Set Graphs VI
Logic Programming and Bisimulation

Agostino Dovier

Università di Udine
Dip. di Matematica e Informatica

TORINO, June 18, 2014
Several forms of graph equivalence are used in computer science.

Graph/Subgraph isomorphism are central notions in complexity theory.

Graph (DFA) minimization is a key notion in Hardware definition.

Graph/Subgraph bisimulation is used in concurrency theory, temporal logic, model checking, web databases, and, of course, in hyper-set theory.

We focus on the graph bisimulation problem and consider its encoding(s) in logic programming paradigms.
Sets Basics

Set equality: The *extensionality principle* \((E)\)

\[
\forall z \left((z \in x \leftrightarrow z \in y) \rightarrow x = y \right) \quad (E)
\]
Sets Basics

Set equality: The *extensionality principle* \((E)\)

\[
\forall z \left((z \in x \leftrightarrow z \in y) \rightarrow x = y \right) \tag{E}
\]

Well-foundedness of \(\in\): The *foundation axiom* \((FA)\):

\[
\forall x \left(x \neq \emptyset \rightarrow (\exists y \in x)(x \cap y = \emptyset) \right) \tag{FA}
\]

that ensures that a set cannot contain an infinite descending chain \(x_0 \ni x_1 \ni x_2 \ni \cdots\) of elements.
Sets Basics

Set equality: The *extensionality principle* \((E)\)

\[
\forall z \left((z \in x \iff z \in y) \rightarrow x = y \right) \tag{E}
\]

Well-foundedness of \(\in\): The *foundation axiom* \((FA)\):

\[
\forall x \left(x \neq \emptyset \rightarrow (\exists y \in x)(x \cap y = \emptyset) \right) \tag{FA}
\]

that ensures that a set cannot contain an infinite descending chain
\(x_0 \ni x_1 \ni x_2 \ni \cdots\) of elements.

In particular, if \(x\) is s.t. \(x = \{x\}\) then \(x\) is not empty, its unique element \(y\) is \(x\) itself, and \(x \cap y = \{y\} \neq \emptyset\) contradicting the axiom.
Sets and Graphs

Sets as graphs

An accessible pointed graph (apg) \(\langle G, \nu \rangle \) is a directed graph \(G = \langle N, E \rangle \) together with a distinguished node \(\nu \in N \) (the point) such that all the nodes in \(N \) are reachable from \(\nu \).

Intuitively, an edge \(a \rightarrow b \) means that the set “represented by \(b \)” is an element of the set “represented by \(a \)”.

\[
\begin{align*}
 a &\rightarrow b \\
 a &\Rightarrow b \\
 a &\ni b \\
 a &\ni\ni b
\end{align*}
\]

The above idea can be used to decorate an apg, namely, assigning a (possibly non-well founded) set to each of the nodes.

Sinks, i.e., nodes without outgoing edges have no elements and are therefore decorated as the empty set \(\emptyset \).
Sets as graphs

\[\text{Sets as graphs} \]

\[\begin{align*}
1 & \rightarrow \{\emptyset\} \\
2 & \rightarrow \{\emptyset\} \\
3 & \rightarrow \{\emptyset\} \\
4 & \rightarrow \emptyset \\
5 & \rightarrow \emptyset
\end{align*} \]

\[\begin{align*}
1 & \rightarrow \{\emptyset, \emptyset, \emptyset\} \\
2 & \rightarrow \{\emptyset\} \\
3 & \rightarrow \{\emptyset, \emptyset\} \\
4 & \rightarrow \emptyset
\end{align*} \]
Cyclic graphs and hypersets

If the graph contains cycles, interpreting edges as membership implies that the set that decorates the graph is no longer well-founded. Non well-founded sets are often referred to as hypersets.
Cyclic graphs and hypersets

If the graph contains cycles, interpreting edges as membership implies that the set that decorates the graph is no longer well-founded. Non well-founded sets are often referred to as *hypersets*.

Anti Foundation Axiom (AFA) states that every *apg* has a unique decoration.

Anti Foundation Axiom (AFA) states that every *apg* has a unique decoration.
Cyclic graphs and hypersets

If the graph contains cycles, interpreting edges as membership implies that the set that decorates the graph is no longer well-founded. Non well-founded sets are often referred to as hypersets.

Anti Foundation Axiom (AFA) states that every apg has a unique decoration. Two apgs denote the same hyperset if and only if their decoration is the same.

Applying extensionality axiom (E) for verifying equality would lead to a circular argument.
Bisimulation

Let $G_1 = \langle N_1, E_1 \rangle$ and $G_2 = \langle N_2, E_2 \rangle$ be two graphs, a bisimulation between G_1 and G_2 is a relation $b \subseteq N_1 \times N_2$ such that:

1. $u_1 \ b \ u_2 \land \langle u_1, v_1 \rangle \in E_1 \Rightarrow \exists v_2 \in N_2 (v_1 \ b \ v_2 \land \langle u_2, v_2 \rangle \in E_2)$
2. $u_1 \ b \ u_2 \land \langle u_2, v_2 \rangle \in E_2 \Rightarrow \exists v_1 \in N_1 (v_1 \ b \ v_2 \land \langle u_1, v_1 \rangle \in E_1)$.

In case G_1 and G_2 are apgs pointed in ν_1 and ν_2, respectively, it is also required that $\nu_1 \ b \ \nu_2$.
Let $G_1 = \langle N_1, E_1 \rangle$ and $G_2 = \langle N_2, E_2 \rangle$ be two graphs, a \textit{bisimulation} between G_1 and G_2 is a relation $b \subseteq N_1 \times N_2$ such that:

1. $u_1 \ b \ u_2 \land \langle u_1, v_1 \rangle \in E_1 \Rightarrow \exists v_2 \in N_2 (v_1 \ b \ v_2 \land \langle u_2, v_2 \rangle \in E_2)$
2. $u_1 \ b \ u_2 \land \langle u_2, v_2 \rangle \in E_2 \Rightarrow \exists v_1 \in N_1 (v_1 \ b \ v_2 \land \langle u_1, v_1 \rangle \in E_1)$.

In case G_1 and G_2 are \textit{apgs} pointed in ν_1 and ν_2, respectively, it is also required that $\nu_1 \ b \ \nu_2$.

If there is a bisimulation between G_1 and G_2 then the two graphs are bisimilar.
Let $G_1 = \langle N_1, E_1 \rangle$ and $G_2 = \langle N_2, E_2 \rangle$ be two graphs, a *bisimulation* between G_1 and G_2 is a relation $b \subseteq N_1 \times N_2$ such that:

1. $u_1 b u_2 \land \langle u_1, v_1 \rangle \in E_1 \Rightarrow \exists v_2 \in N_2 (v_1 b v_2 \land \langle u_2, v_2 \rangle \in E_2)$
2. $u_1 b u_2 \land \langle u_2, v_2 \rangle \in E_2 \Rightarrow \exists v_1 \in N_1 (v_1 b v_2 \land \langle u_1, v_1 \rangle \in E_1)$.

In case G_1 and G_2 are apgs pointed in ν_1 and ν_2, respectively, it is also required that $\nu_1 b \nu_2$.

If there is a bisimulation between G_1 and G_2 then the two graphs are bisimilar.

If they are bisimilar, they represent the same set (their point is decorated by the same set).
Bisimulation

A complexity summary

- If b is required to be a bijective function then it is a graph isomorphism.
- Establishing whether two graphs are isomorphic is an NP-problem neither proved to be NP-complete nor in P.
- Establishing whether G_1 is isomorphic to a subgraph of G_2 (subgraph isomorphism) is NP-complete.
- Establishing whether G_1 is bisimilar to a subgraph of G_2 (subgraph bisimulation) is NP-complete.
Bisimulation

A complexity summary

- If \(b \) is required to be a bijective function then it is a graph isomorphism.
- Establishing whether two graphs are isomorphic is an NP-problem neither proved to be NP-complete nor in P.
- Establishing whether \(G_1 \) is isomorphic to a subgraph of \(G_2 \) (subgraph isomorphism) is NP-complete.
- Establishing whether \(G_1 \) is bisimilar to a subgraph of \(G_2 \) (subgraph bisimulation) is NP-complete.
- Instead, establishing whether \(G_1 \) is bisimilar to \(G_2 \) is in P: \(O(|E_1 + E_2| \log |N_1 + N_2|) \).
Bisimulation

In case G_1 and G_2 are the same graph $G = \langle N, E \rangle$, a bisimulation on G is a bisimulation between G and G.

It is immediate to see that there is a bisimulation between two apg’s $\langle G_1, \nu_1 \rangle$ and $\langle G_2, \nu_2 \rangle$ if and only if there is a bisimulation b on the graph $G = \langle \{\nu\} \cup N_1 \cup N_2, \{(\nu, \nu_1), (\nu, \nu_2)\} \cup E_1 \cup E_2 \rangle$ such that $\nu_1 \mathbin{b} \nu_2$

We can focus on the bisimulations on a single graph; we are interested in computing the *maximum bisimulation*: it is unique, it is an equivalence relation, and it contains all other bisimulations on G.
Bisimulation

In case G_1 and G_2 are the same graph $G = \langle N, E \rangle$, a bisimulation on G is a bisimulation between G and G.

It is immediate to see that there is a bisimulation between two apg’s $\langle G_1, \nu_1 \rangle$ and $\langle G_2, \nu_2 \rangle$ if and only if there is a bisimulation b on the graph $G = \langle \{\nu\} \cup N_1 \cup N_2, \{(\nu, \nu_1), (\nu, \nu_2)\} \cup E_1 \cup E_2 \rangle$ such that $\nu_1 b \nu_2$.

We can focus on the bisimulations on a single graph; we are interested in computing the maximum bisimulation: it is unique, it is an equivalence relation, and it contains all other bisimulations on G.
Bisimulation

In case G_1 and G_2 are the same graph $G = \langle N, E \rangle$, a *bisimulation on* G is a bisimulation between G and G.

It is immediate to see that there is a bisimulation between two apg’s $\langle G_1, \nu_1 \rangle$ and $\langle G_2, \nu_2 \rangle$ if and only if there is a bisimulation b on the graph $G = \langle \{\nu\} \cup N_1 \cup N_2, \{(\nu, \nu_1), (\nu, \nu_2)\} \cup E_1 \cup E_2 \rangle$ such that $\nu_1 \ b \ \nu_2$

We can focus on the bisimulations on a single graph; we are interested in computing the *maximum bisimulation*: it is unique, it is an equivalence relation, and it contains all other bisimulations on G.
Therefore, we might restrict our search to bisimulations on G that are reflexive and symmetric relations on N such that:

\[
\forall u_1, u_2, v_1 \in N \left(u_1 b u_2 \land \langle u_1, v_1 \rangle \in E \Rightarrow \right.
\left(\exists v_2 \in N \right) \left(v_1 b v_2 \land \langle u_2, v_2 \rangle \in E \right)
\]

The symmetric requirement makes the second case of the definition of bisimulation superfluous. We will use the following logical rewriting in some encodings:

\[
\neg \exists u_1, u_2, v_1 \in N \left(u_1 b u_2 \land \langle u_1, v_1 \rangle \in E \land
\neg \left(\left(\exists v_2 \in N \right) \left(v_1 b v_2 \land \langle u_2, v_2 \rangle \in E \right) \right) \right)
\]

(1')
Bisimulation

Another characterization of the maximum bisimulation is based on the notion of *stability*. Given a set N, a partition P of N is a collection of non-empty disjoint sets (blocks) B_1, B_2, \ldots such that $\bigcup_i B_i = N$. Let E be a relation on the set N, with E^{-1} we denote its inverse relation. A partition P of N is said to be *stable* with respect to E if and only if

$$\forall B_1 \in P) (\forall B_2 \in P) (B_1 \subseteq E^{-1}(B_2) \lor B_1 \cap E^{-1}(B_2) = \emptyset)$$ (2)

which is in turn equivalent to state that there do not exist two blocks $B_1 \in P$ and $B_2 \in P$ such that:

$$\exists x \in B_1) (\exists y \in B_1) (x \in E^{-1}(B_2) \land y \notin E^{-1}(B_2))$$ (2')
A class B_2 of P splits a class B_1 of P if B_1 is replaced in P by $B_1 \cap E^{-1}(B_2)$ and $B_1 \setminus E^{-1}(B_2)$ (both not empty).

Starting from the partition $P = \{N\}$, after at most $|N| - 1$ split operations a procedure halts determining the coarsest stable partition (CSP) w.r.t. E. The CSP “corresponds” to the maximum bisimulation.

Paige and Tarjan showed us the way for fast implementations (1987).
Encoding

apg’s are represented by

- **facts** node(1). node(2). node(3). ... for nodes
- **facts** edge(u, v). where u and v are nodes, for edges
- node 1 is the point of the apg

http://clp.dimi.uniud.it
Prolog

∀\(u_1, u_2, v_1 \in N (u_1 b u_2 \land \langle u_1, v_1 \rangle \in E \Rightarrow (\exists v_2 \in N)(v_1 b v_2 \land \langle u_2, v_2 \rangle \in E))\)

∀ ⇒ recursion on list. (Generate & Test; B is reflexive and symmetric)

bis(B) :- bis(B,B). % Recursively analyze B

bis([],_).
bis([(U1,U2) |RB],B) :- %%% if U1 bis U2
 successors(U1,SU1), %%% Collect the successors SU1 of U1
 successors(U2,SU2), %%% Collect the successors SU2 of U2
 allbis(SU1,SU2,B), %%% Then recursively consider SU1
 bis(RB,B).

allbis([],_,_).
allbis([V1 | SU1],SU2,B) :- %%% If V1 is a successor of U1
 member(V2,SU2), %%% there is a V2 successor of U2
 member((V1,V2),B), %%% such that V1 bis V2
 allbis(SU1,SU2,B).

successors(X,SX) :- findall(Y,edge(X,Y),SX).
CLP(FD)

\[\forall u_1, u_2, v_1 \in N \ (u_1 b u_2 \land \langle u_1, v_1 \rangle \in E \Rightarrow (\exists v_2 \in N)(v_1 b v_2 \land \langle u_2, v_2 \rangle \in E)) \]

\[\forall \Rightarrow \text{recursion on list.} \]

```
bis :- size(N), M is N*N, %%% Define the N * N Boolean length(B,M), domain(B,0,1), %%% Matrix B constraint(B,N), Max #= sum(B), %%% Max is the number of pairs labeling([maximize(Max),ffc,down],B). %%% in the bisimulation

constraint(B,N) :- reflexivity(N,B), symmetry(1,2,N,B), morphism(N,B).
morphism(N,B) :-
    findall( (X,Y), edge(X,Y), EDGES),
    foreach( E in EDGES, U2 in 1..N, morphismcheck(E,U2,N,B)).
morphismcheck( (U1,V1),U2,N,B) :-
    access(U1,U2,B,N,BU1U2), % Flag BU1U2 stands for (U1 B U2)
    successors(U2, SuccU2), % Collect all edges (U2,V2)
    collectlist(SuccU2,V1,N,B,BLIST), % BLIST contains all flags BV1V2
    BU1U2 #=< sum(BLIST). % If (U1 B U2) there is V2 s.t. (V1 B V2)
```
ASP

\[\neg \exists u_1, u_2, v_1 \in N \left(u_1 \mathbin{b} u_2 \land \langle u_1, v_1 \rangle \in E \land \neg \left(\exists v_2 \in N \left(v_1 \mathbin{b} v_2 \land \langle u_2, v_2 \rangle \in E \right) \right) \right) \]

\[\forall = \neg \exists \Rightarrow: \text{ASP constraints} \]

%%% Reflexivity and Symmetry
bis(I,I) :- node(I).
bis(I,J) :- node(I;J), bis(J,I).

%%% Nondeterministic choice
\{bis(I,J)\} :- node(I;J).

%%% Morphism requirement (1’)
:- node(U1;U2;V1), bis(U1,U2), edge(U1,V1), not one_son_bis(V1,U2).
one_son_bis(V1,U2) :- node(V1;U2;V2), edge(U2,V2), bis(V1,V2).

%%% Minimization (max bisimulation)
non_rep_node(A) :- node(A), bis(A,B), B < A.
rep_node(A) :- node(A), not non_rep_node(A).
rep_nodes(N) :- N=#sum[rep_node(A)].
#minimize [rep_nodes(N)=N].
co-LP semantics is based on the greatest fixpoint (for coinductive predicates)

\[
\forall u_1, u_2, v_1 \in N \ (u_1 \ b \ u_2 \land \langle u_1, v_1 \rangle \in E \Rightarrow (\exists v_2 \in N)(v_1 \ b \ v_2 \land \langle u_2, v_2 \rangle \in E))
\]

\[
bis(U,V) :-
\]
\[
successors(U,SU),
successors(V,SV),
allbis(SU,SV),
allbis(SV,SU).
\]

\[
allbis([],_).
\]

\[
allbis([U|R],SV) :-
member(V,SV),
bis(U,V),
allbis(R,SV).
\]

member and successors are inductive.
No need of extra code for “maximization”
Stable property

\[
(\forall B_1 \in P)(\forall B_2 \in P)(B_1 \subseteq E^{-1}(B_2) \lor B_1 \cap E^{-1}(B_2) = \emptyset)
\]

\[
\text{stable}(P) :- \\
\quad \text{forall}(B1 \text{ in } P, \text{forall}(B2 \text{ in } P, \text{stablecond}(B1,B2))) .
\]

\[
\text{stablecond}(B1,B2) :- \\
\quad \text{edgeinv}(B2,\text{InvB2}) \land \\
\quad (\text{subset}(B1,\text{InvB2}) \lor \text{disj}(B1,\text{InvB2})).
\]

\[
\text{edgeinv}(A,B) :- \\
\quad B = \{X : \exists Y, (Y \text{ in } A \land \text{edge}(X,Y))\}.
\]

\[
\text{stablecond}(B1,B2) :- \text{edgeinv}(B2,\text{InvB2}), \\
\quad (\text{subseuteq}(B1,\text{InvB2}) \lor \text{emptyintersection}(B1,\text{InvB2})).
\]
CLP(FD)

\[(\forall B_1 \in P)(\forall B_2 \in P)(B_1 \subseteq E^{-1}(B_2) \lor B_1 \cap E^{-1}(B_2) = \emptyset)\]

```prolog
stability(B,N) :-
    foreach( I in 1..N, J in 1..N, stability_cond(I,J,B,N)).

stability_cond(I,J,B,N) :- % Blocks BI and BJ are considered
    inclusion(1,N,I,J,B, Cincl), % Nodes in 1..N are analyzed
    emptyintersection(1,N,I,J,B,Cempty), % Cincl and Cempty are reified
    Cincl + Cempty #> 0.  % OR condition

inclusion(X,N,_,_,_, 1) :- X>N, !.

inclusion(X,N,I,J,B, Cout) :- % Node X is considered
    alledges(X,B,J,Flags), % Flags stores existence of edge (X,Y) with
    LocFlag #= ((B[X] #= I) #=> (Flags #> 0)), % Inclusion check:
    X1 is X+1, % If X in BI then X in E-1(BJ)
    inclusion(X1,N,I,J,B,Ctemp), % Recursive call
    Cout #= Ctemp*LocFlag. % AND condition (forall nodes it should hold)

alledges(X,B,J,Flags) :- % Collect the successors of X
    successors(X,OutgoingX), % And use them for assigning the Flags var
    alledgesaux(OutgoingX,B,J,Flags).

alledgesaux([],_,_,0).

alledgesaux([Y|R],B,J,Flags) :- % The Flags variable is created
    alledgesaux([Y|R],B,J,Flags). % Recursive call
```

A. Dovier (Uniud-DIMI) LP and Bisimulation 19 / 25
ASP

$$(\exists x \in B_1)(\exists y \in B_1)(x \in E^{-1}(B_2) \land y \notin E^{-1}(B_2))$$

```
\[\text{blk}(I) \leftarrow \text{node}(I).\]
% Function assigning nodes to blocks
\[\text{inblock}(A,B) : \text{blk}(B) \leftarrow \text{node}(A).\]
% STABILITY (2')
\[\text{connected}(A,B) \leftarrow \text{edge}(X,Y), \text{inblock}(X,B), \text{inblock}(Y,B),\]
\[\text{not connected}(X,Y), \text{node}(X,Y), \text{X} \neq \text{Y} .\]
\[\text{connected}(Y,B) \leftarrow \text{edge}(Y,Z), \text{bl}(B) , \text{nonempty block}(Z,B).\]
% Basic symmetry-breaking rules (optional)
\[\text{nonempty block}(B) \leftarrow \text{node}(A), \text{inblock}(A,B).\]
\[\text{internal}(X) \leftarrow \text{edge}(X,Y).\]
\[\text{leaf}(X) \leftarrow \text{node}(X), \text{not internal}(X).\]
\[\text{empty block}(B) \leftarrow \text{blk}(B), \text{not nonempty block}(B).\]
\[\text{empty block}(B) \leftarrow \text{blk}(B), \text{not nonempty block}(B).\]
% Minimization
\[\text{number blocks}(N) \leftarrow N = \#\sum \text{nonempty block}(B)].\]
#minimize [\text{number blocks}(N)=N].
```
stable_comp(Final, Nclasses) :-
 findall(X, node(X), Nodes),
 initialize(Nodes, Initial),
 maxfixpoint(Initial, 2, Final, Nclasses). % start with "2"

%%% maxfixpoint procedure. If possible, split, else stop.
maxfixpoint(AssIn, I, AssOut, C) :-
 split(I, AssIn, AssMid), !,
 I1 is I+1,
 maxfixpoint(AssMid, I1, AssOut, C).

%%% When stop, simply compute the number of classes used
maxfixpoint(Stable, C, Stable, C1) :-
 count_classes(C, Stable, C1).

%%% Split operation.
%%% First locate a block that can be split. Then find the splitter
split(MaxBlock, AssIn, AssMid) :-
 between(1, MaxBlock, I),
 findall(X, member(X-I, AssIn), BI),
 BI = [_, _, _ | _], %% BI might be split (not empty, not singleton)
 %%% Find potential splitters BJ (and remove duplicates)
 findall(Q, (member(V-Q, AssIn), edge(W, V), member(W, BI)), SP),
 sort(SP, SPS), member(J, SPS),
 findall(Z, (member(Y-J, AssIn), edge(Z, Y)), BJinv),
 my_delete(BI, BJinv, [D | ELTA]), %%% The difference is computed when MaxBlock1 is MaxBlock + 1,
 update(AssIn, AssMid, MaxBlock1, [D | ELTA]).
Benchmarks

Figure: From left to right, the graphs G_1, G_2 (n odd), G_2 (n even), G_3, and G_5 used in the experiments. G_4 is the complete graph (not reported).
Summary of results

Coarsest stable partition

![Graph showing experimental results for CLP(FD), Prolog, ASP, and MAXFIXPOINT with respect to Nodes.]
Conclusions

- Prolog generate & test is useless
- CLP constraint & generate introduces too many constraints for nested quantifiers
- ASP generate & test allows clear code and good running time
- These results can be inherited by the encoding of other (similar) graph properties
Conclusions

- Prolog generate & test is useless
- CLP constraint & generate introduces too many constraints for nested quantifiers
- ASP generate & test allows clear code and good running time
- These results can be inherited by the encoding of other (similar) graph properties
- Theoretical algorithmic results can be implemented in Prolog (with a great speed-up w.r.t. declarative approach)!