLog

sneezing(X )← flu(X ), flu_sneezing(X ).
sneezing(X )← hay_fever(X ), hay_fever_sneezing(X ).
flu(bob).
hay_fever(bob).
0.7 :: flu_sneezing(X ).
0.8 :: hay_fever_sneezing(X ).

Distributions over (probabilistic) facts
Worlds obtained by selecting or not every grounding of each
probabilistic fact

This program has 2 · 2 = 4 possible worlds.
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Probabilistic Logic Programming: a Recap Semantics

Distribution Semantics

We consider the case of programs without functions symbols
An LPAD defines a probability distribution over normal logic
programs called worlds
A world is obtained from an LPAD by:

1 grounding the program
2 selecting a single head atom for each ground clause
3 including in the world the clause with the selected head atom and the

body

The probability of a world is the product of the probabilities associated
to the heads selected
The probability of a ground atom (the query) is given by the sum of
the probabilities of the worlds where the query is true
If the LPAD contains function symbols, the definition is more complex
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Probabilistic Logic Programming: a Recap Semantics

Worlds for the LPAD Program

sneezing(bob)← flu(bob). null ← flu(bob).
sneezing(bob)← hay_fever(bob). sneezing(bob)← hay_fever(bob).
flu(bob). flu(bob).
hay_fever(bob). hay_fever(bob).
P(w1) = 0.7× 0.8 P(w2) = 0.3× 0.8

sneezing(bob)← flu(bob). null ← flu(bob).
null ← hay_fever(bob). null ← hay_fever(bob).
flu(bob). flu(bob).
hay_fever(bob). hay_fever(bob).
P(w3) = 0.7× 0.2 P(w4) = 0.3× 0.2

sneezing(bob) is true in 3 worlds out of 4
P(sneezing(bob)) = 0.7× 0.8 + 0.3× 0.8 + 0.7× 0.2 = 0.94
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Probabilistic Logic Programming: a Recap Semantics

Worlds for the ProbLog Program

sneezing(X )← flu(X ), flu_sneezing(X ).
sneezing(X )← hay_fever(X ), hay_fever_sneezing(X ).
flu(bob).
hay_fever(bob).

flu_sneezing(bob).
hay_fever_sneezing(bob). hay_fever_sneezing(bob).
P(w1) = 0.7× 0.8 P(w2) = 0.3× 0.8

flu_sneezing(bob).
P(w3) = 0.7× 0.2 P(w4) = 0.3× 0.2

sneezing(bob) is true in 3 worlds out of 4
P(sneezing(bob)) = 0.7× 0.8 + 0.3× 0.8 + 0.7× 0.2 = 0.94
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Reasoning Tasks in PLP

Reasoning Tasks

Inference: we want to compute the probability of a query given the
model and, possibly, some evidence
Weight learning: we know the structural part of the model (the logic
formulas) but not the numeric part (the weights) and we want to infer
the weights from data
Structure learning: we want to infer both the structure and the
weights of the model from data
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Reasoning Tasks in PLP Inference

Inference under the Distribution Semantics

Let At be the set of all ground (probabilistic and derived) atoms in a
given LPAD program
Assume that we are given a set E ⊂ At of observed atoms (evidence
atoms)

a vector e with their observed truth values means that the evidence is
E = e

We are also given a set Q ⊂ At of atoms of interest (query atoms)
q indicates a single ground atom of interest
Different inference tasks are possible
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Reasoning Tasks in PLP Inference

Inference under the Distribution Semantics

Unconditional inference: computing the unconditional probability
P(e), the probability of evidence
Conditional or marginal inference: computing the conditional
probability distribution of every query atom given the evidence, i.e.,
computing P(q|E = e), for each q ∈ Q
Computing the probability distribution or density of the non-ground
arguments of a conjunction of literals Q = q
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Reasoning Tasks in PLP Inference

Inference under the Distribution Semantics

MPE task, or most probable explanation: finds the most likely joint
truth value of all query (unobserved) atoms given the evidence, i.e.,
solves the optimization problem argmaxq P(Q = q|E = e)

MAP task, or maximum a posteriori : finds the most likely joint truth
value of a set of query (unobserved) atoms given the evidence, i.e.,
solves the optimization problem argmaxq P(Q = q|E = e)
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Reasoning Tasks in PLP Inference

Inference under the Distribution Semantics
Example

heads(Coin):1/2; tails(Coin):1/2:- toss(Coin),\+biased(Coin).
heads(Coin):0.6; tails(Coin):0.4:- toss(Coin),biased(Coin).
fair(Coin):0.9; biased(Coin):0.1.
toss(coin).

Unconditional inference: P(heads(coin)), P(tails(coin))

Conditional inference: P(heads(coin)|biased(coin))
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Reasoning Tasks in PLP Inference

Inference under the Distribution Semantics
Example

MPE: Most likely world where heads(coin) is true?
2× 2× 2 = 8 possible worlds
H=heads(coin), T=tails(coin), F=fair(coin), B=biased(coin)
HHF : 0.5 ∗ 0.6 ∗ 0.9 = 0.27
HHB : 0.5 ∗ 0.6 ∗ 0.1 = 0.03
HTF : 0.5 ∗ 0.4 ∗ 0.9 = 0.18
HTB : 0.5 ∗ 0.4 ∗ 0.1 = 0.02
THF : 0.5 ∗ 0.6 ∗ 0.9 = 0.27
THB : 0.5 ∗ 0.6 ∗ 0.1 = 0.03
TTF : 0.5 ∗ 0.4 ∗ 0.9 = 0.18
TTB : 0.5 ∗ 0.4 ∗ 0.1 = 0.02

heads(coin), heads(coin), fair(coin)

tails(coin), heads(coin), fair(coin)
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Reasoning Tasks in PLP Inference

Inference under the Distribution Semantics

The inference problem is #P-hard and for large models is intractable.
Possible solutions:

1 Exact inference
Knowledge Compilation: compile the probabilistic logic program to
an intermediate representation and then compute the probability by
Weighted Model Counting
Bayesian Network (BN) based: convert the probabilistic logic
program into a BN and apply BN inference algorithms (Meert et al.
(2010))
Lifted inference (Poole (2003)): exploits symmetries in the model to
speed up inference

2 Approximate inference
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Reasoning Tasks in PLP Inference

Knowledge Compilation

A probabilistic logic program can be compiled into the following
intermediate representations:

Binary Decision Diagrams (BDD): De Raedt et al. (2007), cplint
(Riguzzi (2007),Riguzzi (2009)), PITA (Riguzzi and Swift (2010a))
deterministic-Decomposable Negation Normal Form circuits
(d-DNNF): ProbLog2, Fierens et al. (2015)
Sentential Decision Diagrams (SDD), Darwiche (2011)
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Reasoning Tasks in PLP Inference

Knowledge Compilation to BDD

1 Assign Boolean random variables (r.v.) to the probabilistic rules
2 Given a query Q, compute its explanations, i.e. assignments to the

random variables that are sufficient for entailing the query
3 Let K be the set of all possible explanations
4 Build a Boolean formula fK representing K

5 Build a BDD encoding fK
6 Compute the probability of evidence from the BDD (unconditional

inference)
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Reasoning Tasks in PLP Inference

Knowledge Compilation to BDD
(2) Computing explanations for Q

Atomic choice (C , θ, k): selection of the k-th atom for a grounding
Cθ of a switch/clause C and a substitution θ: (C1, {X/bob}, 1)
selects sneezing(bob) in the LPAD
Composite choice κ: consistent set of atomic choices (Ci , θj , k)

A composite choice κ identifies a set of worlds ωκ = {wσ|κ ⊆ σ}
whose selections σ are a superset of κ
A composite choice κ is an explanation for a query Q if Q is true in
every world of ωκ
In practice, a covering set of explanations must be found
A set of composite choices K is covering with respect to Q if every
world w in which Q is true is such that w ∈ ωK where ωK =

⋃
κ∈K ωκ

E. Bellodi Probabilistic Logic Programming Udine, PhD Course 17 / 86



Reasoning Tasks in PLP Inference

Knowledge Compilation to BDD
(2) Computing explanations for Q

Two composite choices κ1 and κ1 are exclusive if their union is
inconsistent
If κ1 = {(C1,X/bob, 1)}, κ2 = {(C1,X/bob, 2), (C2,X/bob, 1)} then
κ1 ∪ κ2 is inconsistent
A set K of composite choices is mutually exclusive if for all
κ1 ∈ K , κ2 ∈ K , κ1 6= κ2 ⇒ κ1 and κ2 are exclusive
if K is mutually exclusive, P(K ) =

∑
κ∈K P(κ)
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Reasoning Tasks in PLP Inference

Knowledge Compilation to BDD
(3,4) Building a formula for the explanations

K = set of covering explanations found for Q

Boolean formula representing K , over a set X of multi-valued r. v.

fK (X) =
∨
κ∈K

∧
(Ci ,θj ,k)∈κ

(Xij = k)

Xij : random variable whose domain is 1, ..., ni (no of head atoms)
P(Xij = k) = p(Ci , k)

fK (X) = 1 if the values of the variables correspond to an explanation
for Q

Equations for a single explanation are conjoined and the conjunctions
for the different explanations are disjoined
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Reasoning Tasks in PLP Inference

Knowledge Compilation to BDD
(2,3,4) Example

For the (LPAD) program:

sneezing(X ) : 0.7← flu(X ).
sneezing(X ) : 0.8← hay_fever(X ).
flu(bob).
hay_fever(bob).

a set of covering explanations for Q = sneezing(bob) is K = {κ1, κ2}
κ1 = {(C1, {X/bob}, 1)} κ2 = {(C2, {X/bob}, 1)}
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Reasoning Tasks in PLP Inference

Knowledge Compilation to BDD
(2,3,4) Example

θ1 = X/bob

XC1θ1 → X11 From κ1,X11 = 1
XC2θ1 → X21 From κ2,X21 = 1
fK (X) = (X11 = 1) ∨ (X21 = 1)

P(Q) = P(fK (X)) = P(X11∨X21)= P(X11)+P(X21)−P(X11)P(X21)

E. Bellodi Probabilistic Logic Programming Udine, PhD Course 21 / 86



Reasoning Tasks in PLP Inference

Knowledge Compilation to BDD
And Now What?

Worlds are mutually exclusive, and in theory we could compute P(Q)
as

∑
w∈WT :w |=Q P(w),
BUT in practice, it is unfeasible to find all the worlds w where the
query is true

It’s easier to find explanations for the query
BUT explanations might not be mutually exclusive
they must be made mutually exclusive in order to sum up
probabilities
Binary Decision Diagrams (BDD): they split paths on the basis of the
values of binary variables, so the branches are mutually disjoint
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Reasoning Tasks in PLP Inference

Knowledge Compilation to BDD
(3,4) Building a formula for the explanations

A BDD performs a Shannon expansion of fK (X)

fK (X) = X11 × f X11
K (X) + X11 × f X11

K (X)

The two disjuncts above are mutually exclusive
f X
K (X)(f X

K (X)) is the formula obtained by fK (X) by setting X to 1 (0)

P(fK (X)) = P(X11)P(f X11
K (X)) + (1− P(X11))P(f X11

K (X))

P(fK (X)) = 0.7 · P(f X11
K (X)) + 0.3 · P(f X11

K (X))
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Reasoning Tasks in PLP Inference

Knowledge Compilation to BDD
(3,4) Building a formula for the explanations

In order to use BDD, a multi-valued random variable Xij with ni

values must be converted into ni − 1 Boolean variables Xij1, ...,Xijni−1

Xij = k for k = 1, ..., ni − 1 is represented by the conjunction
Xij1 ∧ . . . ∧ Xijk−1 ∧ Xijk

Xij = ni by Xij1 ∧ . . . ∧ Xijni−1

E. Bellodi Probabilistic Logic Programming Udine, PhD Course 24 / 86



Reasoning Tasks in PLP Inference

Knowledge Compilation to BDD
(3,4) Example

For both C1 and C2 : ni = 2
(multi-valued) X11 = 1→ (Boolean) X111

(multi-valued) X11 = 2→ (Boolean) X111

(multi-valued) X21 = 1→ (Boolean) X211

(multi-valued) X21 = 2→ (Boolean) X211

f ′K (X) = X111 ∨ X211
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Reasoning Tasks in PLP Inference

Knowledge Compilation to BDD
(5) Building a BDD

A BDD for a function of Boolean variables is a rooted graph that has
one level for each Boolean variable
A node n has two children: one corresponding to the 1 value of the
variable associated with n (solid arc) and one corresponding the 0
value of the variable (dashed arc)
The leaves store either 0 or 1: a path to a 1-leaf corresponds to an
explanation for Q
BDD for f ′K (X) = X111 ∨ X211:
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Reasoning Tasks in PLP Inference

Knowledge Compilation to BDD
(5) Building a BDD

BDDs can be built by combining simpler BDDs using Boolean
operators
While building BDDs, simplification operations can be applied that
delete or merge nodes
Merging is performed when the diagram contains two identical
sub-diagrams
Deletion is performed when both arcs from a node point to the same
node
A reduced BDD often has a much smaller number of nodes with
respect to the original BDD
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Reasoning Tasks in PLP Inference

Knowledge Compilation to BDD
(6) Computing the probability from a BDD
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Reasoning Tasks in PLP Inference

Knowledge Compilation to BDD
(6) Example

P(n2) = 0 · 0.2 + 1 · 0.8 = 0.8
P(n1) = P(root) = 1 · 0.7 + 0.3 · 0.8 = 0.94 = P(Q) = P(sneezing(bob))
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Reasoning Tasks in PLP Inference

MDDs vs BDDs

A Multivalued Decision Diagrams (MDD) represents a function taking
Boolean values on a set of multivalued variables X, each node is
associated to the variable of its level and has one child for each
possible value of the variable
A BDD represents a function taking Boolean values on a set of binary
variables X, each node is associated to the variable of its level and
has 2 children
Most packages for the manipulation of decision diagrams are restricted
to work on Binary Decision Diagrams (see CUDD @http://vlsicad.
eecs.umich.edu/BK/Slots/cache/vlsi.colorado.edu/~fabio/),
as they offer several operators for handling BDDs
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Reasoning Tasks in PLP Inference

Tabling-based Inference

Idea: maintain in a table both subgoals encountered in a query
evaluation and answers to these subgoals
If a subgoal is encountered more than once, the evaluation reuses
information from the table rather than re-performing resolution
against program clauses
Tabling can be used to evaluate programs with negation
Tabling integrates closely with Prolog: a predicate p/n is evaluated
using SLDNF by default; the predicate can be made to use tabling by
the directive :- table p/n that is added by the user or compiler
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Reasoning Tasks in PLP Inference

Tabling-based Inference
PITA: Probabilistic Inference with Tabling and Answer subsumption

Introduced by Riguzzi and Swift (2010b)
PITA computes the probability of queries from LPADs with tabling
PITA builds all explanations for every subgoal encountered during a
derivation of the query
Explanations for subgoals are stored with tabling
Explanations are compactly represented using BDDs that also allow an
efficient computation of the probability
Subgoals (ground atoms) have an extra argument storing a BDD that
represents the explanations for their answers
When an answer q(x, bdd) is found, bdd represents the explanations
for q(x)
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Reasoning Tasks in PLP Inference

Tabling-based Inference
Answer Subsumption

A feature of tabling in XSB and SWI Prolog
Combine different answers for the same goal
E.g :-table path(X,Y,lattice(or/3)) means that, if two
explanations path(a,b,bdd0) and path(a,b,bdd1) are found, the
single answer path(a,b,bdd) will be stored in the table where
or(bdd0,bdd1,bdd)
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Reasoning Tasks in PLP Inference

Tabling-based Inference
PITA: Program Transformation

The first step of the PITA algorithm is to apply a program
transformation to an LPAD to create a normal logic program that
contains calls for manipulating BDDs
Prolog interface to the CUDD C library with the predicates:

init, end : allocation and deallocation of a BDD manager
zero(−BDD), one(−BDD), and(+BDD1,+BDD2,−BDDO),
or(+BDD1,+BDD2,−BDDO), not(+BDDI ,−BDDO): BDD
operations
add_var(+N_Val ,+Probs,−Var): adds a new random variable Var
associated to a new instantiation of a rule with N_Val head atoms and
parameters list Probs
equality(+Var ,+Value,−BDD): BDD represents Var=Value
ret_prob(+BDD,−P): returns the probability of the formula encoded
by BDD
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Reasoning Tasks in PLP Inference

Tabling-based Inference
PITA: Program Transformation

get_var_n(R,C ,Probs,Var) wraps add_var/3 and avoids adding a
new variable when one already exists for an instantiation
R is an identifier for the LPAD rule, C is a list of constants, one for
each variables of the clause, and Var is a integer that identifies the
random variable associated with clause R under a particular grounding;
Probs is a list of floats that stores the parameters in the head of rule R

get_var_n(R,C ,Probs,Var) : − (var(R,C ,Var)→ true;
length(Probs, L),
add_var(L,Probs,Var),
assert(var(R,C ,Var))).
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Reasoning Tasks in PLP Inference

Tabling-based Inference
PITA: Program Transformation

The disjunctive clause Cr = H1 : α1 ∨ . . . ∨ Hn : αn ← L1, . . . , Lm.
is transformed into the set of clauses PITA(Cr )

PITA(Cr , 1) = PITA(H1)← one(BB0),
PITA(L1), and(BB0,B1,BB1),
. . . ,
PITA(Lm), and(BBm−1,Bm,BBm),
get_var_n(r ,C , [α1, . . . , αn],Var),
equality(Var , 1,BB), and(BBm,BB,BDD).

. . .
PITA(Cr , n) = PITA(Hn)← one(BB0),

PITA(L1), and(BB0,B1,BB1),
. . . ,
PITA(Lm), and(BBm−1,Bm,BBm),
get_var_n(r ,C , [α1, . . . , αn],Var),
equality(Var , n,BB), and(BBm,BB,BDD).
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Reasoning Tasks in PLP Inference

Tabling-based Inference
PITA Example

:- table path(X,Y,lattice(or/3)),edge(X,Y,lattice(or/3)).

LPAD

path(X,X).
path(X,Y):- path(X,Z),edge(Z,Y).
edge(a,b):0.3.
....

PITA Transformation

path(X,X,One):- one(One).
path(X,Y,BDD):- one(One),path(X,Z,BDD0),and(One,BDD0,BDD1),

edge(Z,Y,BDD2),and(BDD1,BDD2,BDD).
edge(a,b,BDD):- one(One),get_var_n(3,[],[0.3,0.7],Var),

equality(Var,1,BDD0),and(BDD0,One,BDD).
...
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Reasoning Tasks in PLP Inference

Tabling-based Inference
PITA Example

Query: path(a,b)

:- init ,
path(? HGNC_620?,?HGNC_983?,BDD),
ret_prob(BDD ,P),
end.
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Reasoning Tasks in PLP Inference

Tabling-based Inference
PITA Results

PITA was compared with CVE (Meert et al. (2010)) and ProbLog1
(Kimmig et al. (2008a)).

CVE transforms an LPAD into an equivalent Bayesian network and
then performs inference on the network using the variable elimination
algorithm
ProbLog employs BDDs for efficient inference

The algorithm was able to successfully solve more complex queries
than the other algorithms in most cases and it was also almost always
faster
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Reasoning Tasks in PLP Inference

Inference Systems based on BDDs: cplint

Suite of programs for reasoning with LPADs
Inference and learning
Versions for Yap Prolog and SWI-Prolog
Distributed as a pack of SWI-Prolog. To install it, use
?- pack_install(cplint).

Available in the web application cplint on SWISH: http://cplint.eu/
Exact Inference: module PITA
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Reasoning Tasks in PLP Inference

Inference Systems based on BDDs: cplint

Input: Prolog file where you must
load the inference module (pita)
initialize it with a directive (:- pita.)
enclose the LPAD clauses in :-begin_lpad. and :-end_lpad.

Example: coin.pl
:- use_module(library(pita)).
:- pita.
:- begin_lpad.
heads(Coin):1/2; tails(Coin):1/2:- toss(Coin),\+biased(Coin).
heads(Coin):0.6; tails(Coin):0.4:- toss(Coin),biased(Coin).
fair(Coin):0.9; biased(Coin):0.1.
toss(coin).

:- end_lpad.
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Reasoning Tasks in PLP Inference

Inference Systems based on BDDs: cplint

You can have also (non-probabilistic) clauses outside
:-begin/end_lpad., considered as database clauses.
Subgoals in the body of probabilistic clauses can query them by
enclosing the query in db/1.
Example
:- use_module(library(pita)).
:- pita.
:- begin_lpad.

sampled_male(X):0.5:- db(male(X)).
:- end_lpad.
male(john).
male(david).
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Reasoning Tasks in PLP Inference

Hands-on: Coin example

http://cplint.eu/example/inference/coin.pl
Unconditional inference:

What is the probability that coin lands heads?
prob(heads(coin),Prob).
What is the probability that coin lands tails?
prob(tails(coin),Prob).

Conditional inference:
What is the probability that coin lands heads, given that I know it is
biased? prob(heads(coin),biased(coin),Prob).
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Reasoning Tasks in PLP Inference

Hands-on: Sneezing example

http://cplint.eu/p/sneezing_simple.pl
Unconditional inference:

What’s the probability of Bob sneezing?
prob(sneezing(bob),Prob).

We should expect Prob = ?
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Reasoning Tasks in PLP Inference

Knowledge Compilation to d-DNNF

A tractable logical form known as Deterministic, Decomposable
Negation Normal Form, which permits some generally intractable
logical queries to be computed in time polynomial in the form
size (Darwiche (2004))
Superset of OBDDs (Ordered BDD): BDDs with a defined variable
ordering
Allows to perform unconditional, conditional and MPE inference in
ProbLog2
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Reasoning Tasks in PLP Inference

Knowledge Compilation to d-DNNF

A negation normal form (NNF) is a rooted directed acyclic graph in
which each leaf node is labeled with a literal, true or false, and each
internal node is labeled with a conjunction or disjunction
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Reasoning Tasks in PLP Inference

Knowledge Compilation to d-DNNF

For any node n, Vars(n) denotes all propositional variables that
appear in the subgraph rooted at n, and ∆(n) denotes the formula
represented by n and its descendants.

Properties
Decomposability: Vars(ni ) ∩ Vars(nj) = ∅ for any two children ni

and nj of an and-node n. The NNF in the figure is decomposable.
Determinism: ∆(ni ) ∧∆(nj) is logically inconsistent for any two
children ni and nj of an or-node n. The NNF in the figure is
deterministic.
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Reasoning Tasks in PLP Inference

Knowledge Compilation to d-DNNF

Decision: holds when the root node of the NNF graph is a decision
node. A decision node is a node labeled with true, false, or is an

or-node having the form where X is a variable, α and β are
decision nodes. The NNF in the figure does not satisfy the decision
property since its root is not a decision node.
Ordering: only for NNFs that satisfy the decision property. Ordering
holds when decision variables appear in the same order along any path
from the root to any leaf.
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Reasoning Tasks in PLP Inference

Knowledge Compilation to d-DNNF
Procedure

1 Ground the probabilistic logic program and convert it into an
equivalent Boolean formula φr

2 Build φe , the Boolean formula for the evidence
3 Rewrite φ = φr ∧ φe in CNF
4 Construct a weighted Boolean formula for φ
5 CNF formula → d-DNNF formula (#P hard step)
6 d-DNNF formula → aritmetic circuit (AC)
7 Compute the probability of evidence from the AC
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Reasoning Tasks in PLP Inference

Knowledge Compilation to d-DNNF
(1) Ground the PL program and convert it into a Boolean formula φr

ProbLog program

0.1 :: burglary .
0.2 :: earthquake.
0.7 :: hears_alarm(X )← person(X ).
alarm← burglary .
alarm← earthquake.
calls(X )← alarm, hears_alarm(X ).
person(mary).
person(john).

E. Bellodi Probabilistic Logic Programming Udine, PhD Course 50 / 86



Reasoning Tasks in PLP Inference

Knowledge Compilation to d-DNNF
(1) Ground the PL program and convert it into a Boolean formula φr

Suppose e = calls(john)

Relevant Ground Program (RGP) (taking into account e (and
eventually q), in order to consider only the part of the program that is
relevant to the (query given the) evidence):

0.1 :: burglary .
0.2 :: earthquake.
0.7 :: hears_alarm(john).
alarm← burglary .
alarm← earthquake.
calls(john)← alarm, hears_alarm(john).
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Reasoning Tasks in PLP Inference

Knowledge Compilation to d-DNNF
(1-2) Ground the PL program and convert it into a Boolean formula φr . Build φe

Apply specific transformation rules (Lloyd (1987); Janhunen (2004);
Mantadelis and Janssens (2010)) to generate a Boolean formula φr
φe = calls(john)

In the ProbLog example, φ is the conjunction of the following three
sub-formulas (the first two for φr , the last one for φe)

alarm↔ burglary ∨ earthquake
calls(john)↔ alarm ∧ hears_alarm(john)
calls(john)
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Reasoning Tasks in PLP Inference

Knowledge Compilation to d-DNNF
(3) Rewrite φ in CNF

CNF:
l11 ∨ . . . ∨ l1m1 ∧ . . . ∧ ln1 ∨ . . . ∨ lnmn

where each lij is a literal
alarm↔ burglary ∨ earthquake becomes (alarm ∨ ¬burglary) ∧
(alarm ∨ ¬earthquake) ∧ (¬alarm ∨ burglary ∨ earthquake)

calls(john)↔ alarm ∧ hears_alarm(john) becomes
(¬calls(john) ∨ alarm) ∧ (¬calls(john) ∨ hears_alarm(john)) ∧
(¬alarm ∨ ¬hears_alarm(john) ∨ calls(john))

φ in CNF: (alarm ∨ ¬burglary) ∧ (alarm ∨ ¬earthquake) ∧ (¬alarm ∨
burglary ∨ earthquake) ∧ (¬calls(john) ∨ alarm) ∧ (¬calls(john) ∨
hears_alarm(john)) ∧ (¬alarm ∨ ¬hears_alarm(john) ∨ calls(john)) ∧
calls(john)
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Reasoning Tasks in PLP Inference

Knowledge Compilation to d-DNNF
(4) Construct a weighted Boolean formula

Define the weight function for all literals in φ
The weight of a probabilistic literal is derived from the probabilistic
facts in the program
If the RGP contains a probabilistic fact p :: f , then we assign weight p
to f and weight 1− p to ¬f

For literals not occurring in a probabilistic fact (derived literals), the
weight is 1
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Reasoning Tasks in PLP Inference

Knowledge Compilation to d-DNNF
(4) Construct a weighted Boolean formula

burglary 7→ 0.1 ¬burglary 7→ 0.9
earthquake 7→ 0.2 ¬earthquake 7→ 0.8
hears_alarm(john) 7→ 0.7 ¬hears_alarm(john) 7→ 0.3
alarm 7→ 1 ¬alarm 7→ 1
calls(john) 7→ 1 ¬calls(john) 7→ 1
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Reasoning Tasks in PLP Inference

Knowledge Compilation to d-DNNF
(5) Convert the CNF into a d-DNNF

Conversion is made by compilers: c2d (Darwiche (2004)), DSHARP
(Muise et al. (2012)), irrespective of the weighting function
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Reasoning Tasks in PLP Inference

Knowledge Compilation to d-DNNF
(6) Convert the d-DNNF formula into an aritmetic circuit

1 Replace all conjunctions in the internal nodes of the d-DNNF by
multiplications, and all disjunctions by summations

2 Replace every leaf node involving a literal l by a subtree consisting of
a multiplication node having two children, namely, a leaf node with an
indicator variable for the literal l and a leaf node with the weight of l
according to the weighted formula

3 Numbers in parentheses represent results of the intermediate
computations
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Reasoning Tasks in PLP Inference

Knowledge Compilation to d-DNNF
(6) Convert the d-DNNF formula into an aritmetic circuit
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Reasoning Tasks in PLP Inference

Knowledge Compilation to d-DNNF
(7) Compute the probability from the AC

Evaluate the circuit bottom-up after having assigned the value 1 to all
the indicator variables
P(root) = P(e) = P(calls(john)) = 0.196
P(e) is called weighted model count (WMC)
Indicator variables allow us to add further evidence, provided that
it extends the initial evidence for which the circuit has been built
To compute P(e, l1 . . . ln) for any conjunction of literals l1, . . . , ln it is
enough to set the indicator variables as λ(li ) = 1, λ(¬li ) = 0 and
λ(l) = 1 for the other literals l , and evaluate the circuit

Ex.: P(calls(john) = true ∧ earthquake = true)
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Reasoning Tasks in PLP Inference

Knowledge Compilation to d-DNNF
BDD vs d-DNNF

A BDD is a special kind of d-DNNF, namely, one that satisfies the
additional properties of ordering and decision
In the approach seen earlier, we can replace a d-DNNF compiler with a
BDD compiler
Computing the probability of evidence can then be done by either
operating directly on the BDD, or by converting the BDD to an
arithmetic circuit and evaluating the circuit
d-DNNFs outperform BDDs (Darwiche (2004))
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Reasoning Tasks in PLP Inference

Knowledge Compilation by SDD

An SDD (Vlasselaer et al. (2014); Darwiche (2011)) contains two
types of nodes
Decision nodes (circles): disjunctions over mutually exclusive
sentences
Elements (paired boxes [p|s]): conjunctions between the two children

p: "prime"; s: "sub"
Elements are decision nodes’ children and each box in an element can
contain a pointer to a decision node or a terminal node, either a literal
or the constants 0 or 1

A decision node with children [p1|s1], . . . , [pn|sn] represents the
function (p1 ∧ s1) ∨ . . . ∨ (pn ∧ sn)

Primes must form a partition: pi 6= 0 (primes are consistent),
pi ∧ pj = 0 for i 6= j (every pair of distinct primes are mutually
exclusive), and p1 ∨ . . . ∨ pn = 1 (the disjunction of all primes is valid)
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Reasoning Tasks in PLP Inference

Knowledge Compilation by SDD

The top level decomposition has three elements, with primes representing
A ∧ B,¬A ∧ B,¬B and corresponding subs representing true, C , and

C ∧ D.
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Reasoning Tasks in PLP Inference

Knowledge Compilation by SDD
Procedure

1 Ground the probabilistic logic program and convert it into an
equivalent propositional formula

2 Compile directly the formula into an SDD OR convert it into a
CNF Boolean formula to be compiled into an SDD

3 Compute the probability of evidence from the SDD
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Reasoning Tasks in PLP Inference

Knowledge Compilation by SDD
(1) Ground the probabilistic logic program and convert it into an equivalent propositional
formula

Already done
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Reasoning Tasks in PLP Inference

Knowledge Compilation by SDD
(2) Compile directly the formula into an SDD

The compilation is made by a compiler (http://reasoning.cs.ucla.edu/)
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Reasoning Tasks in PLP Inference

Knowledge Compilation by SDD
(3) Compute the probability of evidence from the SDD

P(root) = P(e) = P(calls(john))
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Reasoning Tasks in PLP Inference

Knowledge Compilation by SDD
Comparison of languages

Succinctness: size of the smallest compiled circuit for every Boolean
formula

d − DNNF < SDD ≤ OBDD
There exists a Boolean formula whose smallest SDD representation is
exponentially larger than its smallest d-DNNF representation, but the
smallest OBDD for any formula is at least as big as its smallest SDD

SDDs are special cases of d-DNNFs: if one replaces circle-nodes with
or-nodes, and paired-boxes with and-nodes, one obtains a d-DNNF,
with additional properties (structured decomposability and strong
determinism)
SDDs outperform d-DNNFs
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Reasoning Tasks in PLP Inference

Knowledge Compilation by SDD
Comparison of languages

Strongly deterministic decomposition: An (X,Y)-decomposition of
a function f (X,Y) over non-overlapping variables X and Y is a set
{(p1, s1), . . . , (pn, sn)} such that

f = p1(X) ∧ s1(Y) ∨ . . . ∨ pn(X) ∧ sn(Y)

If pi ∧ pj = 0 for i 6= j , the decomposition is said to be strongly
deterministic
BDDs are a special case of SDDs where decompositions are all
Shannon: formula f is decomposed into {(X , f X ), (¬X , f ¬X )}.
SDDs generalize BDDs by considering non-binary decisions based on
the value of primes
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Reasoning Tasks in PLP Inference

Approximate Inference

Approximate inference aims at computing the results of inference
(probability of evidence P(e)) in an approximate way so that the
process is cheaper than the exact computation of the results
Two approaches: those that modify an exact inference algorithm and
those based on sampling

Iterative deepening
k-best
Monte Carlo
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Reasoning Tasks in PLP Inference

Approximate Inference
Iterative deepening

De Raedt et al. (2007); Kimmig et al. (2008b)
Input: an error bound ε, a depth bound d , and a query q

Construct an SLD tree for q up to depth d

Build two sets of explanations
Kl : set of composite choices corresponding to the successful proofs
present in the tree
Ku: set of composite choices corresponding to the successful and still
open proofs present in the tree

P(Kl): lower bound / P(Ku): upper bound of the exact probability
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Reasoning Tasks in PLP Inference

Approximate Inference
Iterative deepening

If the difference P(Ku)− P(Kl) is smaller than ε, this means that a
solution with a satisfying accuracy has been found and the interval
[P(Kl),P(Ku)] is returned
Otherwise, the depth bound is increased and a new SLD tree is built
up to the new depth bound
Stops when the difference ≤ ε
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Reasoning Tasks in PLP Inference

Approximate Inference
Iterative deepening
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Reasoning Tasks in PLP Inference

Approximate Inference
Iterative deepening
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Reasoning Tasks in PLP Inference

Approximate Inference
k-best

Uses a fixed number k of proofs to obtain a lower bound of the
probability of the query: the larger the k, the better the bound
Given k , the best k proofs are found, corresponding to the set of best
k explanations Kk

P(Kk) is a (lower) estimate of the probability of the query
Best is intended in terms of probability: an explanation is better than
another if its probability is higher
Branch and bound approach: prune a derivation if its probability
falls below that of the k-th best explanation
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Reasoning Tasks in PLP Inference

Approximate Inference
Monte Carlo

Iterative procedure, until convergence
1 Sample a world, by sampling each ground probabilistic fact/clause in

turn
2 Check whether the query is true in the world
3 Compute the probability p̂ of the query as the fraction of samples

where the query is true

Convergence is reached when the size of the confidence interval of p̂
drops below a user-defined threshold δ
The binomial proportion confidence interval of p̂ is used

p̂ ± z1−α/2

√
p̂(1− p̂)

n

where n is the number of samples and z1−α/2 is the 1− α/2 percentile
of a standard normal distribution with α = 0.05 usually
If the width of the interval < δ, it stops and returns p̂
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Reasoning Tasks in PLP Inference

Approximate Inference
Monte Carlo

The approach is not efficient on large programs, as proofs are often
short while the generation of a world requires sampling many
probabilistic facts
Idea: generate samples lazily, by sampling probabilistic facts/clauses
only when required by a proof
In fact, it is not necessary to sample facts not needed by a proof, as
any value for them would do
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Reasoning Tasks in PLP Inference

Approximate Inference
Monte Carlo Implementations

ProbLog1: (Kimmig et al. (2011))
MCINTYRE (Monte Carlo INference wiTh Yap REcord) (Riguzzi
(2013)): applies the Monte Carlo approach of ProbLog1 to LPADs
using the YAP internal database for storing all samples and using
tabling for speeding up inference
Also available in SWI-Prolog (included in the cplint suite)
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Reasoning Tasks in PLP Inference

Approximate Inference
MCINTYRE: Monte Carlo INference wiTh Yap REcord

The LPAD clause Cr = H1 : α1 ∨ . . . ∨ Hn : αn ← L1, . . . , Lm.

is transformed into the set of clauses MC (Cr ):

MC(Cr , 1) = H1 ← L1, . . . , Lm, sample_head(ParList, r ,VC ,NH),NH = 1.
. . .
MC(Cr , n) = Hn ← L1, . . . , Lm, sample_head(ParList, r ,VC ,NH),NH = n.

where VC is a list containing each variable appearing in Cr and ParList is
[Πr1, . . . ,Πrnr ]. If the parameters do not sum up to 1 the last clause (the one for
null) is omitted

It creates a clause for each head and samples a head index NH with
sample_head/4.
If this index coincides with the index of the head disjunct, the derivation
succeeds, otherwise it fails
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Reasoning Tasks in PLP Inference

Approximate Inference
MCINTYRE: Monte Carlo INference wiTh Yap REcord

Example: The following LPAD models the development of an epidemic or a
pandemic:
C1 = epidemic : 0.6; pandemic : 0.3 : −flu(X ), cold .
C2 = cold : 0.7.
C3 = flu(david).
C4 = flu(robert).

Clause C1 is transformed in:

MC (C1, 1) = epidemic : −flu(X ), cold ,
sample_head([0.6, 0.3, 0.1], 1, [X ],NH),NH = 1.

MC (C1, 2) = pandemic : −flu(X ), cold ,
sample_head([0.6, 0.3, 0.1], 1, [X ],NH),NH = 2.
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Reasoning Tasks in PLP Inference

Approximate Inference
MCINTYRE: Monte Carlo INference wiTh Yap REcord

If Q = epidemic , resolution matches the goal with the head of clause
MC (C1, 1).
Suppose flu(X ) succeeds with X/david and cold succeeds as well.
Then

sample_head([0.6, 0.3, 0.1], 1, [david ],NH)

is called.
Since clause 1 with X replaced by david was not yet sampled, a
number between 1 and 3 is sampled according to the distribution
[0.6, 0.3, 0.1] and stored in NH.
If NH = 1, the derivation succeeds and the goal is true in the sample,
if NH = 2 or NH = 3 then the derivation fails and backtracking is
performed.
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Reasoning Tasks in PLP Inference

Approximate Inference
MCINTYRE: Monte Carlo INference wiTh Yap REcord

This involves finding the solution X/robert for flu(X ). cold was
sampled as true before so it succeeds again.
Then

sample_head([0.6, 0.3, 0.1], 1, [robert],NH)

is called to take another sample.
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