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Presentation

Module of 6 credits (48 hours),

Semantics of programming languages
Describe the behavior of programs in a formal and rigorous way.

• We present 3 (2) different approaches, methods to semantics.

• Methods applied to a series of, more and more complex,
programming languages.

Some topics overlapping the Formal Methods course.

Prerequisite for:

• Module of Concurrence (Lenisa),

• Abstract Interpretation (Comini),

• any formal and rigorous treatment of programs.



Semantics of programming languages

Objective: to formally describe the behavior of programs, and
programming constructors.
As opposed to informal definitions, commonly used.

Useful for:

• avoid ambiguity in defining a programming language:
• highlight the critical points of a programming language (e.g.

static-dynamic environment, evaluation and parameter passing)
• useful in building compilers,

• to reason about single programs (define logic, reasoning
principles, programs):
to prove that a given program to satisfy a give property,
specification, that is correct.



Semantic approaches

• Operational Semantics, describes how programs are executed,
not on a real calculator, too complex,
on a simple formal machine (Turing machines style).

• Structured Operational Semantic (SOS). The formal machine
consists of a rewriting system: system of rules, syntax.



Semantic approaches

• Denotational Semantics. The meaning of a program described
by a mathematical object.
Partial function, element in an ordered set.
An element of an ordered set represents the meaning of a
program, part of the program, program constructor.

Alternative, action semantics, semantic games, categorical.

• Axiomatic Semantics. The meaning of a program expressed in
terms of pre-conditions and post-conditions.

Several semantics because none completely satisfactory.
Each describes one aspect of program behavior, has a different
goal.



SOS pros

Simple, syntactic, intuitive.

Quite flexible.

• It can easily handle complex programming languages.

• The structure of rules remains constant in different languages.



SOS cons

Semantics depend on syntax, it is formulated using syntax.

It is difficult to correlate programs written in different languages.

Semantics are not compositional (the semantics of an element
depend on the semantics of its components).

It induces a notion of equivalence between programs difficult to
verify (and use).



Denotational Semantics

Goals:

• a syntax-independent semantics, you can compare programs
written in different languages.

• a compositional semantics (the semantics of an element
depends on the semantics of its components).

• more abstract, provides tools for reasoning on programs.

Main feature: describe the behavior of a program through a
mathematical object.



Different Features of Programming Languages

• no termination,

• store (memory, imperative languages)

• environment,

• not determinism,

• concurrence,

• higher order functions (functional languages),

• exceptions,

• . . .

The complexity of denotation semantics grows rapidly, with the
features of programming languages



Axiomatic semantics

Indirect description of a program,
through a set of assertions:

{Pre} p {Post}

It immediately gives a logic to reason about programs.

Complementary, and justified, by the other semantics.



Relations among semantics

• different descriptions of programming languages.

• one can prove the coherence among descriptions.

• one semantics descriptions can be justified by the others.



Textbook

Glynn Winskel:
The Formal Semantics of Programming Languages. An
introduction.

A classic, simple, complete presentation, few frills, and few general
considerations.

Three copies in the library.

We present a good part of the book, skipping:

• most of the proves of the theorems,

• the general introduction of formalism, the methodology:
just presented on working examples.

Some additional topics.



Exam

• a set of exercise to solve at home,

• an oral exam, on appointment.



Prerequisites

Mathematical logic notions:

• calculation of predicates,

• set constructors: product, disjoint sum, function space, power
set,

• grammar (free from context),

• inductive definition and induction principle,

• model theory: language and model, (syntax and semantics).



A simple imperative language: IMP

Syntactic categories:

Integer Numbers (N): n ; Boolean Values (T) b ; Locations (Loc):
X .

Arithmetic Expressions (AExp):

a = n | X | a0 + a1 | a0 − a1 | a0 × a1

Boolean expressions (BExp):

b = true | false | a0 = a1 | a0 ≤ a1 | not b | b0 or b1 | b0 and b1

Commands (Com):

c ::= skip | X := a | c0; c1 | if b then c0 else c1 | while b do c



IMP

Abstract syntax: ambiguous but simpler than concrete syntax

Incomplete syntax: unspecified syntax for numerical constants,
locations:
not interesting, low level details, orthogonal to our discussion.

Minimum language capable of computing all computable functions
(Turing-complete), if the locations can store arbitrarily large
spaces.

Missing:

• variables (environment),

• procedure, function definitions,

• recursive definitions.



Operational Semantic for IMP

A set of rules to describe the behavior of arithmetic and Boolean
expressions, commands.

One associates to arithmetic expressions assertions, judgments in
the form:

〈a, σ〉 ⇒ n

where σ : Loc→ N, state (memory, store).

Derived judgments by rules in natural deduction,
Rules driven by syntax (structured operational semantics).

Axiom for the basic expressions:

〈n, σ〉 ⇒ n

〈X , σ〉 ⇒ σ(X )



IMP: SOS rules

To composite derivative rules:

〈a0, σ〉 ⇒ n0 〈a1, σ〉 ⇒ n1

〈a0 + a1, σ〉 ⇒ n
n0 + n1 = n

. . .

• Evaluating an arithmetic expression is trivial, so trivial rules.

• Each expression has associated one rule, determined by its
main connective.

• From rules one can derive a deterministic algorithm for
evaluating an expression,
(easily definable via pattern matching).



SOS rules

• Rules assume, via side condition, a preexisting mechanism for
calculating the arithmetic operation.
One abstracts from the problem of implementing the
arithmetic operations:
• chose a representation for number,
• define algorithms for arithmetic operations
• feasible via SOS rules,
• one avoid to deal with these low level aspects

• Similarly, rules do not defined the syntax for store and a to
perform operation on stores.
One abstracts from the problem of implementing store
operations.

Exercise: evaluate 2 ∗ x − 3 + y in a store σ, σ(x) = 4, σ(y) = 1



Boolean expression: SOS rules

Axioms . . .

〈a0, σ〉 ⇒ n 〈a1, σ〉 ⇒ n

〈a0 = a1, σ〉 ⇒ true

〈a0, σ〉 ⇒ n 〈a1, σ〉 ⇒ m

〈a0 = a1, σ〉 ⇒ false
n 6= m

. . .

〈b0, σ〉 ⇒ t0 〈b1, σ〉 ⇒ t1

〈b0 and b1, σ〉 ⇒ t

where t ≡ true if t0 ≡ true and t1 ≡ true. Otherwise t ≡ false.



Boolean operators

.

• Boolean operators can be evaluated in different ways: short
circuit evaluations.

• This alternative evaluation can be express by the SOS rules.

• Four alternative rules for connectivity and .



Exercises

Through the rules one can explicitly define the arithmetic
operation, without using side conditions.
Simplification: consider the Peano natural numbers and not the
integers, i.e. the grammar:

n ::= 0 | Sn

Addition, product, comparison rules.

The same problem with binary notation:

n = 0 | n : 0 | n : 1

Where Jn : 0K = 2× JnK
e Jn : 1K = 2× JnK + 1



Commands

Executing a command has the effect of modifying memory, store.
Judgements have form:

〈c, σ〉 ⇒ σ′

To represent updated store, one uses the notation σ[m/X ]

σ[m/x ](X ) = m
σ[m/X ](Y ) = σ(Y ) if X 6= Y

In a complete operational approach the state should be a syntactic
object:

• grammar to define states: ground states, updating operations,

• set of rules describing the behavior.



Commands, rules

〈skip, σ〉 ⇒ σ

〈a, σ〉 ⇒ n

〈X := a, σ〉 ⇒ σ[n/x ]

〈c0, σ〉 ⇒ σ′ 〈c1, σ
′〉 ⇒ σ′′

〈c0; c1, σ〉 ⇒ σ′′

〈b, σ〉 ⇒ true 〈c0, σ〉 ⇒ σ′

〈if b then c0 else c1, σ〉 ⇒ σ′

. . .

〈b, σ〉 ⇒ true 〈c , σ〉 ⇒ σ′ 〈while b do c , σ′〉 ⇒ σ′′

〈while b do c , σ〉 ⇒ σ′′

. . .



Equivalences:

Semantics induces a notion of equivalence between commands
(and expressions):

c0 ∼ c1

if for every pair of stores σ, σ′:

〈c0, σ〉 ⇒ σ′ if and only if 〈c1, σ〉 ⇒ σ′

Several notions of equivalence are possible on the same structure:

•
c0 ≡ c1

if the c0 and c1 commands, formatted in the abstract syntax,
are the same.
• On stores, define as syntactic objects:

• σ0 and σ1 are the same syntactic object;
• σ0 and σ1 define the same function Loc→ N.



Exercises

• Encode in Haskell the rules of operational semantics. Mostly
straightforward, the only difficulty is the encoding of the store.

• Given:
w ≡ while b do c

show that:
w ∼ if b then c ; w else skip

and
w ∼ if b then w else skip



Metatheory: determinism

The rules are deterministic:

• Weak formulation:
For every c , σ exists a single σ′ for which it is valid

〈c, σ〉 ⇒ σ′

• Strong formulation:
For each c , σ exists a single σ′ and a single demonstration of:

〈c, σ〉 ⇒ σ′



Big-step, small-step SOS

Alternative formulation: describes a step of computation.

〈c , σ〉 → 〈c ′, σ′〉
New rules for the while

〈b, σ〉 → true

〈while b do c , σ〉 → 〈c ; while b do c , σ〉
Second rule for the while . . .

〈a, σ〉 → 〈a′, σ′〉
One can define the evaluation order of the arguments

〈a0, σ〉 → 〈a′0, σ〉
〈a0 + a1, σ〉 → 〈a′0 + a1, σ〉

〈a1, σ〉 → 〈a′1, σ〉
〈n + a1, σ〉 → 〈n + a1, σ〉



Big-step, small-step SOS

Both formulations are used:

• For some languages it is easier to provide big-step semantics.
More abstract.

• Small-step SOS provide more detail on how the computation
is performed
Can be used analyzed the complexity of algorithm, provided
that single step are really an elementary step of computation.

• In the languages for concurrency it is crucial to consider the
small-step SOS.
Contains additional information about computing steps and
execution order.

• It can be not trivial to demonstrate the equivalence between
the small-step and big-step description of the same language.



Induction

In mathematics and computer science many sets are define
inductively:

• natural numbers,

• lists,

• grammars,

• derivations, demonstrations

Each inductive definition is characterize by a set constructors:

• zero, successor;

• empty list, concatenation;

• constructs of grammar;

• axioms, derivation rules.



Induction

On inductive sets one can:

• define functions by recursion: recursive definitions,

• prove theorems by induction: inductive demonstrations.

It is sometime convenient to use stronger inductive principle
(recursive definition).
For example:

• generalized induction on natural number. If

∀n . (∀m < n .P(m))⇒ P(n)

then
∀n .P(n)

These generalizations are defined in terms well-founded sets.



Denotational Semantics for IMP

associates, to IMP expressions, mathematical objects: (partial)
functions,
is compositional.

Building basics:

• N = {. . . ,−2,−1, 0, 1, 2, . . .}, the set of integers.

• T = {true, false}, the set of Boolean values.

• Σ = Loc→ N, the set of possible states (memory, store
configurations).

Note the difference between N and N.



Interpreting Functions

Each syntactic category is associated with an interpretation
function:

• AJ K : AExp → (Σ→ N)
an arithmetic expression represents a function from integer
state.

• BJ K : BExp → (Σ→ T )

• CJ K : Com → (Σ ⇀ Σ)
a command represents a partial function, from state to state.

Resuming the ideas of operational semantics, but expressing them
differently.

The double parenthesis J K are used to enclose syntactic elements



Semantics of expressions (arithmetic, Boolean)

Interpretation functions are defined by induction on the grammar
(on the structure of the term).

AJnK(σ) = n

AJXK(σ) = σ(X )

AJao+a1K(σ) = (AJaoK(σ)) + (AJa1K(σ))

. . .

BJao≤a1K(σ) = (AJaoK(σ)) ≤ (AJa1K(σ))

Each element, each operator, is interpreted with its semantic
correspondent.



Commands semantics

Commands represent partial functions.

In the definition, partial functions
are seen as relations (the set of pairs “ argument, value ”)
represented through their graphs.

CJskipK = {(σ, σ) | σ ∈ Σ}

CJX := aK = {(σ, σ[n/X ]) | σ ∈ Σ, AJaK(σ) = n}

CJc0; c1K = CJc1K ◦ CJc0K

CJif b then c0 else c1K = {(σ, σ′) ∈ CJc0K | BJbK(σ) = true} ∪
{(σ, σ′) ∈ CJc1K | BJbK(σ) = false}



The hard case: while constructor

CJwhile b do cK = CJif b then c ; while b do c else skipK =
{(σ, σ) | σ ∈ Σ, BJbK(σ) = false} ∪
{(σ, σ′) ∈ (CJwhile b do cK ◦ CJcK) | BJbK(σ) = true}

recursive definition.

Existence of solution:

• reduce the problem to a fixed-point problem;
• consider the operator:

Γ(R) = {(σ, σ) | σ ∈ Σ, BJbK(σ) = false}∪
{(σ, σ′) ∈ (R ◦ CJcK) | BJbK(σ) = true}

Γ transforms a relation between Σ and Σ into another relation.

Γ : Rel(Σ,Σ) → Rel(Σ,Σ)

• define CJwhile b do cK as minimum fixed-point for Γ.



Background Idea

Given
Ω ≡ while true do skip

Define
CJwhile b do cK

As limit of its approximations:

CJΩK

CJif b then c ; Ω else skipK

CJif b then c ; (if b then c ; Ω else skip) else skipK



Fixed-point theorems (on orders)

They provide solution to the previous problem.

• Knaster-Tarski theorem: in a complete lattice, each monotone
function has a minimum (and a maximum) fixed-point,
(important in math)

• in a complete partial order each monotone and continuous
function has a minimum fixed-point.
(fundamental in denotational semantics)
(the property of the order weakens, the properties of the
function are strengthened).

• in a complete metric space, each contractive function has a
single fixed-point,
(used in analysis: each contractive function on reals has a
single fixed-point)



Ordered set

Definition (Partial order)

A partial order (P,v) is composed by a set P and a binary relation
v on P s.t. for every p, q, r ∈ P

• p v p, (reflexive)

• p v q and q v r then p v r , (transitive)

• p v q and q v p then p = q, (antisymmetric)



Examples

• natural numbers, rational, reals, (total order);

• powerset, finite powerset (Boolean algebra);

• partial functions ( Bool ⇀ 0, Nat ⇀ Nat)



Least upper bound

Definition

Given subset of X of P,

• p is an upper bound for X if ∀q ∈ X . q v p.
• The least upper bound (l.u.b) of X ,

⊔
X if it exists, is the

smallest among the upper bounds, that is:
• ∀q ∈ X . q v

⊔
X , and

• for each p, if ∀q ∈ X . q v p then
⊔

X v p

the least upper bound is unique (show by exercise).
• the dual notions are:

• lower bound
• greatest lower bound (g.l.b),

d



Least upper bound

In an powerset,
l.u.b coincides with union,
g.l.b coincide with intersection.

In a linear order,
l.u.b, of a finite set, is the maximum
g.l.b, of a finite set, is the minimum.



Lattice

Definition (Lattice)

• A lattice is a partial order in which each pair of elements has
an least upper bound and a greatest lower bound end of u.
We can write

⊔
{p, q} as p t q.

It follows that in a lattice every finished set has top set.

• A complete lattice is a partial order in which each subset has
an least upper bound.

Exercise: show that every subset in a complete lattice also has a
greatest lower bound.



Knaster-Tarski Theorem

Definition (Monotone)

A function f : P → Q between orders is monotone if it respects
the order.
If p1 v p2 then f (p1) v f (p2)

Theorem (Knaster-Tarski)

Each monotone function f on a complete lattice P has a minimum
(maximum) fixed-point.

Proof.

One can show that
d
{p | f (p) v p} is a fixed-point for f (i.e.d

{p | f (p) v p} = f (
d
{p | f (p) v p})



Relations

The partial functions do not form a lattice.
Relations are an extension of the partial functions and form a
lattice.
Partial functions and functions can be seen as special cases of
relations.

Definition (Relations and functions)

• A relation between X and Y is a subset of X × Y .

• A partial function f : X ⇀ Y is a relation such that
∀x ∈ X , y , y ′ ∈ Y . (x , y) ∈ f → y = y ′

• a total function is a partial function such that
∀x∃y . (x , y) ∈ f

(x , y) ∈ f can also be written by y = f (x)



Relations

Definition (Composition)

Given two R relations between X and Y and S between Y and Z
we define S ◦ R as

(x , z) ∈ S ◦ R ⇔ ∃y . (x , y) ∈ R ∧ (y , z) ∈ S

Note the inversion in the order.

If relations are also functions: composition as relation coincides
with the composition as function.



Application to semantics

• the set of relations on Σ× Σ forms a complete lattice
(actually a complete boolean algebra),

• the operator:

Γ(R) = {(σ, σ) | BJbK(σ) = false}∪
{(σ, σ′) ∈ (R ◦ CJcK) | BJbK(σ) = true}

is monotone;

• the Knaster-Tarski theorem proves the existence minimum
fixed-point for the Γ operator (recursive definition of
semantics).

Recursive definition has multiple solutions, the minimum solution is
the one that correctly describes the behavior of the program.



Structures for denotational semantics

• It is preferable to use partial functions instead of relations.
The previous solution does not prove that the fixed-point is a
partial function, it could be a generic relation.

• Remind: in IMP, the semantics of a command: Σ ⇀ Σ.

• The set of partial functions forms an order,
f v g when the following equivalent conditions are met:
• g is more defined than f ,
• ∀x .f (x) ↓⇒ f (x) = g(x)
• as a set of pairs (argument, result) f ⊆ g

this space is not a lattice.

• It is necessary to use a second fixed-point theorem.



Complete Partial Orders

Definition (CPO)

• In a partial order P, an ω-chain (a chain having length ω) is
countable sequence of elements in P with each element
greater (or equal) than the previous one

p1 v p2 v p3, . . .

• A complete partial order (CPO) P is a partial order in which
each ω-chain has a least upper bound.

• A complete partial order with bottom is a complete partial
order containing a minimum element ⊥.

CPO are the typical structures to interpret programs.

An example of CPO with bottom is the set of partial functions
from any pair of sets (from N to N).



Continuous functions on CPO

Definition (Continuity)

A function f : D → E between CPO is continue if it preserves the
least upper bound of of the chains (the limit of chains)
For any chain p1, p2, p3, . . .:⊔

i∈N
f (pi ) = f (

⊔
i∈N

pi ).

Similarly, in mathematical analysis a function is continuous iff
preserves limits of convergent sequences.



New fixed-point theorem

Theorem

Each function continues on a CPO with bottom f : D → D has a
minimum fixed-point.

Proof sketch.

The minimum fixed-point is the upper end of the chain
⊥, f (⊥), f (f (⊥)), f 3(⊥), . . ..

Notice that the proof is constructive, suggest a way to compute
the fixed-point.

The proof of Knaster-Tarski is not constructive, use glb of
uncountable subsets.



Semantics of while

Remind that the function:

CJwhile b do c K

is defined as the minimum fixed point of Γ

Γ(R) = {(σ, σ) | σ ∈ Σ, BJbK(σ) = false}∪
{(σ, σ′) ∈ (R ◦ CJcK) | BJbK(σ) = true}

One should prove that Γ is monotone (easy), and continuous (non
easy, we postpone the proof).



Definition of while by approximations

By the proof of fixed-point theorem, the function

CJwhile b do c K

the limit of the following ω-chain of partial functions:

CJΩK
CJif b then (c ; Ω)K
CJif b then (c ; if b then (c; Ω))K
CJif b then (c ; if b then (c; if b then (c;⊥)))K
. . .

where Ω stands for an always divergent command
while true do skip
and if b then c stands for the command: if b then c else skip.

Syntactic sugar, enriches the language without adding new
semantic definitions.



Examples

Compute:
CJwhile true do skip K;

the operational and denotational semantics of

while 2 ≤ X do X := X − 2

and
Z := 0;
while Y ≤ X do X := X − Y ;

Z := Z + 1

Store can be limited to the locations contained in the command.



Operational and denotational semantics agree

Theorem

The judgement

〈c, σ〉 ⇒ σ′

is derivable iff

(σ, σ′) ∈ CJcK

sketch.

By induction on the syntax of c , and
for the special case where c is a while command, by inductions on
the derivation.



Domain theory

Mathematical foundation for denotational semantics:

• describe the structure used in denotational semantics,

• enumerate their properties

Generalizing the previous example (denotational semantics of IMP)
programming languages (and their components: data types,
commands) are interpreted using:

1 complete partial orders (CPOs)
• order: the information order;
• ⊥ represents the absence of information, the program that

always diverges,
• allows solutions to recursive definitions, fixed-point equations.

2 functions between CPOs that are
• monotonic
• continue: preserve the least upper bounds of ω-chains.



Examples of CPO

• N with flat order: n v m ⇔ n = m .

• N⊥ = N ∪ {⊥}, n v m ⇔ (n = m ∨ n = ⊥)
(the set of natural number with ⊥),

• T = {true, false}, T⊥
• O = {⊥,>}, with ⊥ v > (Sierpinski space).
• N → N⊥ with the point-wise order:

• f v g iff for every n, f (n) v g(n),
• isomorphic to N ⇀ N (with the order defined above)
• internalize the divergence: f (n) = ⊥ denotes the divergence of

f (n),
• partial functions are avoided



Partial order that are not CPO

• natural number with standard order

• finite powerset of natural numbers



Examples of CPO

• Ω = natural numbers + {∞}, with the linear order.

• Powerset

• the lazy natural numbers,
Haskell computation having type data Nat = Zero | Suc

Nat

• streams of Boolean values: partial strings, arbitrarily long.
data StreamBool = TT StreamBool | FF StreamBool



Monotonicity

Intuitive meaning.

Consider a program with a functional type
F : (Nat ⇀ Bool) ⇀ Bool

monotone, if F (f )⇒ true then,
for any function g more define that f , F (g)⇒ true .

Preserves the information order: more information in input
generate more information in output.



Continuity

A functional type F : (Nat ⇀ Bool) ⇀ Bool is

• continuous if F (f )⇒ true then F generates true after
evaluating f on a finite number of values,

• i.e., there must exists a partial function g , defined on a finite
number of elements, such that g v Jf K and JF K(g) = true

• functions need to be finitary: To generate a finite piece of
information as the result, computation examine just a finite
piece of information of the argument.

Example of non continuous functionals:

• infinitary and: test if a function return true on any input,

• test if a function, on integers, converges on even numbers.

Exercise: show that composition preserves continuity.



Lambda (λ) notation

In mathematics, one defines functions by means of equations:
f (x) = sin(x) + cos(x).

With the λ notation one write directly:
λx . sin(x) + cos(x), or λx ∈ R . sin(x) + cos(x)
or f = λx . sin(x) + cos(x)

In Haskell:

\x -> (sin x) + (cos x)

Benefits

• name less functions, one can define a function without giving
it a name,

• definition of functions more synthetic,

• functions similar to other elements, first class objects

• conceptually clearer:
∫

sin(x)dx becomes
∫
λx . sin(x) or

∫
sin.



CPO Builders

To give semantics to complex languages, one associates to

• types: suitable structured CPOs;

• programs and program subexpressions: CPO elements, CPO
functions

To do this:

• new CPO are build from existing ones,

• standard operators and functions are used in the process.



Discrete CPO

To a set of D values (ex. N the integer set, B),
one associates a CPO D with flat order d1 v d2 iff d1 = d2.

With respect to the information order, all elements are unrelated:

• different information,

• all elements completely defined,

• none more defined than the other.

A set of completely defined values.

CPO without bottom.



Lifting

Definition

D⊥ = D ∪ {⊥} with order relation:
d1 v d2 iff d1 = ⊥ or (d1, d2 ∈ D ∧ d1 v d2)

One add to D, an element ⊥ representing a divergent
computations, the other elements represents computation
generating a D elements.

Associated functions:

• b c : D → D⊥,
given a value d , constructs a computation bdc returning d as
result.

• from a function f : D → E , defined on values,
construct a function f ∗ : D⊥ → E defined on computations,
E need to be a CPO with bottom.

Notation. (λx .e)∗(d) is also written as let x ⇐ d . e.



Some remarks

• we use an approach inspired by category theory:
• for each constructor, we defined the set of functions

characterizing it,
• these functions are constructors or destructors
• basic ingredients for building other functions,

• CPO builders have a corresponding type constructors in
Haskell,

• in category theory the operation of Lifting defines a monad,
correspondent Haskell: the Monad Maybe
unmatched correspondence:
in Haskell, one can define:

test :: Maybe a -> Bool

test Nothing = True

test (Just_) = False



Product

Definition

D × E the set of pairs with the orderly relation:
〈d1, e1〉 v 〈d2, e2〉 iff d1 v d2 and e1 v e2

It is generalized to the finished product.

Builds CPOs associated with pairs, records, vectors.

Associated functions:

• projections π1 : (D × E )→ D, π1(〈d , e〉) = d ,
π2 : (D × E )→ E

• from each pair of functions f : C → D, g : C → E
we derive 〈f , g〉 : C → (D × E )
〈f , g〉(c) = 〈f (c), g(c)〉
(returns pairs of elements).

These functions define an isomorphism between
(C → D)× (C → E ) and C → (D × E ) given by ...



Exercises

• Show that the definitions are well-given: order D × E is a
CPO, the πi , 〈f , g〉 functions are continuous.

• Build O × O(= O2), O3. Which orders are isomorphic?

• Build (T⊥)2



Properties

Proposition

For any indexes set of elements in D
{di ,j |i , j ∈ Nat,∀ i ≤ i ′, j ≤ j ′ . di ,j v di ′,j ′}⊔

i

di ,i =
⊔
i

⊔
j

di ,j =
⊔
j

⊔
i

di ,j

Proposition

A function f : (C ×D)→ E is continued iff is continued in each of
its arguments.

Proposition not true on real numbers: f (x , y) = x ·y
x2+y2



Function Space

Definition

[D → E ] the set of continuous functions from D to E
with the point-wise order:
f v g iff for every d ∈ D, f (d) v g(d).

• To build CPO for functional languages:
type FunInt = Integer -> Integer

• Notice the square brackets [ ] in the notation.

• Prove [D → E ] is a CPO.



Associated functions

• application app : ([D → E ]× D)→ E
app(〈f , d〉) = f (d)

• currying (from Haskell Curry), a function
f : (D × E )→ F induces a function
curry(f ) : D → [E → F ]
curry(f )(d)(e) = f (〈d , e〉)

These functions define an isomorphism between C → [D → E ] and
(C × D)→ E ), given by . . .



Properties and exercises

• Show that [T → D] is isomorphic to D2.
• Draw CPOs:

• [O → T ],
• [O → T⊥],
• [T⊥ → T⊥],

• Show that fixed-point operator Y : [D → D]→ D is
continuous.



Disjoint Sum

Definition

D + E = {〈1, d〉 | d ∈ D} ∪ {〈2, e〉 | e ∈ E}
with order:

• 〈1, d〉 v 〈1, d ′〉 iff d v d ′

• 〈2, e〉 v 〈2, e ′〉 iff e v e ′

• 〈1, d〉 incomparable with 〈2, e〉

Show that D + E is a CPO (without ⊥).

CPO associated with variant types.

data Bool = True | False



Associated functions

• insertions: in1 : D → (D + E ), in1(d) = 〈1, d〉,
in2 : E → (D + E )

• from functions f : D → C and g : E → C
construct the function [f , g ] : (D + E )→ C :
[f , g ](〈1, d〉) = f (d),
[f , g ](〈2, e〉) = g(e),

A induced isomorphism between (D → C )× (E → C ) and
[D + E ]→ C



Exercises

• Define, through standard functions and constructors, the
function cond : (T × E × E )→ E
cond(b, e1, e2) = ...
and the function ( | , ) : (T⊥ × E × E )→ E
(b | e1, e2) = ...

• Define, by means of standard functions and constructors, the
semantics of Boolean functions.

• Define the n-ary sum (of n CPO).
Can one reduce the n-ary to repeated application of binary
sum?



Metalanguage

CPO functions, of the form(D1 × . . .× Di )→ E can be
constructed from a language that uses:

• variables with a domain type: x1 : D1, ..., xi : Di

• Constant: true, false, −1, 0, 1, . . .

• basic functions: b c, πi , app, ini , fix

• builders: ( )∗, 〈 , 〉, curry( ), [ , ],

• application, lambda abstraction, composition of functions,
let ⇐ .

Examples:

• 〈π2, π1〉
• λx . f (g(x)) λx . f (π1(x))(π2(x)) λ(x , y) . f (x)(y)



Metalanguage

Proposition

Each expression e, having type E , with variables x1 : D1, ...,
xi : Di , denotes a continuous function f in each of its variables,
that is, f : (D1 × . . .× Di )→ E is continuous.

Proof.

By induction on the structure of the e, we define the meaning of e
and from here the continuity.

Metalanguage allows you to define mathematical objects, with a
syntax similar to Haskell.

Metalanguage and Haskell define objects of different nature.



Functional Languages

Semantic (operational and denotational) semantics of two simple
functional languages

with two different assessment mechanisms

• call-by-value (eager) like: Scheme, Standard ML, OCaml.

• call-by-name (lazy) like Haskell, Miranda.



Expressions

t ::= x
n | t1 op t2 |
(t1, t2) | fst t | snd t |
λx .t | (t1t2) |
if t0 then t1 else t2 |
let x ⇐ t1 in t2 |
rec f .λx .t



Type checking

Not all expressions are meaningful: (1 3), ((λx .x + 1)(2, 3))
Type checking:

• determines the correct expressions,

• derives t : τ

• types:
τ ::= int | τ1 ∗ τ2 | τ1 → τ2

• induction rules on the structure of terms
• each variable has an associated type xτ , written simply as x
• every syntactic construct has an associated rule:

x : τ1 t1 : τ1 t2 : τ2

let x ⇐ t1 in t2 : τ2



No polymorphism

• Each variable has associated a single type.

• Property: each expression has a unique type, no
polymorphism;

• without polymorphism: type system and denotational
semantics are simpler.



Operational Semantics

defines a system of rules describing how a term reduces.

Two alternatives:

• big-step reduction: t ⇒ c (t → c) describes the value c
generated by the computation of t,
closer to denotational semantics.

• small-step reduction t1 → t2 describes how computation steps
turn t1 into t2.

In the small step semantic for functional languages, a single
step of computation can substitutes several occurrences of a
variable by a duplicated term,
This is not an elementary computing step.

• Small step reduction can be useful for debugging, see Haskell.



Call-by-value, big-step reduction

For each type, a set of values or canonical forms:
computational results,
terms that cannot be further reduced.

• int (ground types), the numeric constants . . .− 1, 0, 1, 2 . . .

• τ1 ∗ τ2, pairs (v1, v2), with vi value.
Eager reduction, fully defined elements.

• τ1 → τ2, λ-abstraction λx .t, with t not needed a value.
Alternative definitions are possible: λx .v with v not
reduceable term, examples x + 3, (x 1)

By definition values are closed terms: one can only evaluate closed
terms; this restriction simplifies the definitions.



Reduction rules: for induction on term structure

c ⇒ c c canonical form

t0 ⇒ m t1 ⇒ n

t0 + t1 ⇒ o
o = m + n

. . .

t0 ⇒ 0 t1 ⇒ c

if t0 then t1 else t2 ⇒ c

t0 ⇒ n t2 ⇒ c

if t0 then t1 else t2 ⇒ c
n 6= 0

t1 ⇒ c1 t2 ⇒ c2

(t1, t2) ⇒ (c1, c2)

t ⇒ (c1, c2)

fst t ⇒ c1
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Reduction rules: for induction on term structure

c ⇒ c c canonical form

t0 ⇒ m t1 ⇒ n

t0 + t1 ⇒ o
o = m + n

. . .

t0 ⇒ 0 t1 ⇒ c
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if t0 then t1 else t2 ⇒ c
n 6= 0
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Reduction rules

t1 ⇒ λx .t ′1 t2 ⇒ c2 t ′1[c2/x ] ⇒ c

(t1t2) ⇒ c

t1 ⇒ c1 t2[c1/x ] ⇒ c

let x ⇐ t1 in t2 ⇒ c

rec x .λy .t ⇒ λy .t[rec x .λy .t / x ]



Reduction rules

t1 ⇒ λx .t ′1 t2 ⇒ c2 t ′1[c2/x ] ⇒ c

(t1t2) ⇒ c

t1 ⇒ c1 t2[c1/x ] ⇒ c

let x ⇐ t1 in t2 ⇒ c

rec x .λy .t ⇒ λy .t[rec x .λy .t / x ]



Reduction rules

t1 ⇒ λx .t ′1 t2 ⇒ c2 t ′1[c2/x ] ⇒ c

(t1t2) ⇒ c

t1 ⇒ c1 t2[c1/x ] ⇒ c

let x ⇐ t1 in t2 ⇒ c

rec x .λy .t ⇒ λy .t[rec x .λy .t / x ]



Reduction property

• (Strong) Deterministic reduction, each term there is a single
possible derivation: the term reduces at most to one value.
Proof by cases on the form of the term and by inductions on
the derivation.

• Reduction preserves types: subject reduction.

• rec Endless derivations correspond to infinite computations:
example: ((rec f N→N. λy . (f 1)) 2)

• Exercise
((rec f .λx . if x then 0 else (f (x − 1)) + 2) 2)



Domains for Denotational Semantics

separated in:

• domains for interpreting values;

• domains to interpret computations.

Domains for values: by induction on the structure of the type.

• Vint = N

• Vτ1∗τ2 = Vτ1 × Vτ2

• Vτ1→τ2 = [Vτ1 → (Vτ2)⊥]

Domain for computation:

(Vτ )⊥



Environment

The interpretation of an open term depends on how we interpret
variables (from the environment).
In call-by-value languages, variables denote values.
Env, the set of functions from variables in the domains for
computations

ρ : Var→
∑
τ∈T

Vτ

that respect the types x : τ implies ρ(x) ∈ Vτ .

The interpretation of a term t : τ ,

JtK : Env→ (Vτ )⊥



Inductive definition on terms

JxKρ = bρ(x)c
JnKρ = bnc

Jt1 op t2Kρ = Jt1Kρ op⊥ Jt2Kρ

Jif t0 then t1 else t2Kρ = Cond(Jt0Kρ, Jt1Kρ, Jt2Kρ)

J(t1, t2)Kρ = let v1 ⇐ Jt1Kρ. let v2 ⇐ Jt2Kρ.b(v1, v2)c
J(fst t)Kρ = let v ⇐ JtKρ. bπ1(v)c

Jλx .tKρ = bλv : Vσ. JtK(ρ[v/x ])c
J(t1t2)Kρ = let v1 ⇐ Jt1Kρ. let v2 ⇐ Jt2Kρ. v1(v2)

Jrec f .λx . tKρ = bFix(λv1 : Vσ→τ . λv2 : Vσ. JtK ρ[v1/f , v2/x ])c
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Inductive definition on terms

JxKρ = bρ(x)c
JnKρ = bnc
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Jrec f .λx . tKρ = bFix(λv1 : Vσ→τ . λv2 : Vσ. JtK ρ[v1/f , v2/x ])c



Categorical inductive definition on terms

JxK = b c ◦ πx
JnK = b c ◦ n◦!

Jt1 op t2K = op⊥ ◦ 〈Jt1K, Jt2K〉

J(t1, t2)K = b c ◦ 〈Jt1K, Jt2K〉

J(fst t)K = JfstK = b(b c ◦ π1)c

Jλx .tK = b c ◦ curry(JtK ◦
∏

y∈Var

(iny ◦ fy ))

J(t1t2)K = app ◦ 〈(id)∗ ◦ Jt1K, Jt2K〉

Jrec x .λy . tK = Fix ◦ curry(JtK ◦
∏

y∈Var

(iny ◦ fy ))

where fx = π1 and fy = πy ◦ π2 if x 6= y



Properties of the denotational semantics

Substitution lemma

For each closed term s, if JsKρ = bvc then Jt[s/x ]Kρ = JtKρ[v/x ],

• Proved by induction on the structure of the term t.

• Instrumental to prove other properties.

Denotational semantics of values

For each value c , JcKρ 6= ⊥.



Comparison between semantics: Correctness

Correctness of operational semantics:

Proposition

For each term t, and c value,

t ⇒ c implies JtK = JcK

• It is proved by induction on the derivation of t ⇒ c .

• The rules of operational semantics respect the denotation.



Comparison between semantics: Adequacy

The opposite implication:

JtK = JcK implies t ⇒ c

does not hold, since:
there are two different values c1 and c2 with the same denotational
semantics.

Therefore: Jc1K = Jc2K but c 6 ⇒ c ′

Example: λx .0 and λx .0 + 0.



Adequacy

A weaker property holds:

Proposition

For each term t, and value c ,

JtK = JcK implies the existence of c ′ such that t ⇒ c ′.

In other terms: if JtK 6= ⊥, then t terminates, according to the
operational semantics.

The proof is not obvious, uses sophisticated techniques: logical
relations.

Corollary

For each t : int and integer n

t ⇒ n iff JtK = JnK



Call-by-name language

Different recursive definition

rec x .t

Different sets of values for pair types.

int the numeric constants . . .− 1, 0, 1, 2 . . .

τ1 ∗ τ2 (t1, t2), with ti closed, not necessarily values.
Remark: defining values, on a type list, in this way,
one can handle infinite lists. Regardless call-by-value,
call-by-name reduction mechanism.

τ1 → τ2 closed terms λx .t, with t not necessarily a value.



Reduction rules

Differences from call-by-name semantics:

(t1, t2) ⇒ (t1, t2)

t ⇒ (t1, t2) t1 ⇒ c1

fst t ⇒ c1

t1 ⇒ λx .t ′1 t ′1[t2/x ] ⇒ c

(t1t2) ⇒ c

t2[t1/x ] ⇒ c

let x ⇐ t1 in t2 ⇒ c

t[rec x .t / x ] ⇒ c

rec x .t ⇒ c
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Differences from call-by-name semantics:

(t1, t2) ⇒ (t1, t2)

t ⇒ (t1, t2) t1 ⇒ c1

fst t ⇒ c1
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Main differences

• evaluation of call-by-name arguments,

• for uniformity, call-by-name evaluation also for constructor let,

• recursion applicable to all elements,

• the different set of values for the couple type force different
rules.

Properties preserved:

• deterministic reduction, each term reduces to a value at most,
there is more than one applicable rule;

• reductions preserve the type: (subject reduction).



Domains for Denotational Semantics

Domains for values:

• Vint = N
• Vτ1∗τ2 = (Vτ1)⊥ × (Vτ2)⊥
• Vτ1→τ2 = [(Vτ1)⊥ → (Vτ2)⊥]

Domains for computation.

(Vτ )⊥

Environment. In call-by-name languages, variables denote
computations.
Env, the set of functions from variables in the domains for
computations

ρ : Var→
∑

τ∈type

(Vτ )⊥

that respect the types.

JtK : Env→ (Vτ )⊥



Inductive definition on terms

JxKρ = ρ(x)

JnKρ = bnc

Jt1 op t2Kρ = Jt1Kρ op⊥ Jt2Kρ

Jif t0 then t1 else t2Kρ = Cond(Jt0Kρ, Jt1Kρ, Jt2Kρ)

J(t1, t2)Kρ = b(Jt1Kρ, Jt2Kρ)c

J(fst t)Kρ = let v ⇐ JtKρ. π1(v)

Jλx .tKρ = bλv : (Vσ)⊥. JtK(ρ[v/x ])c

J(t1t2)Kρ = let v ⇐ Jt1Kρ. v(Jt2Kρ)

Jrec x .tKρ = Fix(λv : (Vσ)⊥JtK(ρ[v/x ]))



Categorical definition

JxK = πx

JnK = b c ◦ n ◦ 1

Jt1 op t2K = op⊥ ◦ 〈Jt1K, Jt2K〉

J(t1, t2)K = b c ◦ 〈Jt1K, Jt2K〉

J(fst t)K = JfstKb((π1)∗)c

Jλx .tK = b c ◦ curry(JtK ◦
∏

y∈Var

(iny ◦ fy ))

J(t1t2)K = app ◦ 〈(id)∗ ◦ Jt1K, Jt2K〉

Jrec x .tK = Fix ◦ curry(JtK ◦
∏

y∈Var

(iny ◦ fy ))

where fx = π1 and fy = πy ◦ π2 if x 6= y



Properties of the denotational semantics

• substitution lemma
If JsKρ = v then Jt[s/x ]Kρ = JtKρ[v/x ]
It is proved by induction on the structure of the term t

• for each value c , JcK 6= ⊥



Comparison of Semantics: Correctness and Adequacy

Proposition (Correctness)

For each term t, and c value:

t ⇒ c implies JtK = JcK

Proposition (Adequacy)

For each term t, and value c ,

JtK = JcK implies the existence of c ′ such that t ⇒ c ′.

Corollary

For each t : int and integer n

t ⇒ n iff JtK = JnK



Observational equality and full-abstraction

Two terms t1, t2 are observationally equivalent (the same for the
operational semantics) t1 ∼ t2, if:
for each C [ ] context

C [t1] ↓ ⇔ C [t2] ↓

from the adequacy theorem:

Jt1K = Jt2K implies t1 ∼ t2

Opposite implication (full abstraction) is only true for a sequential
denotational semantics.

The existence of a “parallel or” function on CPOs cause
full-abstraction to fail.



Semantics usage

• Observationally equivalence is difficult to prove, test on
infinite context

• Operational semantics useful to specify language
implementation.

• Denotational semantics a first step in reasoning on programs.



Simplified denotational semantics

For the “ call-by-name ” languages,
an observational equivalence using just on integer context C [ ] : int

• identifies more terms

• allows a simple denotational semantics

• simpler domains not separating domains of values from
domains of computations.

• Dint = (N)⊥
• Dτ1∗τ2 = Dτ1 × Dτ2

• Dτ1→τ2 = [Dτ1 → Dτ2 ]

It is important to specify which observations can be done on
programs.



Inductive definitions on term

JxKρ = ρ(x)

JnKρ = bnc

Jt1 op t2Kρ = Jt1Kρ op⊥ Jt2Kρ

J(t1, t2)Kρ = (Jt1Kρ, Jt2Kρ)

J(fst t)Kρ = π1(JtKρ)

Jλx .tKρ = λd : Dσ . JtK(ρ[d/x ])

J(t1t2)Kρ = Jt1Kρ(Jt2Kρ)

Jrec x .tKρ = Fix(λd : Dσ . JtK(ρ[d/x ]))



Sum Types

We enrich the functional languages with sum types:

τ ::= . . . | τ1 + τ2

data Fig = Circle Integer | Rectangle Integer Integer

Constructors and destructors.

inl(t) | inr(t) | case t of inl(x1).t1, inr(x2).t2

case fig of

Circle r -> pi * r * r

Rectangle b h -> b * h



Sum Types

• Typing rules: an expression can have more than one type (in
contrast with Haskell)

• Operational semantics (eager - lazy)

• Denotational semantic

• Simplified denotational semantics.



Haskell’s denotational semantics

We aim to extend the operational and denotational semantics of
functional lazy language to a large part of Haskell.
Some critical points.

• Definitions of types (non recursive).

• Recursive Definitions for pattern matching.

• Recursive Definitions of Types.

• Polymorphism



Core (Kernel) Language

When defining the semantics of a language, or its implementation,
it is useful to consider a Core Language:

• simple language, reduced set of primitive builders, reduced
subset of main language;

• Main language, a super-set of core language, can be (easily)
reduce to it;

• Modular approach to implementation, semantics.

From a theoretical point of view, the core languages are
highlighted:

• the fundamental mechanisms of computation;

• similarities: differences between languages.



Core Language for Haskell

System FC

• Lambda calculus:
application and λ-abstraction;

• polymorphism: explicit types, type variable, type quantifiers.

• algebraic (recursive) data types:
a set of basic functions, constructors and destructors;

• equivalents between types: coercion operators.



Definition of non recursive types

Can be simulated in Fun (our functional language)
we can associate to each type a type in Fun

data TypeId = Const1 TypeExp11 ... TypeExp1M |

Const2 TypeExp21 ... TypeExp2N |

...

Translate to to the Fun type tr(TypeId),

tr(TypeId) = tr(TExp11)× . . .× tr(TExp1M)) +
tr(TExp21)× . . .× tr(TExp2N)) +
. . .

Each constructor translate to a function having type:

Const1 : tr(TExp11)→ . . .→ tr(TExp1M)→ tr(TypeId)

definable in the Fun.



Denotational semantics for non recursive types

Given the previous translation, the domains for non recursive types
are:

VTId = ((VTExp11)⊥ × . . .× (VTExp1M)⊥) +
((VTExp21)⊥ × . . .× (VTExp2N)⊥) +
. . .

and the semantics of constructors are:

JConst1Kρ = bλv1 : (VTExp11)⊥ . . . λvM : (VTExp1M)⊥. bin1〈v1, . . . , vM〉cc



Data Types, Constructors and Destructors

date Nat = O | S Nat

The definition generates two constructor functions having type:

O :: Nat

S :: Nat -> Nat

a destructor function of type case.



Pattern matching

Pattern matching does not belong to the core language:
definitions by pattern matching reduced to the case constructor on
a single arguments

Example:

add x O = x

add x (S y) = S (add x y)

can be translated into the core language by:

let add = rec add’ . \x y -> case y of O -> x |

S y1 -> S (add’ x y1)

in



Pattern with more arguments

The definition

and True True = True

and _ False = False

and False _ = False

can translate into:

let and = \x y -> case x of True -> case y of True -> True

False -> False

False -> False

The construct case makes the order of arguments explicit.
Pattern matching allows more elegant, compact definitions.



Pattern matching: another example

The definition :

leq O _ = True

leq (S _) O = False

leq (Sx) (S y) = leq x y

can translate into:

let leq = rec leq’.

\x y -> case x of O -> True

S x1 -> case y of O -> False

S y1 -> leq’ x1 y1

in ...

More complex to define mutually recursive functions:
recursively defines an array of functions, one element in a product
type.



Recursive data types

Such as the lazy naturals:

date Nat = O | S Nat

It induce a domain equation:
Nat ∼= 1 + (Nat)⊥

It is sufficient to find CPOs satisfying the equation up to
isomorphism, i.e, left and right sides of equation can represent
different but isomorphic domains.



Domain equations

We consider the problem of solving domain equation, like:

Nat = 1 + (Nat)⊥

In simple cases, the solution can be found by mimicking the fixed
point solution on CPOs

• start with the empty domain,

• by applying the constructor, build a sequence of domain,
each one included in the next one,
a sequence of approximation

• take the (cpo completion of the) union as solution of the
domain equation.



From recursive type to domain equation:

Depending on the laziness of the language, the same recursive type
definition can induce different domain equations:

data ListBool = Empty | Cons Bool ListBool

ListBool ∼= 1 + T⊥ × (ListBool)⊥

the domain of finite and infinite lists.

ListBool = 1 + (Bool × ListBool)

the domain of finite lists.



Domain equations

The simple technique to solve domain equations, does not work for
equations containing the function space constructors.
Example in Haskell, one can define the recursive type:

date FunBool = Fun [FunBool -> Bool]

induced domain equation:

FunBool ∼= (FunBool⊥ → T⊥)

A second example, the recursive type:

date Untyped = Abst [Untyped -> Untyped]

induced domain equation:

Un ∼= (Un⊥ → Un⊥)



Domain equations

• Difficult problem, left open for thirty years (Dana Scott 1969).

• There are several techniques for solving domain equations,

• each one requires an extension of CPO theory, presented so
far.

• We present the one based on Information System.



Information System

An example of Stone duality: mathematical structures can have
alternative descriptions: a object is defined by its properties.
Different presentation of a CPO and its elements.
An element of a CPO is described as a subset of elementary basic
information.

An information system A is given by:

• a set of tokens A (elementary information),

• Con ⊆ ℘f (A), a consistency predicate,
Con defines the finite sets of consistent tokens.

• an entailment relation (implication) ` ⊆ (Con × A)
X ` a denotes that the information contained in X implies
information a

Examples: N, T , 1, 1⊥, T⊥, [T⊥ → T⊥], [T⊥ → [T⊥ → T⊥]]



Information System: definition

An information system A = (A,Con,`) must meet the following
conditions:

1 Con(X ) and Y ⊆ X implies Con(Y ),

2 for every a ∈ A we have Con({a}),

3 X ` a implies Con(X ∪ {a}) and X 6= ∅
4 Con(X ) and a ∈ X implies X ` a,

5 Con(X ),Con(Y ) X `∗ Y and Y ` a implies X ` a

where X `∗ Y indicates ∀b ∈ Y .X ` b



From Information System to CPO

The CPO dAe associated with the information system
A = (A,Con,`) is composed by those subset x of A such that:

• x is consistent, i.e. for every Y ⊆f x , Con(Y ),

• x is closed for the entailment relation, i.e.:
for every Y ⊆f x , Y ` a implies a ∈ x

The order on dAe is the information order:
x v y if and only if x ⊆ y

dAe is a CPO with minimum element.



Alternative Definition

An alternative CPO construction |A| can be obtained by adding, to
the previous, the condition
• x 6= ∅, different from empty.

• Winskel uses this second definition;

• dAe ∼= (|A|)⊥;

• |A| can be CPO without minimum element ⊥.

• dAe generates the CPO of computations,
|A| generates the CPO of values.



Some comments

• Different information systems can induce the same CPO.

• There are CPOs that cannot be defined through an
information system.

• The class of CPOs defined by the information system is
named Scott’s domain (Dana Scott).
Consistently complete, ω-algebraic CPO.
• There are variants of the information system called coherent

spaces:
• with a binary the coherence relations,
• no entailment relation.

• Scott’s Domain and Information System form an example of
Stone Duality,
elements of a space completely described by their properties.



The empty information system

The empty information system:

0 = (∅, {∅}, ∅)

d0e = {⊥}



Information System Constructors: Lifting

Given the information system: A = (A,Con,`)
define A⊥ = (A⊥,Con⊥,`⊥)
as:

• A⊥ = A ] {∗}
• Con⊥(X ) iff ∃Con(Y ) . (X = inlY ∨ X = (inl Y ∪ {inr ∗}))

• X `⊥ a iff a = inr ∗ ∨
∃(Y ` b) . a = inlb ∧ (X = inlY ∨ X = inlY ∪ {inr∗}

Proposition

|A⊥| ∼= |A|⊥ dA⊥e ∼= dAe⊥

Definition: 1 = 0⊥

Examples: T⊥ (T⊥)⊥



Product

Given: A = (A,ConA,`A) e B = (B,ConB ,`B)
define: A× B = (A ] B,ConA×B ,`A×B)
as

• ConA×B(inl X ∪ inr Y ) iff ConA(X ) e ConB(Y )

• (inl X ∪ inr Y ) `A×B (inl a) iff X `A a
(inl X ∪ inr Y ) `A×B (inr b) iff Y `B b

Proposition

dA × Be ∼= dAe × dBe

Examples: T× T T⊥ × T⊥



Coalescent product

Given: A = (A,ConA,`A) e B = (B,ConB ,`B)
define: A⊗ B = (A× B,ConA⊗B ,`A⊗B)
as:

• ConA⊗B(Z ) iff ConA(π1Z ) e ConB(π2Z )

• Z `A⊗B c iff π1Z `A π1c ∧ π2Z `A π2c

Proposition

|A ⊗ B| ∼= |A| × |B|

Examples: T⊗ T T⊥ ⊗ T⊥



Sum

Given the IS A = (A,ConA,`A) e B = (B,ConB ,`B)
define A+ B = (A ] B,ConA+B ,`A+B)
as:

• ConA×B(X ) iff X = inl Y ∧ ConA(Y )
or X = inr Y ∧ ConB(Y )

• (inl X ) `A+B (inla) iff X `A a
(inr Y ) `AB

(inrb) iff Y `B b

Proposition

dA+ Be ∼= coalescent sum of dAe, dBe

|A+ B| ∼= |A|+ |B|

Definion: T = 2 = 1 + 1

Examples: T + T T⊥ + T⊥



Function space

Given A = (A,ConA,`A) e B = (B,ConB ,`B)
define A → B = (C ,ConC ,`C )
as:

• C = {(X , b) | X ∈ ConA, b ∈ B}
• ConC ({(X1, b1), . . . , (Xn, bn)}) iff ∀I ⊆ {1, . . . , n} .

ConA(
⋃

i∈I Xi )⇒ ConB({bi | i ∈ I})
• {(X1, b1), . . . (Xn, bn)} `C (X , b) iff {bi | (X `∗A Xi )} `B b

Proposition

dA → Be ∼= [dAe → dBe]

Examples: T→ T T⊥ → T⊥



Strict function space

The space of strict (continuous) functions [C →⊥ D]:
the functions f st f (⊥) = ⊥
is described by the IS that repeats the previous construction by
modifying only the definition of the first point:
C = {(X , b) | X ∈ ConA,X 6= ∅, b ∈ B}

Proposition

dA →⊥ Be ∼= [dAe →⊥ dBe] ∼= [|A| → |(B)⊥|]

Examples: T→⊥ T T⊥ →⊥ T⊥



Denotational semantics via information systems

IS allows an alternative, dual, finitary, presentation of semantics of
terms.

As set of rules deriving judgements in the form:

Γ ` t : a

stating, under the assumption Γ the token a belong to the
semantics of t.

Γ has form x : {a1, . . . an}, . . . , y : {b1, . . . bn}
x , y , possibly, free variable in t
assume that the interpretation of x contains the token a1, . . . an.



Rules

Γ ` t0 : m Γ ` t1 : n

Γ ` t0 + t1 : o
o = m + n

. . .

Γ ` t0 : 0 Γ ` t1 : a

Γ ` if t0 then t1 else t2 : a

Γ ` t0 : n Γ ` t2 : a

Γ ` if t0 then t1 else t2 : c
n 6= 0

Γ ` t1 : a

Γ ` (t1, t2) : inl(a)

Γ ` t : inl(a)

Γ ` fst t : a



Rules

Γ ` t0 : m Γ ` t1 : n

Γ ` t0 + t1 : o
o = m + n

. . .

Γ ` t0 : 0 Γ ` t1 : a

Γ ` if t0 then t1 else t2 : a

Γ ` t0 : n Γ ` t2 : a

Γ ` if t0 then t1 else t2 : c
n 6= 0

Γ ` t1 : a

Γ ` (t1, t2) : inl(a)

Γ ` t : inl(a)

Γ ` fst t : a



Rules

Γ ` t0 : m Γ ` t1 : n

Γ ` t0 + t1 : o
o = m + n

. . .

Γ ` t0 : 0 Γ ` t1 : a

Γ ` if t0 then t1 else t2 : a

Γ ` t0 : n Γ ` t2 : a

Γ ` if t0 then t1 else t2 : c
n 6= 0

Γ ` t1 : a

Γ ` (t1, t2) : inl(a)

Γ ` t : inl(a)

Γ ` fst t : a



Rules

Γ ` t0 : m Γ ` t1 : n

Γ ` t0 + t1 : o
o = m + n

. . .

Γ ` t0 : 0 Γ ` t1 : a

Γ ` if t0 then t1 else t2 : a

Γ ` t0 : n Γ ` t2 : a

Γ ` if t0 then t1 else t2 : c
n 6= 0

Γ ` t1 : a

Γ ` (t1, t2) : inl(a)

Γ ` t : inl(a)

Γ ` fst t : a



Rules

Γ ` t0 : m Γ ` t1 : n

Γ ` t0 + t1 : o
o = m + n

. . .

Γ ` t0 : 0 Γ ` t1 : a

Γ ` if t0 then t1 else t2 : a

Γ ` t0 : n Γ ` t2 : a

Γ ` if t0 then t1 else t2 : c
n 6= 0

Γ ` t1 : a

Γ ` (t1, t2) : inl(a)

Γ ` t : inl(a)

Γ ` fst t : a



Rules

Γ, x : {a1, . . . , ai} ` t : b

Γ ` λx .t1 : ({a1, . . . , ai}, b)

Γ ` t1 : ({a1, . . . , ai}, b) Γ ` t2 : a1 . . . Γ ` t2 : ai
Γ ` (t1t2) : b

Γ, x : {a1, . . . , ai} ` t1 : b Γ ` t2 : a1 . . . Γ ` t2 : ai
Γ ` let x ⇐ t2 in t1 : b

Γ, x : {a1, . . . , ai} ` t : b Γ ` rec x .t : a1 . . . Γ ` rec x .t : ai
Γ ` rec x .t : b



Rules

Γ, x : {a1, . . . , ai} ` t : b

Γ ` λx .t1 : ({a1, . . . , ai}, b)

Γ ` t1 : ({a1, . . . , ai}, b) Γ ` t2 : a1 . . . Γ ` t2 : ai
Γ ` (t1t2) : b

Γ, x : {a1, . . . , ai} ` t1 : b Γ ` t2 : a1 . . . Γ ` t2 : ai
Γ ` let x ⇐ t2 in t1 : b

Γ, x : {a1, . . . , ai} ` t : b Γ ` rec x .t : a1 . . . Γ ` rec x .t : ai
Γ ` rec x .t : b



Rules

Γ, x : {a1, . . . , ai} ` t : b

Γ ` λx .t1 : ({a1, . . . , ai}, b)

Γ ` t1 : ({a1, . . . , ai}, b) Γ ` t2 : a1 . . . Γ ` t2 : ai
Γ ` (t1t2) : b

Γ, x : {a1, . . . , ai} ` t1 : b Γ ` t2 : a1 . . . Γ ` t2 : ai
Γ ` let x ⇐ t2 in t1 : b

Γ, x : {a1, . . . , ai} ` t : b Γ ` rec x .t : a1 . . . Γ ` rec x .t : ai
Γ ` rec x .t : b



Rules

Γ, x : {a1, . . . , ai} ` t : b

Γ ` λx .t1 : ({a1, . . . , ai}, b)

Γ ` t1 : ({a1, . . . , ai}, b) Γ ` t2 : a1 . . . Γ ` t2 : ai
Γ ` (t1t2) : b

Γ, x : {a1, . . . , ai} ` t1 : b Γ ` t2 : a1 . . . Γ ` t2 : ai
Γ ` let x ⇐ t2 in t1 : b

Γ, x : {a1, . . . , ai} ` t : b Γ ` rec x .t : a1 . . . Γ ` rec x .t : ai
Γ ` rec x .t : b



An Order on IS

We define an order relation, E, on IS as:

(A,ConA,`A) E (B,ConB ,`B)

iff

• A ⊆ B

• ConA(X ) iff X ⊆ A ∧ ConB(X )

• X `A a iff (X ∪ {a}) ⊆ A ∧ X `B a

Proposition

The IS set with E forms a CPO with ⊥,
the minimum element is O,
the limit of a chain A0 EA1 EA2 . . . with Ai = (Ai ,Coni ,`i )
is obtained through union:⊔

i∈ωAi = (
⋃

i∈ω Ai ,
⋃

i∈ω Ci ,
⋃

i∈ω `i )



Continuity

Proposition

The constructors of IS ⊥, +, ×, ⊗, →, →⊥ are continuous w.r.t.
E.

Corollary

Each constructor build using base constructors is continuous and
admits fixed-point.



Eager language with recursive types

Types:

1 | τ1 ∗ τ2 | τ1 → τ2 | τ1 + τ2 | X | µX .τ

Expressions

t ::= x
() | (t1, t2) | fst t | snd t |
λx .t | (t1t2) |
inl(t) | inr(t) | case t of inl(x1).t1, inr(x2).t2 |
abs (t) | rep (t) |
rec f .λx .t

One basic type 1. Nat defined a recursive type.



Type checking

• Each variable has associated a single type, xτ → x ;

• induction rules on the term of the term,
each syntactic construct has a rule of type;

• new rules: unit:
() : 1

abstraction:
t : τ [µX .τ/X ]

abs (t) : µX .τ

representation:
t : µX .τ

rep (t) : τ [µX .τ/X ]

• type conversion, explicit casting type;

• necessary to ensure the uniqueness of the type;

• if the CPO associated with µX .τ is isomorphic to that
associated with τ [µX .τ/X ],



Operational Semantics: Set of Values

Because of recursive types
must be defined by a set of inductive rules,
and not by induction on the structure of the type

c : Cτ [µX .τ/X ]

abs (c) : CµX .τ



Reduction rules

New rules for terms in recursive types.

t ⇒ c

abs (t) ⇒ abs (c)

t ⇒ abs (c)

rep (t) ⇒ c



Denotational Semantics

By information system
Types of associations - information system made by:

• a type environment (type environment);
• a set of definitions, by induction on the type structure;

VJ1Kχ = 0⊥ ∼= ({∗}, {{∗}, ∅}, {{∗} ` ∗})
VJτ1 ∗ τ2Kχ = VJτ1Kχ ⊗ VJτ2Kχ
VJτ1 + τ2Kχ = VJτ1Kχ + VJτ2Kχ

VJτ1 → τ2Kχ = (VJτ1Kχ →⊥ VJτ2Kχ)⊥

VJX Kχ = χ(X )

VJµX .τKχ = µI .VJτKχ[I/X ]

Note: dVJτKe defines the computing CPO associated with τ ,
and |VJτK| defines the value CPO associated with τ ,
To simplify, we do not define two information systems
(computations and values),



Denotational Semantics

• The equations should be reformulated to fit the domains
defined in terms of information systems.
• the elements of |VJτKχ| are just set of token, no structure
• the tokens, elements of VJτKχ contains the structures, t

• abs and rep are represented by the identity function.

• The usual properties of correctness and adequacy apply.

• Semantics can be defined considering only the tokens,
through a set of rules, in Types Assignment System style.



Denotational semantics via Types Assignment System

As set of rules deriving judgements in the form:

Γ ` t : a

stating, under the assumption Γ the token a belong to the
semantics of t.

Γ has form x : {a1, . . . an}, . . . , y : {b1, . . . bn}
stating that the interpretation of x (ρ(x)) contains the token
a1, . . . an
i.e. {a1, . . . an} ⊆ ρ(x)



Rules

Γ ` () : ∗

1 ≤ i ≤ n

Γ, x : {a1, . . . , an} ` x : ai

Γ ` t1 : a1 Γ ` t2 : a2

Γ ` (t1, t2) : (a1, a2)

Γ ` t : (a1, a2)

Γ ` fst t : a1



Rules

Γ ` () : ∗

1 ≤ i ≤ n

Γ, x : {a1, . . . , an} ` x : ai

Γ ` t1 : a1 Γ ` t2 : a2

Γ ` (t1, t2) : (a1, a2)

Γ ` t : (a1, a2)

Γ ` fst t : a1



Rules

Γ ` () : ∗

1 ≤ i ≤ n

Γ, x : {a1, . . . , an} ` x : ai

Γ ` t1 : a1 Γ ` t2 : a2

Γ ` (t1, t2) : (a1, a2)

Γ ` t : (a1, a2)

Γ ` fst t : a1



Rules

Γ ` () : ∗

1 ≤ i ≤ n

Γ, x : {a1, . . . , an} ` x : ai

Γ ` t1 : a1 Γ ` t2 : a2

Γ ` (t1, t2) : (a1, a2)

Γ ` t : (a1, a2)

Γ ` fst t : a1



Rules

Γ, x : {a1, . . . , ai} ` t : b

Γ ` λx .t : ({a1, . . . , ai}, b)

Γ ` λx .t : ∗

Γ ` t1 : ({a1, . . . , ai}, b) Γ ` t2 : a1 . . . Γ ` t2 : ai
Γ ` (t1t2) : b

Γ ` λx .t : a1 Γ, f : {a1} ` λx .t : a2 . . . Γ, f : {a1, . . . , ai−1} ` λx .t : ai
Γ ` rec f .λx .t : ai



Rules

Γ, x : {a1, . . . , ai} ` t : b

Γ ` λx .t : ({a1, . . . , ai}, b)

Γ ` λx .t : ∗

Γ ` t1 : ({a1, . . . , ai}, b) Γ ` t2 : a1 . . . Γ ` t2 : ai
Γ ` (t1t2) : b

Γ ` λx .t : a1 Γ, f : {a1} ` λx .t : a2 . . . Γ, f : {a1, . . . , ai−1} ` λx .t : ai
Γ ` rec f .λx .t : ai



Rules

Γ ` t : a

Γ ` inl(t) : 〈1, a〉
....

Γ, x1 : {a1, . . . , ai} ` t1 : b Γ ` t : 〈1, a1〉 . . . Γ ` t : 〈1, ai 〉
Γ ` case t of inl(x1).t1, inr(x2).t2 : b

....



Properties

The usual:

• correctness: reduction preserve denotational semantics;

• adequacy: terms whose denotation is different from ⊥,
converge to a value.



Lazy language with recursive types

Types:

0 | τ1 ∗ τ2 | τ1 → τ2 | τ1 + τ2 | X | µX .τ

Expressions

t ::= x
• | (t1, t2) | fst t | snd t |
λx .t | (t1t2) |
inl(t) | inr(t) | case t of inl(x1).t1, inr(x2).t2 |
abs (t) | rep (t) |
rec x .t

0 does not contain any value, • Divergent term, no reduction rule.



Operational Semantics

The eager rule still applies.

c : Cτ [µX .τ/X ]

abs (c) : CµX .τ

While, values are:
(t1, t2), inl(t), inr(t)

Eager rules for terms in recursive types apply:

t ⇒ c

abs (t) ⇒ abs (c)

t ⇒ abs (c)

rep (t) ⇒ c



Denotational Semantics

VJ0Kχ = O

VJτ1 ∗ τ2Kχ = (VJτ1Kχ × VJτ2Kχ)⊥

VJτ1 + τ2Kχ = (VJτ1Kχ)⊥ + (VJτ2Kχ)⊥

VJτ1 → τ2Kχ = (VJτ1Kχ → VJτ2Kχ)⊥

VJX Kχ = χ(X )

VJµX .τKχ = µI .VJτKχ[I/X ]



Rules

1 ≤ i ≤ n

Γ, x : {a1, . . . , an} ` x : ai

Γ ` (t1, t2) : ∗

Γ ` t1 : a1

Γ ` (t1, t2) : inla1

Γ ` t : inla1

Γ ` fst t : a1



Rules

1 ≤ i ≤ n

Γ, x : {a1, . . . , an} ` x : ai

Γ ` (t1, t2) : ∗

Γ ` t1 : a1

Γ ` (t1, t2) : inla1

Γ ` t : inla1

Γ ` fst t : a1



Rules

1 ≤ i ≤ n

Γ, x : {a1, . . . , an} ` x : ai

Γ ` (t1, t2) : ∗

Γ ` t1 : a1

Γ ` (t1, t2) : inla1

Γ ` t : inla1

Γ ` fst t : a1



Rules

Γ, x : {a1, . . . , ai} ` t : b

Γ ` λx .t : ({a1, . . . , ai}, b)

{a1, . . . , ai} can be ∅

Γ ` λx .t : ∗

Γ ` t1 : ({a1, . . . , ai}, b) Γ ` t2 : a1 . . . Γ ` t2 : ai
Γ ` (t1t2) : b

Γ ` t : a1 Γ, x : {a1} ` t : a2 . . . Γ, x : {a1, . . . , ai−1} ` t : ai
Γ ` rec x .t : ai



Rules

Γ, x : {a1, . . . , ai} ` t : b

Γ ` λx .t : ({a1, . . . , ai}, b)

{a1, . . . , ai} can be ∅

Γ ` λx .t : ∗

Γ ` t1 : ({a1, . . . , ai}, b) Γ ` t2 : a1 . . . Γ ` t2 : ai
Γ ` (t1t2) : b

Γ ` t : a1 Γ, x : {a1} ` t : a2 . . . Γ, x : {a1, . . . , ai−1} ` t : ai
Γ ` rec x .t : ai



Rules

Γ, x : {a1, . . . , ai} ` t : b

Γ ` λx .t : ({a1, . . . , ai}, b)

{a1, . . . , ai} can be ∅

Γ ` λx .t : ∗

Γ ` t1 : ({a1, . . . , ai}, b) Γ ` t2 : a1 . . . Γ ` t2 : ai
Γ ` (t1t2) : b

Γ ` t : a1 Γ, x : {a1} ` t : a2 . . . Γ, x : {a1, . . . , ai−1} ` t : ai
Γ ` rec x .t : ai



Concurrent languages

A link to the seconod part of course:

• concurrent languages: Dijkstra guarded command, CSP, CCS.

• reactive system: CCS, π-calculus

Two communication paradigms among concurrent program,
processes:

• shared memory: multiprocessors;

• message exchange: multicomputer, distributed systems.



A simple concurrent language

IMP + parallel composition: ‖
• no determinism: concurrent programs are intrinsically

non-deterministic;

• a program cannot be described as an input-output function.



Concurrent languages semantics

• Operational semantics:
• shared memory: small-step reduction,
• message exchange: label transition system

• Denotational semantics: powerdomains, programs like trees,



Dijkstra guarded commands: non deterministic choice

c := skip | abort | X := a | c0; c1 | if gc fi | do gc od

Guarded commands: list of programs with guard,

gc := b → c | gc 8 gc

• Where b is a Boolean expression.

• Executing a list of guarded commands involves selecting a
guard and executing its command.

• Execution fails if no guard is true.

Examples: maximum, Euclid’s algorithm.



Small step operational semantics

〈skip, σ〉 → σ

〈a, σ〉 → n

〈X := a, σ〉 → σ[n/x ]

〈c0, σ〉 → σ′

〈c0; c1, σ〉 → 〈c1, σ′〉

〈c0, σ〉 → 〈c ′0, σ′〉
〈c0; c1, σ〉 → 〈c ′0; c1, σ′〉

〈gc , σ〉 → 〈c, σ′〉
〈if gc fi, σ〉 → 〈c , σ′〉

〈gc , σ〉 → 〈c , σ′〉
〈do gc od, σ〉 → 〈c ; do gc od, σ′〉

〈gc , σ〉 → fail

〈do gc od, σ〉 → σ



Rules for guarded commands

〈b, σ〉 → true

〈b → c , σ〉 → 〈c , σ〉

〈b, σ〉 → false

〈b → c , σ〉 → fail

〈gc0, σ〉 → 〈c , σ〉
〈gc0 8 gc1, σ〉 → 〈c , σ〉

〈gc1, σ〉 → 〈c , σ〉
〈gc0 8 gc1, σ〉 → 〈c , σ〉

〈gc0, σ〉 → fail 〈gc1, σ〉 → fail

〈gc0 8 gc1, σ〉 → fail



Dijkstra Guarded commands

• Operational semantics:
• Small step
• Big step is possible, the guarded commands do not interact

one with the other

• Non determinism allows a cleaner definition of some algorithm,
where multiple choices arise naturally,
see previous examples.



Hoare, CSP Communicating Sequential Processes

Dijkstra guarded command with:
• parallelism ‖: c : c1 ‖ c2 | . . .

but parallel commands communicate through channels,
they cannot share variables.
• Communications (synchronous) on channels:

c := α!a | α?X | . . .

• Channel restriction:

c := c1\α | . . .

some channels can only be used within the command.
• Guarded commands with communication: its command

executed only if communication

gc ::= b ∧ α!a→ c | b ∧ α?X → c | . . .

In the original CSP, communications are made by specifying the
name of a process, not a channel.



Operational semantics of CSP

Label transition system, two types of transactions:

• → (
τ→) describes a computational step,

• α!n→ α?n→ , describes a potential interaction with the exterior.

Reasons for the second type of transaction:

• More synthetic presentation of the transition system.

• Compositional semantics. One describes the single process.

Operational Semantics Rules:

Example: define a process simulating a buffer (with capacity 2).

CSP ideas can be found in GO and Clojure.



Robin Milner, (value-passing) CCS Calculation of
Concurrent Systems

A restricted version of CSP. The essential constructor to study
concurrency.
Eliminate assignment, narrow the test and cycle commands.

p := 0 | empty process
b → p | boolean guard
α!a→ p | α?x → p | output - input
τ → p | empty action
p0 + p1 | choice
p0 ‖ p1 | parallelism
p\α | restriction
p[f ] | relabelling
P(a1, . . . , an) process identifiers

A language for describing concurrent systems.



Relation with CSP, what is lost, what can be recovered

skip becomes 0
abort non correspondence
X := a through value passing α!a→ 0 ‖ α?x → p
c0; c1 has no clear correspondence
ifgcfi through + and b → p



Pure CCS

Eliminate CCS from natural and variable numbers

p := α.p | α.p | comunicazione
τ.p | azione vuota
Σipi | scelta potenzialmente infinita
p0 ‖ p1 | parallelismo
p\α | restrizione
p[f ] | relabelling
P identificatori di processo

One loses the distinction between output input, there remains a
synchronization mechanism, α, α.

More abstract system.
Natural numbers and simulated guards, partly through channels
and the infinite sum (extensional representation)



Trace Equivalence

• When are two processes equivalent?

• Label Transition Systems (LTS) allow more observations than
standard operational semantics.

• Two processes are equivalent if they generate the same traces
(deriving trees with the same paths)

• This notion of equivalence is not a congruence

• a.(b + c) vs. a.b + a.c in the context ‖ a.b



Bisimulation

When are two processes equivalent?
When their derivative trees coincide up to duplication.

definition

• A strong bisimulation is a symmetric symmetric relation R
such that:
p R q ∧ p

λ→ p′

then there exists q′ tc q
λ→ q′ ∧ p′ R q′

• p ∼ q, p is strongly bound to q if there exists a simulation R
tc p R q

Exercise: show that ∼ is a bisimulation (the maximum).



Strong Bisimulation

It is a good notion of equivalence?

• Positive Aspects. It is a congruence. It is possible to reason in
a compositional way.

• Negative aspects. One observes the
τ→ transaction, that

should be an invisible action.



Weak bismimulation

definition

• A weak bisimulation is a symmetric R relation that:
p R q ∧ p

a→ p′

then there exists q′, q′, q′′ . q
τ→
∗

q′
a→ q′′

τ→
∗

q′′′ ∧ p′ R q′′′

and, if p R q ∧ p
τ→ p′

then there exists q′ . q
τ→
∗

q′ ∧ p′ R q′.

• p ∼ q, p is slightly weak at q if there exists a simulation R tc
p R q

• Identify processes that are naturally equivalent.

• The weak bisimulation is not congruence.
Example τ.a, a, and τ.a + b, a + b



Logic by Hennessy-Milner

A modal logic for labeled transactions. Propositions:

A := T | Ao ∨ A1 | 〈λ〉A | ¬A

Other connective can be defined through negation :

A := F | Ao ∧ A1 | [λ]A

Satisfaction with a formula;

p |= A

We define two logically equivalent processes if they meet the same
set of propositions.
Show that two strong bisimilar processes are logically equivalent.
Do the opposite?


