
UNIVERSITÀ DEGLI STUDI DI PISA
DIPARTIMENTO DI INFORMATICA

DOTTORATO DI RICERCA IN INFORMATICA

Università di Pisa-Genova-Udine

Ph.D. Thesis: TD - 6/93

A Functional Approach to
Computability on Real Numbers

Pietro Di Gianantonio

Abstract.

The aim of this thesis is to contribute to close the gap existing between
the theory of computable analysis and actual computation. In order to study
computability over real numbers we use several tools peculiar to the theory of
programming languages. In particular we introduce a special kind of typed
lambda calculus as an appropriate formalism for describing computations on
real numbers. Furthermore we use domain theory, to give semantics to this
typed lambda calculus and as a conseguence to give a notion of computability
on real numbers. We discuss the adequacy of Scott-Domains as domains for
representing real numbers. We relate the Scott topology on such domains to
the euclidean topology on IR. Domain theory turns out to be useful also in the
study of higher order functions. In particular one of the most important results
contained in this thesis concerns the characterisation of the topological prop-
erties of the computable higher order functions on reals. Our approach allows
moreover to phrase and discuss w.r.t. real numbers issues of programming lan-
guages. We address the problem of defining an implementation of real numbers
as an abstract data type. Finally we investigate algorithms for carrying out
efficient computations on reals.

March 1993

ADDR:dip. di Matematica e Informatica, via delle Scienze, 33100 Udine Italy.

TEL:+39-432-558476 E MAIL: pietro@dimi.uniud.it

Contents

1 Introduction 2

1.1 Motivations for this work and results obtained. 3
1.2 Outline of this thesis . 4

2 Real Number Representations 6

3 The language PCFS 10

3.1 The calculus . 10
3.1.1 Syntax . 10
3.1.2 Operational Semantics . 12

3.2 Real Number Computation in PCFS 13
3.3 Computable Functions. 17

4 A Domain Theoretic Approach to Computable Reals 19

4.1 Denotational Semantics for PCFS. 20
4.2 Relation between denotation and operational semantics 22
4.3 From Domains to Real Numbers. 24
4.4 Language completeness. 27
4.5 Some properties of computable functions on real numbers 29
4.6 Relation between domain-computability and language-computability 31

5 A domain of approximations for real numbers. 33

5.1 Introduction. 33
5.2 The construction of the domain RD 34
5.3 Infinite elements. 37

6 Topological characterizations. 39

6.1 Topological preliminaries . 39
6.2 The topological relations between the domain RD and the real line. 40
6.3 Partial functions . 49

7 A programming language for real numbers 51

7.1 Syntax . 52
7.2 Semantics . 52

i

8 Implementation Issues. 59

8.1 A binary notation for Reals. 60
8.2 Real-base notations. 60
8.3 The golden ratio notation. 62
8.4 Algorithms for Arithmetic Operations. 63

8.4.1 Addition . 63
8.4.2 Subtraction. 66
8.4.3 Multiplication. 66
8.4.4 Division. 67

8.5 A “Large digit” representation 68

9 Conclusions and directions for further works 71

1

Chapter 1

Introduction

Turing in 1937 was the first to introduce the notion of computable real number
[32]. Since then a great number of different approaches have been used to
investigate from a constructive standpoint main concepts arising is Analysis,
such as real number, limit, derivative and measure. These enterprises have been
referred to with various names e.g. recursive analysis, constructive analysis and
computable analysis.

An important aspect which differentiates these approaches is the kind of
logic being used: e.g. classical, intuitionistic, constructive.

Several authors give a completely constructive presentation of Analysis, us-
ing for example intuitionistically based logic. In these contexts all the definitions
have a constructive meaning and only constructive methods are allowed in the
proofs, Aberth [1], Beeson [4], Bishop [5] [9], Troelstra and van Dalen [31].

Particularly important is the work of Bishop [5] where a surprisingly large
part of Analysis is shown to be feasable constructively. This result is obtained
through a careful constructive “redefinition” of all the notions used, starting
from the very fundamental ones e.g. that of real number and real function.
Bishop’s motto is: “ mathematical statements should have numerical meaning”.
The constructive logic used by Bishop is not precisely defined. For instance
Bishop uses freely the abstract concept of “rule” and of “operation” without
giving them a mathematically precise meaning. This could have been done,
for instance, by reformulating these concepts using Recursive Function theory.
This is done by Aberth [1] who bases his work on a precise notion of algorithm.
Other authors reformulate Analysis in the context of intuitionistic logic [31].

An alternative, and less radical, approach is that of using classical logic.
In this case one takes as already given in a classical form the definition of real
number and all the other concepts of Analysis Then using Recursion Theory one
defines a countable subset of the real numbers, called computable (or recursive)
real numbers. Informally a computable real number is a real number that can
be defined by a recursive function.

2

Similarly one gives then a notion of computable real function and of decidable
relation on real numbers.

The main results in this line of research are: the formulation of different
definitions of computable real number, the comparison of different notions of
computability, the relation between computability and continuity of functions.
There are also many undecidability and complexity results.

Also in this line of research there is a plethora of different approaches. A
key point of difference among these approaches is the notion of computability
used. Turing machines are used in Ko and Friedman n [12], [13], Turing [32],
Wiedmer [36]. A theory of computability of Baire spaces called “type 2 recursion
theory” is used to study computability on real number in Kreitz and Weihrauch
[14]. Finally approximation spaces are introduced and used in Lacombe [15],
Martin-Löf [16], D. Scott [26], [26], Weihrauch [34].

1.1 Motivations for this work and results ob-

tained.

Although the theory of computable Analysis can be considered a well developed
subject, there have been so far very few attempts of implementing computable
Analysis on digital computers [6], [7], [10], [33]. Such implementations should
lead to the realization of “exact real number computation”.

In ordinary practice the computation on real numbers is performed by ap-
proximating real numbers by a subset of the rational numbers and by approx-
imating the arithmetic on real numbers by a limited precision arithmetic on
rationals.

In exact real computation instead the result of a computation can be ob-
tained with arbitrary precision and thus getting rid of the unfortunate phe-
nomenon of the “round of error”.

In this thesis we do not face directly the problem of defining a feasible effect-
ive implementation of exact real number computation. We go instead towards
the direction of closing the gap existing between the theory of computable Ana-
lysis and actual computation.

In the thesis in order to study computability over real numbers we use several
tools peculiar to the theory of programming languages.

In particular we introduce a special kind of typed lambda calculus as an ap-
propriate formalism for describing computations on real numbers. Furthermore
we use domain theory, to give semantics to this typed lambda calculus and as
a conseguence to give a notion of computability on real numbers.

This approach turns out to be very fruitful for several reasons.
We discuss the adequacy of Scott-Domains as domains for representing real

numbers. In the literature on real numbers computation different kinds of partial
orders have been employed.

We relate the Scott topology on such domains to the euclidean topology on
IR.

3

Using the theory of effective Scott domains we obtain simpler proofs of some
of the classical results of constructive Analysis.

Domain theory turns out to be useful also in the study of higher order
functions. In particular one of the most important results contained in this thesis
concerns the characterisation of the topological properties of the computable
higher order functions on reals.

Our approach allows moreover to phrase and discuss w.r.t. real numbers
issues of programming languages. We address the problem of defining an imple-
mentation of real numbers as an abstract data type. That is we try to introduce
a finite set of primitive functions on real number that can generate all the other
computable functions.

Another problem that we address is the adequacy of using only sequential
computation to express all the computable functions on reals. We give a partial
answer to the question of whether parallel computations are more expressive.

Finally we investigate algorithms for carrying out efficient computations on
reals. In particular we develop algorithms for the arithmetic operations which
proceed contrary to the ones people normally use and children learn at school,
i.e. from the more significant digits to the less significant ones. This is interest-
ing in itself.

1.2 Outline of this thesis

In chapter 2 we give a survey of the different forms of real number representa-
tions used in computable Analysis.

In chapter 3 we present the syntax and the reduction rules of a simple typed
lambda calculus. The various forms of real number representation are translated
into this language. That is we show how to denote real numbers with terms of
this language. In this way we make possible to define a notion of computability
for real number and real functions.

In chapter 4 we present a denotational semantics for the language of chapter
3. Scott-Domains are used for this purpose. We introduce a second definition
of computability on real numbers and we compare the two definitions. We deal
then with the denotational and operational semantics of this language. Typical
issues of the theory of the programing languages arise here. The language
defined in the thesis it is not “complete”. The language, in fact, is not sufficiently
rich to denote all computable functions contained in the semantics domain.
The question arises as to whether the language is sufficiently rich to denote all
computable functions on reals that can be defined via domain theory. A partial
answer is given.

In chapter 5 we present a new domain that can be used to study real numbers.
This domain follows the approach of constructing approximation spaces for the
real numbers. This construction has a domain-theoretic interest. In fact it is
the first example of the use of Scott-domains in a problem area where normally
continuous cpo’s (i.e. continuous images of algebraic cpo’s) are used.

4

In chapter 6 we investigate the connection between the Scott-topology and
the topology on the real line. Moreover we present several important and ori-
ginal results which describe the topological properties of the computable real
functions. The interest of these results lies in the possibility of characterizing
the topological properties of the higher order functions.

In chapter 7 we discuss the problem of defining an abstract data type for the
real numbers. In particular we address the problem of defining a finite set of
primitive functions on real numbers such that any other computable function on
reals can be obtained from them. A possible solution to this problem is given.

In chapter 8 we present two new representations for real numbers that can
be fruitfully employed to improve the efficiency of some implementations of the
real number computation.

The first one is an elegant variant of the “binary digit” representation. This
representation leads to surprisingly simple algorithms for arithmetic operations.

The second one is a “digit representation” making use of large digits. This
representation can be useful if we want to exploit fully the efficiency of the im-
plementation of integer arithmetic which is hard wired in all modern computers.

5

Chapter 2

Real Number

Representations

Since the seminal work of Turing, a great number of different approaches have
been used to study constructive analysis. An important difference between these
approaches lies in the way real numbers are represented. Different representa-
tions already occur in classical analysis: Cauchy sequences of rational numbers,
Cauchy sequences of dyadic rationals, Dedekind cuts in the field of rationals,
infinite decimal expansions, and so on. Classically all these representations are
equivalent and we can study Analysis without worrying about which repres-
entation for real numbers we are currently using. Also in computable Analysis
many of these representations turn out to be equivalent. But there are also
some exceptions: for instance Dedekind cuts and Cauchy sequences turn out
not to be equivalent.

Between the various constructive representations of real numbers in use there
is one that can be consider the most general and taken as reference. In this
representation a real number is defined as the limit of a computable sequence
of rational intervals.

Definition 1 A rational-interval representation of a real number r ∈ IR is given
by a computable sequence of intervals,
s0 = [a0, b0], . . . , si = [ai, bi], . . .
such that:
i) the end-points ai, bi of each interval si are rational numbers, that is si is a
rational interval,
ii) si+1 ⊆ si,
iii) limi→∞(bi − ai) = 0
iv) r =

⋂

i∈IN s(i).

This representation has been used by several authors which dealt with the
real number computability [15], [16], [26], [34]. It can be considered for many
aspects, the general form of real representation. Many other representations

6

proposed in the literature differ from this one only in that they make use of a
subset of the convergent sequences of rational intervals. Here are some examples:

Definition 2 a) a real number r is represented by a computable Cauchy se-
quence of rational numbers s0, . . . , si, . . . and by a function q : IN → IN defining
the convergence rate of the Cauchy sequence such that:
i) ∀i.j.k | sq(i)+j − sq(i)+k |≤ 2−i

ii) r = limi→∞ s(i)

b) a real number r is represented by a computable Cauchy sequence of rational
numbers s0, . . . , si, . . . having a fixed rate of convergence:
i) ∀i.j. | si − si+j |≤ 1/i
ii) r = limi→∞ s(i)

c) corresponding to every natural number p > 1, we have the following form
of real representation: a real number r is represented by a computable sequence
of integer numbers s0, . . . , si, . . . such that:
i) ∀i. | p × si − si+1 |< p
ii) r = limi→∞ s(i)/pi

d) given a natural number b > 1 a negative-digit representation with base b
of a real number r is given by a sequence of integers s0, . . . , si, . . ., such that:
i) ∀i ∈ IN+. − b < si < b
ii) r =

∑

i∈IN si × b−i

e) in the continuous fraction representation a real number r is represented
by a computable sequence of integers s0, . . . , si . . . such that

r = lim
i→∞

s0 +
1

s1 + 1
s2+ 1

...
si

Representations a) and b) are used in [31] and in [5] respectively. Repres-
entations a) and b) are similar to the classical Cauchy sequence representation.
Notice however that the constructive definition of a real number via a Cauchy
sequence always requires the presence of a function defining the convergence
rate. This convergence function can be the same for all Cauchy sequences, like
in representation b), or can be specified for each Cauchy sequence, like in repres-
entation a). An informal justification for the necessity of introducing a function
giving the convergence rate is the following: if the convergence rate of a Cauchy
sequence s0, s1, . . . with limit x is not known then it is impossible to give any
estimate of the value x after examining a finite subsequence s0, . . . , si, in fact
any real number can be the limit of a Cauchy sequence starting with s0, . . . , si.
This is of paramount importance in fact from a constructive point of view only
finite part of an infinite sequence can be examined.

The representation c) is used in [6]. It can be considered a variant of the
Cauchy sequence representation. Here a sequence of integers is used to describe
a Cauchy sequence of rational p-adics numbers. A p-adic rational number is a

7

number that can be written in the form m × pn with m and n integers. Note
that just a subset of the Cauchy sequences of rationals can be described in this
way. For the practical purposes representation c) is convenient: the algorithms
for the arithmetic operations turn out to be simpler and more efficient when
representation c) is used instead of representations a) or b).

The representation d) is similar to the standard digit representation. The
main difference consists in introducing negative digits. This representation has
been studied in [2], [6], [36].

The representation e) has been developed in [33] and is similar to the con-
tinuous fractions representation. The only difference is that in the standard
continuous fraction notation only natural numbers are used. In this case it is
necessary to use also negative integers.

The representations described above do not make explicit use of intervals.
Anyway a perfectly equivalent representations, based on rational intervals can
be given.

Let us consider for example representation b). A real number r is defined by
a Cauchy sequence of rational numbers s0, . . . , si, If we examine a finite part
of the sequence s we can give an estimation of the value r. From the element
si we know that the value of r lies in the interval: [si − 1/i, si + 1/i]. The same
informations given by s can then be given by the sequence of rational intervals:
[s1 − 1, s1 + 1], . . . , [si − 1/i, si + 1/i],

Analogous considerations can be done for the other representations.

As mentioned above the representations presented d) and in e) are modific-
ations of the digit representation and of the continuous fraction representation
respectively. The reason for these modifications is that the standard repres-
entations are not suitable for real number computation. Using the standard
representations even the most fundamental functions such as addition or multi-
plication are not computable.

Here is a simple example that illustrates the inadequacy of the standard
decimal representation. We show that no algorithm can compute the multiplic-
ation by 3. An hypothetical algorithm for this function will not be able to
generate the first digit of the result when it receives as input the value 0.333...
. In this case there are two possible results, namely 1.000... and 0.999... .

If the algorithm generates 1 as first digit, this happens after the algorithm
has examined a finite number of digits of the argument. Let us suppose that
the first n digits have been examined before generating 1. Then the algorithm

generates 1 as first digit also when it receives as input the string 0.

n
︷ ︸︸ ︷

33 . . .3 20

But this in incorrect, the exact result should then be 0.

n
︷ ︸︸ ︷

99 . . .9 6
An analogous consideration can be done if the algorithm generates 0 as first

digit.
Similar examples show also that the other arithmetic operations are not

computable.

8

It is clear that the problem presented above is not caused by the choice of
the basis 10 for the representation of real numbers. The same problem would
arise for any other basis.

The introduction of negative digits is a simple way to overcome these diffi-
culties.

Going back to the previous example and we can easily show how the intro-
duction of negative digits solves the difficulty.

The algorithm for the multiplication by 3 can in fact safely generate 1, as
the first digit, after having read the first two digits of the string 0.333... . We
can easily observe that if the input becomes 0.3(−9)(−9)... = 0.2 the output
can become 1.(−4)000... = 0.6. If the input becomes 0.3999... = 0.4 the output
can become 1.2000... .

A perfectly similar consideration can be done for the continuous fraction
representation.

In the following chapter we prove that all the previous real number repres-
entations are computationally equivalent, in the sense that they characterize the
same class of computable reals and computable real functions. In constructive
mathematics other representations of real numbers, not conputationally equi-
valent to the previous one, are considered, for example representations based
on Dedekind cuts [31]. Anyway these representations are not suitable for a
practical computation and they are not discussed in this thesis.

9

Chapter 3

The language PCFS

We define here a simple typed lambda calculus that we shall use to define
computable real numbers and computable real functions.

This lambda calculus, called PCFS is for many aspect similar to the language
PCF presented in [21]. The main difference between the two languages is that
in PCFS there is a new unary type constructor “stream of”.

We choose a typed lambda calculus as a formalism for expressing the com-
putable functions because it is simple and thoroughly investigated. Moreover
the lambda calculus is a paradigm for functional programming languages, and
hence many problems typical of programming languages can be discussed in this
setting.

In the following we present the language PCFS and we will give an oper-
ational semantics to it. Several different forms of real number representations
will be “implemented” in PCFS. For each real number representation we define
a full hierarchy of computable real functions.

3.1 The calculus

PCFS is a typed lambda calculus characterized by having a call-by-name strategy
of evaluation and by containing in its set of types, together with every type, the
type of streams of objects of that type. In this thesis streams will be used to
represent real numbers.

3.1.1 Syntax

The set T of type expressions of PCFS is defined by the grammar:

τ := N | B | τ → τ | S(τ)

where τ is a metavariable ranging over the set of types, N and B are the
type constants for naturals and booleans respectively. Types N and B are called

10

ground types. S is a type constructor, S(τ) is the type of streams of elements
in τ .

Remark The grammar here defined does not contain the product type con-
structor. Functions of several arguments can be viewed as functions of a single
argument by currying:

(σ1 × σ2) → σ := σ1 → (σ2 → σ) .

The set E of expressions of PCFS is defined by the grammar:

e := xτ | cτ | (eτ→τeτ) | (λxτ .eτ)

where xτ is a metavariable over a countable set of variables V arτ of type τ ,
and cτ is a metavariable over the set of constants C. In the following we will
use also the symbol y, α, . . . as metavariable over set of the variables. When
no confusion arises we will omit the indication of the type superscript τ in the
terms eτ .

The set FV (e) of free variables over in e is defined by:
FV (x) := {x} , FV (c) := ∅, FV ((ee′)) := FV (e) ∪ FV (e′), FV ((λx.e)) :=
FV (e) − {x}.

The application of terms (ee′) is understood to be associative to the left.
That is the term e1e2 . . . en stands for (. . . (e1e2) . . . en)

e[e′/x] denotes the result of substituting the term e′ in all the free occurrences
of x in the term e, making appropriate renaming in the bound variables of e in
order to avoid capturing.

The constants are:
k0 . . . kn . . . : N

tt, ff : B

pred , succ : N → N, Z : N → B

condτ : B → τ → τ → τ ,

carτ : S(τ) → τ , cdrτ : S(τ) → S(τ), consτ : τ → S(τ) → S(τ),

Yτ : (τ → τ) → τ

Notice that there is no constant for the empty streams, the only stream
constructor is cons. Closed expressions of stream type have to be constructed
using the fix-point operator Y . As a consequence, the language does not contain
any finite string. All the stream expressions denote infinite or diverging streams.
We have designed the language in this way because only the infinite streams are
meaningful in all the representations for real numbers that we consider.

Type assignments and type constraints are defined as usual.

11

3.1.2 Operational Semantics

The semantics is given by a reduction relation (input-output), ⇒ between closed
terms.

If e ⇒ v we say that v is the value of the term e. A term e converges (e ↓)
if there is a term v such that e ⇒ v.

The definition of the relation ⇒ is given by the following set of reduction
rules

constant:
c ⇒ c for all c ∈ C

succ ki ⇒ ki+1

pred ki+1 ⇒ ki

pred k0 ⇒ k0

Z k0 ⇒ tt

Z ki+1 ⇒ ff

stream:
e1 ⇒ v

carτ (consτe1e2) ⇒ v

e2 ⇒ v

cdrτ (consτ e1 e2) ⇒ v

consτ e1 ⇒ consτ e1

consτ e1 e2 ⇒ consτ e1 e2

conditional:
e0 ⇒ tt e1 ⇒ v

condτ e0 e1 e2 ⇒ v

e0 ⇒ ff e2 ⇒ v

condτ e0 e1 e2 ⇒ v

condτ e0 ⇒ condτ e0

condτ e0 e1 ⇒ condτ e0 e1

fixed point:
e(Yτ e) ⇒ v

Yτ e ⇒ v

application:
λx.e ⇒ λx.e

e1 ⇒ λx.e0 e0[e2/x] ⇒ v

e1 e2 ⇒ v

It is easy to prove that for every term e there is at most one term v such
that e ⇒ v, that is, ⇒ is a partial functions between terms.

12

3.2 Real Number Computation in PCFS

In order to represent real numbers in PCFS it is necessary to represent integer
and rational numbers in PCFS. This is done via an effective enumeration of
integer and rational numbers.

An alternative solution can be that of extending PCFS with the product
type constructor and to represent integers and rationals by pairs and triples of
natural numbers. The two solutions are computationally equivalent. We choose
the first one because it does not require the introduction of the product type
constructor, and therefore it makes the description of PCFS simpler.

In the following π2 is an effective enumeration of pairs of natural numbers.
π2 is given by two functions π2

1 and π2
2 , π2(n) = 〈π2

1(n), π2
2(n)〉. π2 realizes

the dove-tail enumeration of pairs, that is π2
1(n) and π2

2(n) are the only natural
numbers satisfying the equation

n = (π2
1(n) + π2

2(n)) × (π2
1(n) + π2

2(n) + 1)/2 + π2
2(n)

more explicitly, if we indicate with c(n) the integer part of (−1+
√

1 + 8n)/2
then π2

2(n) = n − c(n) × (c(n) + 1)/2 and π2
1(n) = c(n) − π2

2(n)

Effective enumerations z : IN → Z and q : IN → Q for the integer and
rational numbers are then defined by:

z(n) = π2
1(n) − π2

2(n)
q(n) = (π2

1(π2
1(n)) − π2

2(π2
1(n)))/π2

2(n)

Using the functions z and q it is then possible to use PCFS terms of type N
to represent integers and rationals.

Two partial functions can be defined [[]]Z : EN → Z and [[]]Q : EN → Q
are defined by:
[[e]]Z = i if e ⇒ kn and z(n) = i
[[e]]Q = r if e ⇒ kn and q(n) = r
These functions are partial because they are undefined on the divergent ele-
ments. The two partial functions associate to each PCFS term eN the rational
or the integer represented by it.

Partial functions, like [[]]Z , generate expressions that can denote partial
elements, that is elements that are not necessary defined. For example the
elements [[YNλx.x]]Z .

A remark about the equality relation is here necessary. We use two different
equality symbols, ”=” and ”≃”. With t = s we denote that t and s are both
defined elements and they are equal; with t ≃ s we denote that if one of t and
s is defined then so is the other and they are equal.

To represent real numbers inside PCFS it is sufficient to translate in PCFS
any one of the different constructive representations for real number given in
the previous chapter. Note that in each one of these definitions, a real number
is represented by a sequence of (finite) elements. Inside PCFS there are two
natural ways of representing sequences of elements of type τ : by using streams
over τ or by using function from N to τ .

13

The Cauchy sequence representation in definition 1 b) is translated inside
PCFS by any one of the two partial representation functions defined below:

Definition 3 Two partial functions IR1[[]] : ES(N) → IR and IR1′

[[]] : EN→N →
IR, are defined by:
R1[[e]] = r if there is a sequence of natural numbers l0, l1, . . . such that:
i) ∀n.carτ (cdrne) ⇒ kln

ii) | q(ln) − q(ln+1) |≤ 2−n

iii) r = limn→∞ q(ln)
R1′

[[e]] = r if there is a sequence of natural numbers l0, l1, . . . such that:

i) ∀n.e kn ⇒ kln

ii) | q(ln) − q(ln+1) |≤ 2−n

iii) r = limn→∞ q(ln).

We called the functions in the form Ri[[]] partial representation functions.
Each partial representation function gives rise to a different definition of com-
putable real number.

Definition 4 Given a real partial representation functions Ri[[]] a real number
r is language-computable with respect to Ri[[]] if there is a PCFS term e such
that:

Ri[[e]] = r

It is easy to show that the two real partial representation functions generate
equivalent definitions of computable real numbers. In fact there is an effective
way to pass from the stream representation to the function on natural number
representation. A general proof of this fact is given below.

Proposition 1 For every type τ there are 2 PCFS terms s-fn and fn-s of type
(N → τ) → S(τ) and S(τ) → (N → τ) respectively, such that:

i) for every term l with type S(τ) and for every natural number n:
car(cdri l) ⇒ v iff s-fn l ki ⇒ v,
ii) for every term f with type N → τ and for every natural number n:
car(cdri(fn-s f)) ⇒ v iff f ki ⇒ v.

Proof. It is not difficult to show that the following terms satisfy i) and ii).

fn-s = λf.YN→S(τ)(λL.λn. cons(f n)(L(succ n)))k0

s-fn = YS(τ)→N→τ (λF.λl′.λn. ifZ n then carl′ else F (cdrl′)(pred n))

Corollary 2 The partial representation functions R1[[]] and R1′

[[]] give rise to
equivalent definitions of real computable number.

14

We now translate inside PCFS the real representations presented in defin-
ition 2 c) and d). Also in these cases there is a choice between representing
sequences by streams or by functions on natural numbers. Since it is possible to
pass in an effective way from one representation to the other, this choice does
not bring any significant difference from the computational point of view. We
limit ourselves to consider the stream representation.

Definition 5 Two real partial representation functions R2[[]], R3[[]] : ES(N) →
IR are defined by:

R2[[e]] = r if there is a sequence of natural numbers l0, l1, . . . such that:
i) ∀n.car(cdrne) ⇒ kln

ii) ∀n. | 2 × z(ln) − z(ln+1) |≤ 1
iii) r = limn→∞ z(ln)/2n

R3[[e]] = r if there is a sequence of natural numbers l0, l1, . . . such that:
i) ∀n.car(cdrne) ⇒ kln

ii) ∀n ≥ 1 ln ∈ {0, 1, 2}
iii) r = z(l0) +

∑

n∈N(ln − 1)/2n

We could introduce and discuss yet another partial representation function
correspondig to the definition of a real nunber as a continuous fraction. Al-
though this representation would be not substantiall more difficult to analyze
than those in the definition above, it would require a large number of tedious
technicalities.

We prove now that it is possible to pass in an effective way from one repres-
entation to the other. In fact:

Proposition 3 There are three PCFS terms conv2−1, conv3−2 and conv1−3

such that for every term e ∈ ES(N) the following equalities hold:
R1[[e]] ≃ R2[[conv2−1 e]]
R2[[e]] ≃ R3[[conv3−2 e]]
R3[[e]] ≃ R1[[conv1−3 e]]

Proof. As mentioned above each partial representation function Ri sub-
sumes a representation of the real numbers by sequences of (rational or integer)
numbers. We first show that it is possible to translate, in an effective way, one
sequence representation into another.

Given a Cauchy sequence of rationals s0, s1, . . . representing a real number
r and such that | si+1 − si |≤ 2−i then the sequence of intergers
round(s1 × 2), . . . , round(si × 2i) . . . defines the same real r through the repres-
entation subsumed by the function R2[[]]. (with round(x) we denote the integer
approximation of the rational number x).

Similarly, given a sequence of integer s0, s1, . . . denoting a real r through the
representation subsumed by the function R2 then the sequence
s0, (s1 − 2 × s0), . . . , (si+1 − 2 × si), . . .
is a negative digit representation of r.

15

Finally given a negative digit representation s0, s1, . . . of r, the sequence
s0, (s0 + s1 ÷ 2), . . . , (

∑i
j=0 sj × 2−i), . . .

is a Cauchy sequence representing r.

The terms convi−j are just the implementations, inside, PCFS of the above
translations.

As an example we present here the definition of conv2−1 and of conv3−2.
Before giving the two terms it is necessary to introduce other terms defining

several auxiliary functions.
It is straightforward to prove that the arithmetic functions on naturals, in-

tegers and rationals can be implemented in PCFS.
That is, there are terms:
plusN , timesN , minusN , divN , plusZ , timesZ , minusZ , divZ , plusQ, timesQ,

minusQ and divQ,
such that appropriate equations of form:
[[plusZ e e′]]Z ≃ [[e]]Z + [[e′]]Z , [[timesZ e e′]]Z ≃ [[e]]Z × [[e′]]Z . . .
are satisfied

Other terms needed in the proof are:
convN−Z , convZ−Q, abs, and round.

These terms satisfy following equalities:
[[(convN−Z e)]]Z ≃ [[e]]N
[[(convN−Q e)]]Q ≃ [[e]]Z
[[(abs e)]]N ≃| [[e]]Z |
[[(round e)]]Z ≃ the approximate value of [[e]]Q

We necessitate also of a set of terms mapτ→τ ′ of type (τ → τ ′) → S(τ) →
S(τ ′). Given a function f : τ → τ ′ and a stream α of type S(τ), (mapτ→τ ′fα)
is the stream obtained applying to each element of α the function f .

mapτ→τ ′ := λf.YS(τ)→S(τ ′)(λF.λα.cons(f(car α))(F (cdr α))))

Finally we can give the definitions:

conv2−1 := Y (λF.λα.cons (round(car(cdr(α))))
(F (map (λn.(times(convN−Qk2)n)(cdrα))))

aux-conv3−2 := Y (λF.λα.cons
(abs((plus(convN − Zk1)(minus(car(cdrα))(time(convN − Zk2)(carα)))))(F (cdrα))))

conv2−3 := λα.cons(carα)(aux-conv2−3α)

By definition 4 each partial representation function gives rise to a different
definition of computable real number.

We can now state the theorem.

Theorem 4 The partial representation functions R1[[]], R1′

[[]], R2[[]] and R3[[]]
generate equivalent definitions for computable real.

16

Proof. The theorem is an immediate consequence of Proposition 3.

Notation. We indicate with IRl the set of the computable real numbers.

3.3 Computable Functions.

Here we define the notion of unary computable functions on real numbers. In
the following the definition will be extended to higher order functions.

In this chapter we consider just functions defined over the set of comput-
able reals. Functions defined over the whole real line will be considered in the
following chapters.

There is a uniform way to pass from a partial representation function for the
real numbers to a partial representation function for the functions on comput-
able real numbers.

Definition 6 Given a partial representation function Ri[[]] : Eτ → IR for the
real numbers, a partial representation function for the set of functions
Ri[[]]r→r : Eτ→τ → IRl → IRl is defined by:
Ri[[e]]r→r = f iff
∀x ∈ IRl.∀e′ ∈ Eτ .Ri[[e′]] = x ⇒ Ri[[e(e′)]] = f(x).

Each partial representation function gives rise to a different definition of
computable real functions.

Definition 7 A function f : IRl → IRl is computable with respect to the real
partial representation function Ri[[]] if there is a PCFS term e such that:

Ri[[e]] = f.

Theorem 5 The real partial representation functions introduced in definitions 3
and 5 give rise to equivalent definitions of real computable functions.

Proof. Again the proof is an immediate consequence of proposition 3.

It is possible to extend the definitions of partial representation function and
of computability to arbitrary higher order functions.

The set T ′ of types on reals considered is generated by the grammar:
σ = r | σ → σ
where r is the only type constant whose intended meaning is the type of reals.

Definition 8 Given a partial representation function Ri[[]] : Eτ → R we define
by structural induction on the type σ ∈ T ′ the function ti : T ′ → T , the families
of sets IRaux−i

σ , IRl−i
σ and the family of functions

Ri[[]] : Eti(σ) → IRaux−i
σ by:

t(r)i = τ
ti(σ → σ′) = ti(σ) → ti(σ′)

17

IRaux−i
r := IR

IRaux−i
σ→σ′ := IRl−i

σ → IRl−i
σ′

Ri[[]]r := Ri[[]]
Ri[[e]]σ→σ′ = f iff ∀x ∈ IRl−i

σ .∀e′ ∈ Eti(σ).R
i[[e′]]σ = x ⇒ Ri[[e′(e)]]σ′ = f(x)

IRl−i
σ = {x ∈ IRaux−i

σ | ∃e ∈ Eti(σ).x = Ri[[e]]σ}

We call the sets IRl−i
σ the sets of language-computable functions on real num-

ber relatively to the real representation i.
The following theorem generalizes the equivalence results between the dif-

ferent notions of computability.

Proposition 6 Given two partial representation functions for the real numbers
Ri[[]] : Eτ → IR and Ri′ [[]] : Eτ ′ → IR, if there is an effective way to pass from
one representation to the other, that is if there are two term conv and conv′

such that
1) ∀e ∈ EτRi[[e]] ≃ Ri′ [[conv(e)]]
2) ∀e ∈ Eτ ′Ri′ [[e]] ≃ Ri[[conv′(e)]]

then for every type σ ∈ T ′ the sets IRl−i
σ and IRl−i′

σ coincide.

Proof. We first extend the terms conv and conv′ to a set of terms for the
conversion of terms of an arbitrary type σ ∈ T ′.
convr := conv
conv′r := conv′

convσ→σ′ := λf.convσ′ ◦ f ◦ conv′σ
conv′σ→σ′ := λf.conv′

σ′ ◦ f ◦ convσ

It is now immediate to prove that:
∀σ ∈ T ′ ∀e ∈ Eti(σ)R

i[[e]]σ ≃ Ri′ [[convσ(e)]]σ

∀σ ∈ T ′ ∀e ∈ Eti′ (σ)R
i′ [[e]]σ ≃ Ri′ [[conv′σ(e)]]σ

The thesis now follows directly.

An immediate consequence is that all the real number representations presen-
ted so far, give rise to the same notion of computable real and computable real
function. We can therefore use the notion of language-computable function
over real numbers without mentioning the real representation used. For every
σ ∈ T ′ the sets IRl−i

σ (i ∈ 1, 1′, 2, 3) are equal no matter which i is considered.
Therefore the reference to the real representation is suppressed and the set of
computable functions will be indicated just with IRl

σ.

As mentioned above the computable functions over the reals presented in
this chapter have a domain restricted to computable reals. A definition of
computable function over the whole real line can be obtained introducing the
notion of “oracle term” that is extending the language with an infinite set of
constants {ex | x ∈ IR} having the property that Ri[[ex]] = r. Anyway we do
not follows this approach. Instead in the next chapter we show how to define a
notion of computability for the functions defined over the whole real line using
domain theory.

18

Chapter 4

A Domain Theoretic

Approach to Computable

Reals

In this section we give a second definition of computability on real numbers.
In brief the method we use is the following. We start by giving a denotational
semantics to the language PCFS. Then, using the classical notion of computab-
ility on domains, we define a new notion of computability on real numbers. This
new notion of computability is conceptually different from the one of language-
computability introduced in the previous chapter. We will show however how
to establish a strict relation between these two notions.

The denotational semantics is given using ω-algebraic consistently complete
cpo’s, i.e. Scott-domains.

For completeness we briefly summarize the basic definitions of domain the-
ory. Given a partial order (D,⊑) the following notation is used. d⊔d′ and d⊓d′

denote the least upper bound and the greatest lower bound of the elements
d, d′ ∈ D respectively, if they exists. Given a subset S of D,

⊔
S and ⊓S denote

respectively the least upper bound, greatest lower bound of S, if they exists.
A directed subset of partial order (D,⊑) is a non empty subset S of D such

that every pair of elements of S has an upper bound in S. A subset S of a
partial order (D,⊑) is consistent, written S ↑, if it has an upper bound. a ↑ b
denotes that the set {a, b} is consistent.

A complete partial order (cpo) is a partial order (D,⊑) which has a least
element ⊥D and all the least upper bounds of directed subsets.

A finite element of a cpo (D,⊑) is an element d ∈ D such that for any
directed subset of S of D if d ⊑ ⊔S then there is an element s ∈ S such that
d ⊑ s. The set of finite elements of (D,⊑) is denoted with D◦.

19

A cpo (D,⊑) is algebraic if, for each d ∈ D the set {s | s ⊑ d, s ∈ D◦} is
directed and d = ⊔{s | s ⊑ d, s ∈ D◦}.

A cpo (D,⊑) is ω-algebraic if it is algebraic and the set D◦ of finite elements
is countable.

A cpo (D,⊑) is consistently complete if whenever two elements d, d′ in D
have an upper bounds they have a least upper bound. A Scott domain is a
consistently complete ω-algebraic cpo.

A function f : D → D′ from a cpo D to a cpo D′ is continuous if for all S
directed subset of D the following equality holds:
f(

⊔
S) =

⊔

d∈S f(d).
The set [D → D′] of all the continuous functions from D to D′ is itself a cpo
under the pointwise ordering induced by the ordering on D′. If d, d′ are finite
elements of D and D′ we denote with (d ⇒ d′) the member of [D → D′] defined
by

(d ⇒ d′)(x) =

{
d′ if d ⊑ x
⊥ otherwise

A function of the form (d ⇒ d′) is called step function.
If D and D′ are Scott-domains so is [D → D′]. Its finite elements are the

lub’s of finite sets of step functions.
Let D be a cpo. Its lifting D⊥ is the set {〈1, d〉 | d ∈ D} ∪ {⊥} with the

ordering
x ⊑ y if x = ⊥ or x = 〈1, x′〉, y = 〈1, y′〉 and x′ ⊑ y′.
Clearly if D is a Scott-domain then D⊥ is a Scott-domain.

Scott domains can be endowed with a topological structure called Scott
topology.

In a Scott-domain D the Scott topology is the topology whose open sets are

union of sets in the form
∨

d◦= {d | d◦ ⊑ d} with d◦ ∈ D◦

An effective Scott domain is a triple (D,⊑, en) such that (D,⊑) is a Scott
domain and en is an enumeration of the finite elements D◦ such that the fol-
lowing relations are decidable:
i) en(n) ↑ en(m)
ii) en(n) = en(m) ⊔ en(m′)

An element d in a effective Scott domain (D,⊑, en) is computable if the set
{n | en(n) ⊑ d} ⊆ IN is recursively enumerable.

4.1 Denotational Semantics for PCFS.

A collection of effective Scott domains {Dτ}, one for each type is defined by
induction on the type τ ∈ T .

DB and DN are the standard flat domains of truthvalues and natural num-
bers: DB := {⊥B, tt, ff} DN := {⊥N , 0, 1, 2, . . .}

Dτ→τ ′ := [Dτ → Dτ ′]⊥ is the lifting of the domain of continuous functions
from Dτ to Dτ ′

20

DS(τ) is the domain composed by the (finite and infinite) strings of elements
of Dτ , including the empty string. The order on DS(τ) is defined by:
[d0.d1.di] ⊑ [d′0.d

′
1. . . . dj] se i ≤ j and for all h 0 ≤ h ≤ i. dh ≤ d′h

[d0.d1.di] ⊑ [d′0.d
′
1.d

′
2. . . .] if for all h 0 ≤ h ≤ i. dh ≤ d′h

[d0.d1.d2. . . .] ⊑ [d′0.d
′
1.d

′
2. . . .] if for all h ∈ IN . dh ≤ d′h

An alternative definition for DS(τ) is: DS(τ) is a minimal solution of the
domain equation DS(τ)

∼= (DS(τ) × Dτ)⊥

The semantics interpretation function E has the form:

E : L → Env →
⋃

{Dτ}

where Env is the set of environments. Environments ranged over by ρ are
functions from V ar to

⋃{Dτ} respecting the type constraints, i.e.:

ρ(xτ) ∈ Dτ

We denote with ⊥ the environment that maps every variable to the bottom
element of the corresponding domain. The context will clarify ambiguities in
the use of ⊥.

The definition of E is given by structural induction,

E[[c]]ρ := B[[c]]
E[[xτ]]ρ := ρ(xτ)

E[[(eτ→τ ′

eτ)]]ρ := downτ→τ ′(E[[eτ→τ ′

]]ρ)(E[[eτ]ρ)

E[[(λxτ .eτ ′

)]]ρ := upτ→τ ′(λa ∈ Dτ .E[[eτ]](ρ[a/x]))

Where “downτ” : (Dτ)⊥ → Dτ and “upτ” : Dτ → (Dτ)⊥ are the obvious
morphisms.

We define next the function B of constants interpretation.

B[[kn]] = n

downN→N (B[[succ]])n =

{
n + 1 if n ≤ 0
⊥ if n = ⊥

downN→N (B[[pred]])n =

{
n − 1 if n > 0
⊥ if n = ⊥, 0

downN→N (B[[Z]])n =







tt if n > 0
ff if n = 0
⊥ if n = ⊥

downτ→τ (downτ→τ→τ(downB→τ→τ→τ (B[[condB→τ→τ→τ]])b)x)y :=







x if b = tt
y if b = ff
⊥ if b = ⊥

downτ→S(τ)→S(τ)(downS(τ)→S(τ)(B[[consτ]])a) [a0.a1. . . .] := [a.a0.a1. . . .]

21

downS(τ)→τ (B[[carτ]])s :=

{
a0 if s = [a0.a1. . . .]
⊥ if s = []

downS(τ)→S(τ)(B[[cdrτ]])s :=

{
[a1. . . .] if s = [a0.a1. . . .]
[] if s = []

B[[Yτ]]) := up(
⊔

n∈N

{λf.fn⊥τ})

4.2 Relation between denotation and operational

semantics

The value denoted by a term determines its operational behavior, as will be
made clear by the following proposition.

Proposition 7 For every closed term e the following facts hold
i) if e ⇒ v then E[[e]]⊥ = E[[v]]⊥.
ii) e ↓ if and only if E[[e]]⊥ 6= ⊥

Proof.

i) can be proved straightforward. It is sufficient to observe that every eval-
uation rule preserves the denotational equality. That is for every evaluation
rule:

e0 ⇒ v0 . . . ei ⇒ vi

e ⇒ v

if for every index h, 0 ≤ h ≤ i. [[eh]]⊥ = E[[vh]]⊥ then E[[e]]⊥ = E[[v]]⊥

As far as ii) is concerned first observe that for every value term v E[[v]]⊥ 6= ⊥.
It follows that if e ⇒ v then E[[e]]⊥ 6= ⊥.

Implication ii) can then be proved by structural induction, on the structure
of the term e. To this aim it is necessary to carefully define the induction hy-
pothesis. We use a generalization of Tait’s computability technique used also
by Plotkin in [21]. A set of predicates Compτ over PCFS terms is defined by
induction on the types by:
i) a closed term eτ , with τ ground type satisfies property Compτ if e ↓ ⇔
E[[e]]⊥ 6= ⊥
ii) a closed term eτ→τ ′

, satisfies property Compτ→τ ′ if e ↓ ⇔ E[[e]]⊥ 6= ⊥ and
whenever e′τ is a closed term satisfying the property Compτ then e(e′) satisfies
the property Compτ .
iii) a closed term eS(τ), satisfies property CompS(τ) if e ↓ ⇔ E[[e]]⊥ 6= ⊥ and for
every natural number n car(cdrne) satisfies the property Compτ .
A open term eτ with free variables x1, x2, . . . xi satisfies the property Compτ if
for every e1, . . . ei closed terms satisfying the properties Comp, e[e1/x1] . . . [ei/xi]
satisfies the property Comp.

As is standard using this technique we call computable a term satisfying
property Comp.

22

Proposition 7 can be easily derived once it is proved that every term is
computable.

First we need to show that computability satisfies the following:

Lemma 8 For every pair of PCFS closed terms eτ and e′τ such that e ⇒ v iff
e′ ⇒ v, and E[[e]]⊥ = E[[e′]]⊥ then e is computable if and only if e′ is computable.

The proof is a straightforward inductions on the type τ .

Lemma 9 Every term is computable.

The proof is by induction of the structure of terms.

Clearly every variable is computable.

It is straightforward to prove that every constant other than Yτ is comput-
able. The constants Yτ will be considered at the end of the proof.

As an example we give here the details of the proof that consτ→S(τ)→S(τ) is
computable. It is necessary to prove that if eτ and e′S(τ) are computable terms
then cons e e′ is computable.

In this case the only difficulty is to prove that for every natural number n
car(cdrn(cons e e′)) is computable.

For n = 0 we have that:
car(cons e e′) ⇒ v iff e ⇒ v, E[[car(cons e e′)]]⊥ = E[[e]]⊥
and the computability of car(cons e e′) follows from the computability of e and
Lemma 8,
the case n > 0 are analogous:
car(cdrn(cons e e′)) ⇒ v iff car(cdrn−1e′) ⇒ v and
E[[car(cdrn(cons e e′))]]⊥ = E[[car(cdrn−1e′)]]⊥
and the computability of car(cdrn(cons e e′)) follows from computability of e′

and Lemma 8.

Next we prove that the application e e′ of two computable terms e, e′ is
computable. This is an easy consequence of the fact that if x1, . . . , xn are the
free variables contained in e e′ then
(e e′)[e1/x1] . . . [en/xn] = (e[e1/x1] . . . [en/xn])(e′[e1/x1] . . . [en/xn])

To prove the computability of λx.e it is sufficient to prove that if x1, . . . , xn

are the free variables of λx.e and e′, e1, . . . en are closed computable terms then
((λx.e)[e1/x1] . . . [en/xn])e′ is computable. But
((λx.e)[e1/x1] . . . [en/xn])e′ ⇒ v iff e[e1/x1] . . . [en/xn][e′/x] ⇒ v and
E[[((λx.e)[e1/x1] . . . [en/xn])e′]]⊥ = E[[e[e1/x1] . . . [en/xn][e′/x]]]⊥
again the computability of λx.e is a consequence of Lemma 8.

It remains to prove that the constants Yτ are computable,
Some preliminary steps are necessary:
We define the following terms Ωτ := Yτ (λxτ .xτ), Y 0

τ := λf τ→τ .Ωτ ,
Y i+1

τ := λf τ→τ .f τ→τ (Y i
τ f τ→τ).

23

Since E[[Ωτ]]⊥ = ⊥, Ωτ is trivially computable.
By induction it is possible to derive that also the terms Y i

τ are computable.
It is easy to prove that E[[Yτ]]⊥ =

⊔

i∈IN E[[Y i
τ]]⊥

and by continuity: E[[e[Yτ/x]]]⊥ 6= ⊥ iff there is an i such that:
E[[e[Y i

τ /x]]]⊥ 6= ⊥
Moreover it is easy to prove that if e[Y i

τ /x] ↓ then e[Yτ/x] ↓.
Observe that every type τ can be written in the form:

τ1,1 → τ1,2 → . . . τ1,i1 → S(τ2,1 → . . . τ2,i2 → S(. . . S(τj,1 → . . . τj,ij
) . . .)

with τj,ij
ground type. Note that the case when i1 = 0 or j = 1 are particular

cases of this schema.
It is easy to check that the following characterization of the property Compτ is
valid: a closed term eτ , with
τ = τ1,1 → τ1,2 → . . . τ1,i1 → S(τ2,1 → . . . τ2,i2 → S(. . . S(τj,1 → . . . τj,ij

) . . .),
is computable if and only for every n-tuple of computable terms
e1,1, . . . , e1,i1 , . . . , ej,ij−1 and for every n-tuple of natural numbers n1, . . . nj , all
the terms:
(e e1,1), (e e1,1 e1,2), . . . (car(cdrn1(e e1,1 . . . e1,i1))),
. . .
(car(cdrnj (. . . (car(cdrn1(e e1,1 . . . e1,i1)))e2,1 . . . ej,ij−1)
are such that their computation converges if and only if their denotation is
different from ⊥.

Using the above characterization of computability we can finally prove the
computability of Yτ .

Let e1,1, . . . , e1,i1 , . . . , eh,1, . . . , eh,l be a tuple of computable terms and n1 . . . nh

a tuple of natural numbers,
then E[[(car(cdrnh(. . . (car(cdrn1(Yτe1,1 . . . e1,i1)))e2,1 . . .))) . . . eh,l]]⊥ 6= ⊥ then

there is an i such that
E[[(car(cdrn−h(. . . (car(cdrn1(Y i

τ e1,1 . . . e1,i1)))e2,1 . . .))) . . . eh,l]]⊥ 6= ⊥
by computability of Y i

τ ,
(car(cdrn−h(. . . (car(cdrn1(Y i

τ e1,1 . . . e1,i1)))e2,1 . . .))) . . . eh,l ↓
and this implies that:
(car(cdrn−h(. . . (car(cdrn1(Yτe1,1 . . . e1,i1)))e2,1 . . .))) . . . eh,l ↓
and from this the computability of Yτ .

4.3 From Domains to Real Numbers.

Using domain theory we give now new definitions for computability on real
numbers.

In the previous chapter we considered three different representations for
real numbers. Each of them has been used to give a definition of language-
computability. Similarly we use the same three representations to define a no-
tion of computability on reals based on domain theory. We introduce therefore

24

three partial functions from DS(N) to IR. These partial functions are the do-
main theoretic analogues corespondents of the partial interpretation functions
introduced in definitions 3 and 5

Notations. In all the representation used so far the real numbers are rep-
resented by strings of naturals, we will often write Dr to denote the domain
DS(N). And more generally, where no confusion arises, we abbreviate the type
S(N) with the symbol r.

Definition 9 The partial functions vai : Dr → IR, i ∈ {1, 2, 3} are defined by:

va1(d) := x iff
i) d = [l0.l1. . . .] with ln 6= ⊥
ii) | q(ln) − q(ln+1) |≤ 2−n

iii) x = limn→∞ q(ln)

va2(d) := x iff
i) d = [l0.l1. . . .] with ln 6= ⊥
ii) ∀n. | 2 × z(ln) − z(ln+1) | ≤ 1
iii) x = limn→∞ z(ln)/2n

va3(d) = x iff
i) d = [l0.l1. . . .] with ln 6= ⊥
ii) ∀n ≥ 1. ln ∈ {0, 1, 2}
iii) x = z(l0) +

∑

n∈N (ln − 1)/2n

where z and q are the enumeration functions of integers and rationals defined
in the previous chapter.

Proposition 10 For every index i ∈ {1, 2, 3} for every closed term e with type
S(N)
Ri[[e]] ≃ vai(E[[e]]⊥)

The proposition is a straightforward consequence of proposition 7.

Functions vai can be extended to function spaces. The method used in
defining the extension is similar to the one presented in the previous chapter for
the function Ri[[]].

Definition 10 For every index i ∈ {1, 2, 3} given an partial embedding function
vai : Dr → IR, we define by structural induction on the type σ ∈ T ′ the families
of sets IRd−i

σ , IRad−i
σ , D†i

σ and the family of partial functions
vai

σ : Dσ → IRad−i
σ

IRd−i
r := IRad−i

r := IR

25

IRad−i
σ→σ′ := IRd−i

σ → IRd−i
σ′

vai
r := vai

vai
σ→σ′ (d) := f iff ∀x ∈ IRd−i

σ . ∀d′ ∈ Dσ. vai
σ(d′) = x ⇒ vai

σ′ (d(d′)) = f(x)

IRd−i
σ := the codomain of the function vai

σ

D†i
σ := {d ∈ Di

σ | vai
σ(d) is defined }

Functions contained in the sets IRd−i
σ are called constructive real functions.

The computable elements in IRd−i
σ are defined by:

Definition 11 An element f ∈ IRd−i
σ is called domain-computable if there is a

computable element d ∈ Dσ such that: f = vai
σ(d).

Given a type σ the sets IRd−1
σ , . . . , IRd−3

σ are equal and contain the same
subset of computable elements. To prove this fact if is sufficient to show that it
is possible to go effectively from one representation to the other.

We start by considering the basic type r,

Proposition 11 Let conv2−1, conv3−2 and conv1−3 be the PCFS terms defined
in the previous chapter. For every element d ∈ Dr the following equalities hold:

va1
r(d) ≃ va2

r(E[[conv2−1]]⊥(d))
va2

r(d) ≃ va3
r(E[[conv3−2]]⊥(d))

va3
r(d) ≃ va1

r(E[[conv1−3]]⊥(d))

Proof The proposition is an easy consequence of propositions 3 and 7

The computable functions E[[conv2−1]]⊥, E[[conv3−2]]⊥ and E[[conv1−3]]⊥ can
be extended in a uniform way to higher order functions. These extensions follow
the same lines of the extensions outlined in the previous chapter, where PCFS
terms had been considered instead.

Proposition 12 Given two partial representation functions for real numbers
va′r : Dr → R and va′′r : Dr → R if there are two computable (continuous)
functions f : Dr → Dr and f ′ : Dr → Dr such that:
∀d ∈ Dr.va

′′
r (d) ≃ va′r(f(d)) and va′r(d) ≃ va′′r (f ′(d))

then for every type σ ∈ T ′ there are two computable (continuous) fσ : Dσ → Dσ

and f ′
σ : Dσ → Dσ such that:

∀d ∈ Dσ.va′′σ(d) ≃ va′σ(fσ(d)) and va′σ(d) ≃ va′′σ(f ′
σ(d))

Proof. The proof is similar to the proof of the analogous proposition 6 given
in the previous chapter.

Corollary 13 For every type σ the sets IRd−i
σ with i ∈ {1, 2, 3} coincide, and

contain the same sets of computable elements.

26

In denoting the sets IRd−i
σ , i ∈ {1, 2, 3} it is therefore possible to drop the

index i which refers to the real representation used. In the following we will
write therefore simply IRd

σ to denote any one of the equal sets IRd−i
σ .

From the point of view of computability theory the three representations
are therefore equivalent. For the rest of the chapter we will limit ourselves to
consider the negative digit representation.

4.4 Language completeness.

In this and the following sections we address the problem of connecting the two
different notions of computability that we have introduced so far. As a first step
in this direction we discuss whether the PCFS language is sufficiently expressive
to denote all computable elements.

In following it is necessary to use recursive functions on natural numbers.
Functions of several arguments on natural number can be handled as usual. The
element f in Dσ, σ = N → N → . . . → N represents the function
f : IN × . . . × IN → IN between natural numbers if

f(n1) . . . (ni) = n whenever f(n1 . . . ni) = n.

A closed term e in PCFS defines the function f on natural numbers if E[[e]]⊥
represents f . It is straightforward to show that for every partial recursive func-
tion f there is a closed PCFS term e defining f .

We consider first the case of real numbers.

Proposition 14 A real number x is domain-computable if and only if there is
a closed term e such that x = va3(E[[e]]⊥)

Proof. Let 〈·, . . . , ·〉 be any effective coding of the strings of natural num-
bers. Each natural number n can then be viewed as the code of 〈n0, . . . , nn′〉.

Let nil be the natural number coding the empty string, nil = 〈 〉; let car′,
cdr′ and cons′ be the recursive functions such that:
car′(n) = m iff n = 〈n0, . . . , nn′〉 and m = n0,
cdr′(n) = m iff n = 〈n0, . . . , nn′〉 and m = 〈n1, . . . nn′〉,
cons′(l, n) = m iff n = 〈n0, . . . , nn′〉 and m = 〈l, n0, . . . , nn′〉;
let ecar′ , ecdr′ and econs′ be three PCFS terms defining the above functions.

Consider the following enumeration of a subset D′ of DS(N)

en(n) = [n0.n1.nn′]. The set D′ contains the finite strings having all
elements different from ⊥N . Observe that for every element d in DS(N) if va3(d)
is defined then d =

⊔{d′ | d′ ∈ D′ ∧ d′ ⊑ d}.

We introduce then a PCFS term
“PR” with type N → S(N) → S(N) such that:
PR := YN→S(N)→S(N)(λg.λn.λs.cons(ecar′n)(g(ecdr′n)(cdrs)))

27

It is not difficult to show that if en(n) and s are consistent elements then
PR n s = en(n) ⊔ s.

Finally we have straightforwardly that if x is a computable real number and
dx ∈ DS(N) is an element representing it, then there is a recursive function fd

such that:
dx =

⊔{en(fd(i)) | i ∈ N}.
Now if efd

is a term representing the function fd, we have:
dx = E[[YN→S(N)(λg.λn.PR(efd

n)(gsucc n)))k0]]⊥ and hence
x = va3(E[[efd

]]⊥)

We will extend the previous proposition to the set of the computable func-
tions in Rr→r. This will imply that our language is complete with respect to
the set of computable functions definable via domain theory. This completeness
is not so obvious. The language PCFS in fact is not complete with respect to
the computable elements in Dr→r. There are computable elements in Dr→r not
definable by any PCFS term (see [21]).

Proposition 15 An element f : Rd
r→r is computable if and only if there is

PCFS term e such that f = va3(E[[e]])

Proof. In this proof we use all the machinery introduced in the previous
proof.

We introduce the following PCFS:
“cdar” with type N → S(N) → N
cdar := YN→S(N)→Nλg.λn.λs.(g(pred n)(cdr s)), the intending meaning of
(cdar n s) is the n-th component of the string s;
“trunc” with type N → S(N) → N
trunc := YN→S(N)→N (λg.λn.λs.econs′(cdar n s)(g(pred n)(cdr s)))
the intending meaning being:
trunc n s = m if m = 〈m0, . . . , mn〉 and [m0.mn] ⊑ s
trunc n s diverges if there is no such m,
that is, trunc n s returns the code of a finite string having n elements and ap-
proximating s, if it exists, otherwise trunc n s diverges.

The following fact can be show straightforwardly
If an element df ∈ DS(N)→S(N) is computable then there is a recursive function
fd such that:
en(fd(n)) =

⊔{d′ | d′ ∈ D′ ∧ d′ ⊑ df (en(n))}.

Now we have all the machinery necessary to prove the theorem. Given
a computable function f : IRd

r→r we construct a PCFS terms ef such that
f = va3(E[[ef]]).

Let df be a computable elements in Dr→r such that: f = va3
r→r(df) and let

fd : IN → IN be the recursive function such that:
en(fd(n)) =

⊔{d′ | d′ ∈ D′ ∧ d′ ⊑ df (en(n))}
and let efd

be a PCFS term with type N → N defining the function fd.

28

Consider now the following PCFS term ef : S(N) → S(N)
ef = YN→S(N)→S(N)(λg.λn.λs.PR(efd

(trunc n s))(g(succ n)s))k0.
It is not difficult to show that the term ef satisfies the following equality:
∀d ∈ D′.E[[ef]]⊥(d) =

⊔{d′ | d ∈ D′ ∧ d′ ⊑ df (d)}.
It remains to prove that va3

r→r(E[[ef]]) = f . We prove the equivalent fact
that for all s ∈ Dr if va3

r(s) is defined then E[[ef]]⊥(s) = df (s). In fact:
E[[ef]]⊥(s) = E[[ef]]⊥(

⊔{d′ | d′ ∈ D′ ∧ d′ ⊑ s}) =
⊔{E[[ef]]⊥(d′) | d′ ∈ D′ ∧ d′ ⊑ s} =
⊔{E[[ef]]⊥(d′) | d′ ∈ D′ ∧ d′ ⊑ s} =
⊔{df (d′′) | d′ ∈ D′, d′′ ∈ D′ ∧ d′ ⊑ s ∧ d′′ ⊑ df (d′)} =
⊔{df (d′′) | d′′ ∈ D′ ∧ d′′ ⊑ df (s)} = df (s)
and this concludes the proof.

The previous result can be extended to functions on several arguments. Since
we have not introduced the product type, functions having several arguments
must be handled using currying. The set of functions (IR × . . .× IR) → IR) . . .)
is clearly isomorphic to the set of functions IR → (IR → . . . (IR → IR) . . .). Via
this isomorphism we can represent the function

Proposition 16 A function f : IRd
r→(r→...(r→r)...) is computable if and only if

there is PCFS term e such that f = va3(E[[e]]⊥).

The proof follows the same pattern of the previous proof.

It is an open problem to check if the proposition can be extended to higher
order functions.

We make the following conjecture:
the functional that yields the maximum value of a function in the interval

[0, 1] is domain-computable but cannot be defined by any term in PCFS.

4.5 Some properties of computable functions on

real numbers

In this section we want to define some properties of the computable functions.
The properties will be mainly of topological flavour.

The function va3
r is a partial function and its domain is the set D†

r presented
in definition 10.

In the following D†
r will be considered a topological space endowed with the

subset topology of Scott-topology. With some ambiguity the symbol va3 will
denote also the obvious total function from D†

r to IR.

An important property of the function va3 : D†
r → IR is the following:

Proposition 17 The function va3 : D†
r → IR is continuous and surjective.

29

Proof It is trivial to prove that the function va3 is surjective.
To prove the continuity we prove that for every s ∈ D†

r and for every open
neighbourhood O of va3(s) there is an open neighbourhood O′ of s such that
va3(O′) ⊆ O.
In fact let [s0, s1, . . .] be an element in D†

r and let O be an open set in IR such
that va3([s0, s1, . . .]) ∈ O then there is an ǫ such that
∀x ∈ IR. | x − va3([s0, s1, . . .] |< ǫ ⇒ x ∈ O. Let n be a natural number such
that 2−n < ǫ. Then for every s′ ∈ D†

r. [s0, . . . sn] ⊑ s′ we have va3(s′) ∈ O and
from this the proof.

It is possible to give also a stronger result.

A topological definition is necessary.
Let ≡ be an equivalence relation on a topological space S, the quotient

topology on S/ ≡ is the finest topology which makes continuous the canonical
map c : S → S/ ≡, c(x) = x/ ≡.

Let ≡va3 indicate the equivalence relation on D†
r induced by the function

va3.

Proposition 18 IR with the euclidean topology is equivalent to the quotient
space D†

r/ ≡va3 .

Proof. To prove this it is sufficient to prove that the euclidean topology on
IR is the finer topology for which the function va3 is continuous. This amounts
to show that a set O ⊆ IR is open in the euclidean topology if an only if it is
the image, through va3, of an open set O′ in D†

r such that:
∀d′ ∈ O′.∀d ∈ D†

r.va
3(d) = va3(d′) ⇒ d ∈ O′. This can be proved as follows.

By proposition 17 if O is an open set in IR then va−1(O) is an open set of
D†

r and obviously
∀d′ ∈ va−1(O).∀d ∈ D†

r.va
3(d) = va3(d′) ⇒ d ∈ va−1(0).

Inversely given an open subset O′ ⊆ D†
r such that

∀d′ ∈ O′.∀d ∈ D†
r.va

3(d) = va3(d′) ⇒ d ∈ O′,
and given x ∈ va3(O′), we construct the following sequence:
s0 := round(x)

si+1 := round(x × 2i+1) − (
∑i

j=0 sj × 2i+1−j) + 1

a simple calculation can show that va3([s0, s1, . . .]) = x, hence [s0, s1, . . .] ∈ O′,
then there is a n such that ∀s′ ∈ D†

r. [s0, . . . , sn] ⊑ s′ ⇒ s′ ∈ O′,
it is the easy to see that the set
{x | x = va3(s′), [s0, . . . sn] ⊑ s′ is contained in va3(O′) and is an open neigh-
bourhood of x. From the generality of the choice of x it follows of that va3(O′)
is an open set.

Topology is also useful to state some properties of the computable functions.
A well know result of recursive analysis is that all computable functions are
continuous.

30

Proposition 19 All the functions in IRd
r→r are continuous

Proof Let f be a function in IRd
r→r then there is an element g ∈ D†

r→r such
that ∀s ∈ D†

r. f ◦ va3(s) = va3 ◦ g(s).
Given an open set O of IR we have f−1(O) = va(g−1(va−1(O))). It is easy to
show that the set g−1(va−1(O)) is open and satisfies condition
∀d′ ∈ g−1(va−1(O)). ∀d ∈ D†

r. va3(d) = va3(d′) ⇒ d ∈ g−1(va−1(O)) from
Proposition 18 follows that va(g−1(va−1(O))) = f−1(O) is open and therefore
the thesis.

4.6 Relation between domain-computability and

language-computability

So far two notions of computability on reals have been presented, one utilizing
a programming language and one based on domain theory. As we will prove in
the following, the two notions are strictly related.

Proposition 20 A real number r is domain-computable if and only r is language-
computable.

The proof is an easy application of the proposition 14 of language complete-
ness.

On the other hand the set of domain-computable functions from IR to IR
is intrinsically different from the set of language computable functions. The
functions contained in the two sets have different domains and codomains: the
whole real line for IRd

r→r, while only the computable real numbers for IRl
r→r.

A strict relation between the two definitions can still be expressed as will be
clear from the following.

Following the standard notation given a function f : S → T and a subset S′

of S we denote with f |S′ the restriction of f to the domain S′.

Proposition 21 For every PCFS closed term e of type r → r the following
equality holds:
R[[e]] = va3(E[[e]]) |IRl

The proof is tedious but ultimately routine and is left to the reader.

This proposition shows how to go from the interpretation in IRd to the
interpretation in IRl. It is possible to go also in the opposite direction. To
illustrate this we need to introduce some topological notions, first.

The set IRl of computable real numbers can be clearly viewed as a met-
ric space, the metric being the euclidean one. An immediate consequence of
propositions 19 is therefore:

Proposition 22 All the functions in IRl
r→r are continuous.

31

Proof Follows immediately from Proposition 19.

The set IRl of the computable real number is clearly a dense subset of the
real numbers (it contains all the rationals).

From general topology we have that if S, S′ and T are three metric spaces
and if S′ is a dense subspace of S then every continuous function f : S → T , is
uniquely determined by its restriction to the set S′, f |S′ : S′ → T , and moreover
f can be obtained from f |S′ by continuous extension. Given a function g : S′ →
T we denote with ExS(g) its continuous extension to the domain S, if it exists.
Formally f = ExS(f |S′).

Proposition 23 For every PCFS closed term e of type S(N) → S(N) the
following equality holds:

va3
r→r(E[[e]]⊥) = Ex(Rr→r [[e]])

Proof Follows immediately from Proposition 21.

From Proposition 15 we have also that the functionals of “domains restric-
tion” and “continuous extension” define a bijection between the set of language
computable real functions and the domain-computable real functions

The above results can be easily generalized to functions in several arguments.
Also in this case functions in several arguments are treated by currying.

A function f : IR → (IR → . . . (IR → IR) . . .) is defined to be continuous if
the isomorphic function f : (IR × . . . × IR) → IR) . . .) is continuous. (Remark.
This amounts to say that f is continuous when the function spaces are endowed
with the compact open topology.)

Given a function f : IR → (IR → . . . (IR → IR) . . .), we denote with f | IRl

the function in IRl → (IRl → . . . (IRl → IR) . . .) defined in the obvious way.

Proposition 24 i) For every PCFS closed term e of type
r → (r → . . . (r → r) . . .) the following equality holds:
R[[e]] = va3(E[[e]]⊥) |IRl

ii) All the functions in IRd
r→(r→...(r→r)...) are continuous.

iii) All the functions in IRl
r→(r→...(r→r)...) are continuous.

iv) For every PCFS closed term e of type r → (r → . . . (r → r) . . .) the following
equality holds:
va3(E[[e]]⊥) = Ex(R[[e]])

v) A function f : IRd
r→(r→...(r→r)...) is computable if and only if there is a func-

tion f ′ : Rl
r→(r→...(r→r)...) such that f = Ex(f ′)

The proofs of the above propositions are not difficult. In some cases they
are an easy generalization of the corresponding proofs for the unary function
case.

32

Chapter 5

A domain of

approximations for real

numbers.

5.1 Introduction.

The domains that we used in the previous chapter to study computability on
real numbers were constructed so as to give a denotational semantics to PCFS.

In the literature there are other approaches to computability on real numbers
which make use of different sorts of domains.

In one of his early papers on domain theory, Scott [26] suggests that a
cpo composed of intervals of the real line can be used to study computability
on real numbers. Previously also Martin-Löf [16] constructed a similar space
of approximations. A similar idea was also presented in Lacombe [15]. The
real line can be embedded in these spaces of approximations where a notion of
computability can be defined in a natural way. Many results concerning the
computability theory on real numbers are given in these contexts.

These spaces of approximations are particular cases of “countably based
complete partial orders” ccp’s whose formal theory has been developed in Smyth
[28].

Weihrauch and Schreiber [34] developed similar ideas in the context of al-
gebraic cpo’s enriched with a notion of distance and weight.

In the following we present a construction that is similar in many aspects to
the ones mentioned above but which has also some important differences.

In constructing a space of approximations a given form of real number rep-
resentation is always assumed. All space constructions mentioned above are
based on the representation of real numbers as converging sequences of rational
intervals (definition 1). This form of representation is not appropriate to be

33

used for implementations of real number computation. One can see this inform-
ally, by considering that the efficiency of the computation is certainly decreased
by the existence of too many approximation points (every rational interval is an
approximation point), i.e. cumbersome representations.

In view of our goals we base our construction on other forms of real number
representations: the digit sequence and the integer sequence representations of
definition 2 c) and d). These forms are in fact more suitable to be used in an
actual implementation.

A second important difference is the following: our space of approximations
turns out to be a Scott-Domain. The other approaches use instead more general
forms of cpo’s, which are less used in denotational semantics.

5.2 The construction of the domain RD

The domain of approximation defined next is called Reals Domain (RD).
The importance of RD is twofold. First the proofs of properties of the

computable functions on real number are simpler when RD is used. Moreover
in the chapter 7 RD will be a source of inspiration for the definition of a new
functional language for real number computation.

We first present a construction of RD starting from the binary negative digit
notation of real numbers. Later we will show that RD can be obtained also
repeating the same construction starting from the Cauchy sequence notation of
real numbers.

Let s be a sequence of integers defining a real number r according to defini-
tion 2 (the binary negative digit notation) . And let t be an initial subsequence
of s. t gives partial information about the value r. Examining t we can derive
that the value r is contained in an interval of real numbers. For example the se-
quence 2 : −1 is the initial notation of a number contained in the closed interval
[1, 2]. All the sequences beginning with 2 : −1 denote a real contained in [1, 2]
and each number in [1, 2] can be denoted by a sequence beginning with 2 : −1.

This leads to the definition of a functions from the finite sequence of integers
to intervals in the real line. To any finite sequence t0 : t1 : . . . : tn we asso-
ciate the interval [b, c] containing the real numbers that can be represented by
sequences having as initial subsequences t0 : t1 : . . . : tn.

More formally we define a function quot⊤ from the set of finite elements of
DS(N), D◦

S(N), to the set of the closed intervals of real line. In the following RI
will denote the set of closed intervals of real line.

Before giving the definition of quot⊤ it is useful to define the extension of
the arithmetic operation to RI and the extension of the order relation to RI.

Definition 12 The arithmetic operation on RI are defined by:
[a, b] + [a′, b′] := [a + a′, b + b′]
−[a, b] := [−b,−a]
[a, b]× [a′, b′] := [min{a×a′, a×b′, b×a′, b×b′}, max{a×a′, a×b′, b×a′, b×b′}]

34

1 ÷ [a, b] :=

{
[−∞, +∞] if 0 ∈ [a, b]
[1 ÷ b, 1 ÷ a] otherwise

A partial order relation ≤ is defined on RI by
[a, b] ≤ [a′, b′] if b ≤ a′.

An informal justification for the above definition is the following.
[a, b] + [a′, b′] is the interval of values that are obtained adding an element of
[a, b] to an element of [a′, b′], and similarly for the other arithmetic operations.

Notation If r is a real number and [a, b] is a closed interval in IR, we use the
abbreviation r + [a, b] to denote the interval [r, r] + [a, b]. Similar abbreviation
will be used also for the other arithmetic operation and for the order relation.

Definition 13 The function quot⊤ : Dr → RI is recursively defined by:

quot⊤([]) := [−∞, +∞]

quot⊤([t0.t1. . . . ti]) :=

{
[−∞, +∞] if t0 = ⊥
z(t0) + (quot′⊤[t1. . . . ti]) otherwise

quot′⊤([]) := [−1, 1]

quot′⊤([t0.t1. . . . ti]) :=







[−1, 1] if t0 = ⊥
(t0 − 1 + quot′⊤[t1. . . . ti]) ÷ 2 if t0 ∈ {0, 1, 2}
the empty interval otherwise

where z : IN → Z is the effective enumeration of the integers defined in section
3.2.

If t = [t0.t1. . . . ti] and ∀h 0 ≤ h ≤ i. ti 6= ⊥ then the left and the right limit
of the interval quot⊤(t) denote respectively the smallest and the largest number
that can be denoted by an element greater than t (in the domain order). And
every number inside the interval quot⊤(t) can be denoted by a proper element
greater than t.

Examples:
quot⊤([0]) = [−1, 1], quot⊤([0.1]) = [0, 1], quot⊤([0.1.0]) = [1/4, 3/4].

It is not difficult to verify that the image of the function quot⊤ is constituted
by the interval [∞, +∞], by the empty interval and by the intervals having form
[(j − 1)/2i, (j + 1)/2i] where i is a natural number and j is an integer.

The rational numbers in the form i/2j with i ∈ IN , j ∈ Z are called dy-
adic rationals. We call dyadic intervals the rational intervals having the form
[−∞, +∞] or [(j − 1)/2i, (j + 1)/2i] where i is a natural number and j is an
integer.

Let DI⊤ denote the partial order containing the dyadic intervals and the
empty interval. The order relation on DI⊤ is the superset relation.

35

The diagram representing DI⊤ has form:

[−1, 1]

[−∞, +∞]

[−2, 0]

[−1, 0] [−1/2, 1/2] [1, 0]

[0, 2]

To extend the function quot⊤ to all the elements of DS(N) it is necessary to
complete the partial order DI⊤.

Definition 14 Let (RD⊤) denote the cpo obtained by the ideal completion of
DI⊤.

Proposition 25 RD⊤ is a consistently complete ω-algebraic cpo.

Proof RD⊤ is obviously an ω-algebraic cpo.
It is easy to observe the intersection of any pair of intervals in RI⊤ is again

an interval in RI⊤. From this the fact that RD⊤ is consistently complete follows
easily.

The function quot⊤ is monotone and therefore it can be extended by con-
tinuity to a a function quot⊤ : DS(N) → RD;

The domain RD⊤ can be thought as composed by equivalence classes of
elements DS(N). The equivalence classes of finite elements are composed by
elements containing identical information about the real value they approximate
(via the binary negative digit notation).

It is interesting to observe that RD⊤ can be obtained also repeating the
previous construction using a different notation for the real numbers. Instead
of the binary negative digit notation, the Cauchy sequence notation of reals
presented in definition 5 R2 can be considered.

The new construction leads to the definition of exactly the same domain
RD⊤ and of a function quot1 : DS(N) → RD⊤ which maps each element in
DS(N) to the interval of real numbers that it approximates via the Cauchy
sequence notation. quot1 is the continuous extension of the functions quot1
defined by:

36

quot1([]) = ⊥
quot1([t0.t1. . . . ti]) = [j, k] ⊔ quot1([t1. . . . ti]) ÷ 2 where j = (z(t0) − 1) and

k = (z(t0) − 1).

The empty interval, that is the maximum element in RD⊤ does not ap-
proximate any real number. It has been introduced to denote “inconsistent”
sequences, that is, sequences that not approximate or denote any real number.

In the following we prefer to employ a domain having just consistent ele-
ments. This can be done removing the empty interval from RD⊤.

Formally:

Definition 15 Let DI denote the partial order of the dyadic intervals with the
superset relation.

Let (RD) denote the cpo obtained by the ideal completion of DI⊤.

It is easy to check that RD⊤ = RD ∪ { empty interval } and that RD is a
consistently complete ω-algebraic cpo.

The function quot⊤ : DS(N) → RD⊤ induces in a natural way a partial
function quot : DS(N) → RD.

5.3 Infinite elements.

We intend to investigate in this section the relation existing between the set of
infinite elements of RD and the real line.

It is not difficult to prove that:

Proposition 26 For every α ∈ DS(N), R3[[α]] is defined if and only if quot⊤(α)
is an infinite element.

For every α, β in DS(N)

quot⊤(α) = quot⊤(β) ⇒ va3(α) ≃ va3(β)

Proof. Straightforward.

The implication

va3(α) = va3(β)) ⇒ quot⊤(α) = quot⊤(β)

is not always true. For every dyadic rational number j we can divide the se-
quences denoting it in three non-empty classes: the class of the sequences even-
tually ending with a series of 1, the class of those ending with a series of 0 and
the class of those ending with a series of 2. The elements contained in each class
are identified by the functions quot⊤. We will call j, j− and j+ respectively
these representations in RD. j, j− and j+ are distinct elements of RD. In the
order of RD we have:

d ⊑ d−, d ⊑ d+

and d− incomparable with d+

37

For non rational dyadic numbers we have the following property:
for every α, β ∈ DS(N)

(va3(α) = va3(β) = r ∧ r not rational dyadic) ⇒ quot⊤(α) = quot⊤(β).

Moreover any infinite point in RD is the representation of a real number.
The set of infinite elements in RD looks like the real line but for the dyadic

numbers. Each is triplicated, in fact.
RD can be represented by the following diagram.

↓ [−1, 1]↓ [−2, 0] ↓ [0, 2]

e(0) e(1)

e
−(0) e

+(0)

In the next section we will show how to solve the problem of multiple rep-
resentations by means of a retract construction.

RD is an effective Scott-domain.

Proposition 27 Let 〈 〉 be any coding function of triples of natural numbers.
We can define an effective enumeration of the finite elements of RD in the
following way:

enr(0) =⊥
enr(〈m, m′, n〉 + 1) = [(m − m′ − 1)/2n, (m − m′ + 1)/2n].

(RD,⊑, enr) is then an effective Scott domain.

Proof. Straightforward.

Since RD is an effective Scott-Domain we can apply to it the standard ma-
chinery for defining computability. We can obtain in this way another definition
of computability for real numbers.

38

Chapter 6

Topological

characterizations.

In this chapter we present some results concerning the topological relationship
between the real line and the Scott-domain RD. These results are then gener-
alized to the functions spaces.

Using RD we give also a new definition of computable real function. We
present then equivalence results which link the new notion of computability
with the old one.

Topologically the domain RD is much more tightly related with the real line
that the domain DS(N). And this fact is true also for function spaces. As a
consequence, the use of RD makes it easier to prove the topological properties
of the computable function on the reals.

The main topological relation considered in this section is the retraction
between spaces. The real line turns out to be a retract of the subspace of
infinite elements of RD.

6.1 Topological preliminaries

For completeness we give here important topological notions that will be use in
the following.

Let S be a subset of a topological space T , the subspace topology on S is
defined by: a set O in S is an open set in the subspace topology if and only if
there is an open set O′ in T such that O = S ∩ O′

Let Q be an equivalence relation on a space T . Let φ denote the canonical
map from T to T/Q, φ(x) = [x]. The quotient topology on T/Q is defined by: a
set O in T/Q is open if and only if φ−1(O) is open.

A space S is said to be a retract of a space T if there are two continuous
functions q : T → S and e : S → T such that q ◦ e = IdS .

39

In this case the following propositions are true:
1) S is isomorphic to the subspace e(S) of T
2) Let Q denote the equivalence relation induced on T by q, S is isomorphic

to the quotient space T/Q.

A prebase P of a space T is a family of open sets of T such that any other
open set O of T can be written as union of finite intersections of sets in P .

Let X be a set, given a family P of subsets of X there is a unique topology
on X such that P forms a prebase for that topology.

Let S and T be two topological spaces, and S → T be set of the continuous
functions from S to T . The compact-open topology on S → T , is the topology
having as prebase the sets of the form {f | f(c) ⊆ o}, where c is a compact set
of S and o is an open set of T .

6.2 The topological relations between the do-

main RD and the real line.

Let RD† denote the subspace of RD consisting of the infinite elements.

Proposition 28 The real line is a retract of RD† via a pair of continuous
functions qr : RD† → IR and er : IR → RD†.

qr(x) := x if x is not a dyadic number
qr(x) := qr(x+) := qr(x−) := x if x is a dyadic number
er(x) := x

The proof is easy and is left to the reader.

It is also easy to prove that for every s in DS(N) the following equality holds
va3(s) ≃ qr(quot(s)).

The function qr associates to each element of RD† the corresponding real
number. We can interpret er as the function which picks a canonical represent-
ative for each real number.

Using qr it is possible to give a new definition of computable real number: a
real number x is RD-computable if there is a computable element d ∈ RD such
that x = qr(d). It is not difficult to prove that the new definition coincides with
definitions of domain-computable and language-computable real number given
in the previous chapters.

Using er and qr it is possible to associate to each Scott-continuous function
f : RD → RD a partial real function f : IR → IR defined by f := qr ◦ f ◦ er , f
is partial because qr is not always defined. We define f as the function on reals
represented by f .

We obtain in this way a new definition of computable function on real num-
bers.

40

Definition 16 A (partial) function g : IR → IR is RD-computable if there exits
a computable function f : RD → RD such that g = f .

Thus we have so far we presented, using domain theory, two different defini-
tions of computable function on real numbers. That is: the definition of domain-
computable function and the one above.

The definition of RD-computable function allows to associate to every ele-
ment f in RD → RD a function on real numbers. If the element f is not
sufficiently defined the associated function is a partial function. This is not true
for the definition of domain-computable function. In this case in fact only a
subset of the elements of DS(N)→S(N) induce a function on reals via the inter-
pretation functions vai and the funtions in the images of vai are total functions.
In general elements in DS(N)→S(N) do not preserve the extensional equality of
representations.

The two definitions however give the same set of total computable functions.

Proposition 29 A total function g : IR → IR is domain-computable if and only
if it is RD-computable.

Proof. Omitted.

For every Scott-continuous function f : RD → RD, the function f is a
composition of continuous functions and therefore is continuous. In this way we
obtain a new proof of a classical result in computable analysis: every computable
functions on real numbers is continuous w.r.t. the Euclidean topology.

In the following we extend the notion of RD-computability to functions in
several arguments and to higher order functions. The method followed in this
extension is substantially different from the one employed in defining the class
of domain-computable functions.

We will show how the retract relation existing between IR and RD† can also
be extended to function spaces.

However the retract relation cannot be defined for arbitrary higher order
functions spaces, see follow.

As in previous chapters we consider the set T ′ of types on reals. T ′ is
generated by the grammar: σ := r | σ → σ

In the following we will use the function rank (T ′ → IN). The rank of a type
σ, ∂(σ), is defined by:

∂(r) := 0

∂(σ → σ′) := max{∂(σ) + 1, ∂(σ′)}
The rank of a type measures how “higher order” the type really is.
Note that all types σ with ∂(σ) = 1 have the form σ = r → (r → . . . r) . . .) .

41

Notation. In the following we denote by T ′
n the set of type σ ∈ T ′ such

that ∂(σ) = n.

We can define the retract relation just for function spaces having rank 1.
For function spaces of rank 2, a set theoretical relation is stated. We do not
introduced here definitions for functionals on reals having rank larger than 2.
This is not a severe limitation, in fact in analysis functionals having rank larger
that 2 are almost never employed [24].

For each type σ ∈ T ′
1, a topological space IRσ is defined by structural induc-

tion on σ.

IRr = IR
IRr→σ = {f : IR → IRσ | f total continuous }
The topology on IRr→σ is the compact open topology.

Remark. In analysis the compact open topology is the topology normally
associated to the space of the real continuous functions.

We do not associate a topological space to the types of rank 2. The sets
associated to these types are unstructured.

For each type σ ∈ T ′
2 Rσ is defined by:

IRσ1→(...(σn→r)...) = {F : IRσ1
→ (. . . (IRσn

→ R) . . .) | λ〈x1, . . . , xn〉.F (x1) . . . (xn) :
(IRσ1

× . . . × IRσn
) → IR is a continuous function }.

There are no sets of real functionals associated to types of rank larger than
two.

A collection of effective Scott-domain RDσ, one for each type σ ∈ T ′ can
then be defined by induction on σ
RDr := RD
RDσ→σ′ is the domain of the Scott-continuous functions from RDσ to RDσ′ .

In RD not every element denotes a real number, some elements in RD are
just finite approximations of real numbers. Similarly not every element in RDσ

will represent an element in IRσ. Hence we define for each type σ, having a rank
strictly smaller than 3, a subspace RD†

σ of the domain RDσ. The elements in
RD†

σ will denote the elements in IRσ.

RD†
r := {s ∈ RD | x is an infinite element of RD}

RD†
σ→σ′ := {g ∈ RDσ→σ′ | g(RD†

σ) ⊆ RD†
σ′}

The topology on RD†
σ is the subspace topology of Scott-topology.

Notation. Given sσ ∈ RDσ we denote with
∨
sσ the set

{tσ|tσ ∈ RDσ, sσ ≤ tσ} and with
∨
sσ the set

∨
sσ ∩RD†

σ

The retract relation can be extended to the rank 1 functions:

42

Proposition 30 For each type σ ∈ T ′
1 (σ = r → σ1), IRσ is a retract of RD†

σ.
The pair of retract functions qσ : RD†

σ → IRσ and eσ : IRσ → RD†
σ is defined

as follows:
qσ(g) := qσ1

◦ g ◦ er

eσ(f) is the continuous extension of the function f ′ : RD◦ → RDσ defined
by:

f ′(s◦) =

{ ⊥ if s◦ = ⊥
⊔{t◦ | eσ1

◦ f ◦ qr(
∨
s◦) ⊆

∨

t◦} otherwise

Proof.

We prove by structural induction on the type σ ∈ T ′
1 the following properties:

i) if σ = r → σ1 then ∀f ∈ IRr→σ1
. ∀ s ∈ RD†. er→σ1

(f)(s) = (eσ1
◦ f ◦ qr)(s)

ii) qσ is a well defined function,
iii) qσ is a continuous function,
iv) eσ is a well defined function,
v) eσ is a continuous function,
vi) qσ ◦ eσ = idIRσ

.

Note. In the following [a, b] can indicate either a generic dyadic interval
either a finite element in RD.

The basic step follows immediately from Proposition 28.

Inductive step. In this case σ has the form σ = r → σ1.
i) It is easy to check that for every s ∈ RD† the set

{[a, b] | qr(s) ∈ (a, b), [a, b] dyadic interval } is a system of neighborhoods for
qr(s). By induction hypothesis eσ1

◦ f is a continuous function. So
{(eσ1

◦ f)([a, b]) | qr(s) ∈ (a, b), [a, b] dyadic interval }
is a system of neighborhoods for (eσ1

◦ f ◦ qr)(s).
The following equality therefore holds:

{t◦ | (eσ1
◦ f)([a, b]) ⊆

∨

t◦, qr(s) ∈ (a, b), [a, b] dyadic interval } =

= {t◦ | (eσ1
◦ f ◦ qr)(s) ⊑

∨

t◦}.
We have therefore the following chain of equalities:

er→σ1
(f)(s) =

⊔{t◦ | (eσ1
◦ f ◦ qr)(

∨
s◦) ⊆

∨

t◦, s◦ ∈ RD◦, s◦ ⊑ s} =

=
⊔{t◦ | (eσ1

◦ f ◦ qr)(
∨

[a, b]) ⊆
∨

t◦, [a, b] dyadic inteval , [a, b] ⊑ s} =

=
⊔{t◦ | (eσ1

◦ f)([a, b]) ⊆
∨

t◦, [a, b] dyadic interval qr(s) ∈ (a, b)} =

=
⊔{t◦ | (eσ1

◦ f ◦ qr)(s) ⊑
∨

t◦}
= (eσ1

◦ f ◦ qr)(s)

ii) In order to prove that qr→σ1
: RD†

r→σ1
→ RDr→σ1

is a well defined
function it is sufficient to prove that for every g : RD†

r→σ1
, qr→σ1

(g) = qσ1
◦

g ◦ er is a total continuous function. This follows immediately from induction
hypothesis.

43

iii) Since qr→σ1
is continuous if and only if for g ∈ RD†

r→σ1
and for every

neighborhood U of qr→σ1
(g) it is possible to find an open neighborhood V of g

such that qr→σ1
(V) ⊆ U . We will prove this second fact.

By definition of compact open topology, for any neighborhood U of qr→σ1
(g)

there is a finite set {c1 . . . cn} of compact sets in IR and a finite set {o1 . . . on}
of open sets in IRσ1

such that:
1) U ⊇ ⋂

1≤i≤n(ci → oi)
2) qr→σ1

(g) = qσ1
◦ g ◦ er ∈ ⋂

1≤i≤n(ci → oi)
where with ci → oi we denote the set of functions {f : IRr→σ1

| f(ci) ⊆ oi}.
By induction hypothesis qσ1

is continuous and so is qσ1
◦ g. Hence for every

i 1 ≤ i ≤ n the set (qσ1
◦ g)−1(oi) is an open set of RD and hence using the

definition of Scott-topology we have:

(qσ1
◦ g)−1(oi) =

⊔{
∨

s◦h| s◦h finite, s◦h ∈ (qσ1
◦ g)−1(oi)}.

From 2) we have also (qσ1
◦g◦er)(ci) ⊆ oi. That is er(ci) ⊆ (qσ1

◦g)−1(oi). So the

set {
∨

s◦h| s◦h finite s◦h ∈ (qσ1
◦ g)−1(oi)} is a covering of er(ci). er(ci) is the image

of a compact set and so is a compact set itself, this implies that there is a finite

subcovering {
∨

s◦i,1, . . . ,
∨

s◦i,m} of the covering {
∨

s◦h| s◦h finite s◦h ∈ (qσ1
◦ g)−1(oi)}.

Moreover si,j ∈ (qσ1
◦ g)−1(oi), that is g(si,j) ∈ q−1

σ1
(oi) and since q−1

σ1
(oi) is

an open set in RDσ1
we have:

∀s◦i,j . ∃t◦i,j ∈ RD◦
σ1

. t◦i,j ⊑ g(s◦i,j) ∧ t◦i,j ∈ q−1
σ1

(oi).
It is now possible to define the open neighborhood V of g we are looking for:

V =
⋂

i,j(s
◦
i,j

∨⇒ t◦i,j)

where s◦i,j ⇒ t◦i,j denotes the obvious step function, and (s◦i,j
∨⇒ t◦i,j) the cone

generated by it.
In fact it is easy to see that V is a neighborhood of g. To show that

qr→σ1
(V) ⊆ U we show that for every g ∈ V we have qr→σ1

(g) ∈ ∩i(ci → oi).
In fact
∀i. ∀s ∈ ci. ∃s◦i,j . er(s) ∈ s◦i,j and this implies that

∀i. ∀s ∈ ci. qr→σ1
(g)(s) = qσ1

(g(er(s))) ⊆ qσ1
(g(

∨

s◦i,j)) ⊆ qσ1
(

∨

t◦i,j) ⊆ oi that is
∀i. qr→σ1

(g) ∈ (ci → oi).

iv) In order to proof that er→σ1
is well defined we need to prove that

∀f ∈ IRr→σ1
. er→σ1

(f) ∈ RD†
r→σ1

. That is er→σ1
(f) is a well defined continuous

function such that er→σ1
(RD†) ⊆ RD†

σ1
.

er→σ1
(f) is a well defined continuous function RD → RDσ1

because it is the
continuous extension of a monotonic function RD◦ → RDσ1

.
The prove that er→σ1

(f)(RD†) ⊆ RD†
σ1

follows easily from point i).

v) In order to prove the continuity of er→σ1
we use the two following prop-

erties:
1. a function h : S → T between topological spaces is continuous if given a

prebase P for T we have:
∀s ∈ S. ∀p ∈ P. (h(s) ∈ p ⇒ ∃o open neighborhood of s . h(o) ⊆ p)

44

2. in the domain of Scott-continuous functions D → D′ the upward cones of

the finite step functions form a prebase.

The continuity of er→σ1
follows from the following chain of implications:

er→σ1
(f) ∈ s◦

∨⇒ t◦ ⇐⇒ t◦ ⊑ er→σ1
(f)(s◦)

⇐⇒ (eσ1
◦ f ◦ qr)(

∨
s◦) ⊆

∨

t◦ ⇐⇒
(eσ1

◦ f)(qr(
∨
s◦)) ⊆

∨

t◦ ⇐⇒
f(qr(

∨
s◦)) ⊆ e−1

σ1
(
∨

t◦) ⇐⇒ f ∈ (qr(
∨
s◦)) → e−1

σ1
(
∨

t◦)

but ((qr(
∨
s◦)) → e−1

σ1
(
∨

t◦)) is an open subset in the space of real functions in fact

(qr(
∨
s◦)) is a compact set and e−1

σ1
(
∨

t◦) is an open set.

vi) It remains to prove that: qr→σ1
◦ er→σ1

= idIRr→σ1

Observe that for every function f in IRr→σ1
and for every s in IR

(qr→σ1
◦ er→σ1

)(f)(s) =
= qr→σ1

(er→σ1
(f))(s) =

= (qσ1
◦ (er→σ1

(f)) ◦ er)(s) =
= qσ1

(er→σ1
(f)(er(s))) = by point i)

= qσ1
(eσ1

◦ f ◦ qr)(er)(s) =
= qσ1

◦ eσ1
◦ f ◦ qr ◦ er)(s) = (by induction hypothesis)

= f(s).

The functions eσ and qσ defined above are the natural generalizations of the
functions er and qr.

qσ associates to each element of (RDσ)† the element of Rσ represented by it.
eσ chooses for each element in IRσ a canonical representation of it in (RDσ)†.

We can also say that the function qσ divides the elements of RD†
σ in equival-

ence classes. All the elements contained in a single equivalence class represent
the same element in IRσ. The function eσ defines a canonical representation for
each class.

We discuss now the problem of defining an effective method that given an
element f in RD†

σ, returns the canonical representation of the equivalence class
of f . Such a method exists if the function eσ◦qσ : RD†

σ → RD†
σ can be extended

to a continuous and computable function cσ : RDσ → RDσ.
In the following we prove that such a function cσ exists.

Notation. Given s◦ ∈ RD◦
σ we say that the finite set

I = {s◦1, . . . , s◦n|s◦i ∈ RD◦
σ} is a partition covering of s◦ if ∀y ∈

∨
s◦. ∃s◦i ∈ I.

y ∈
∨

s◦i .
We denote with pc(s◦) the set of the partition coverings of s◦.

45

Theorem 31 For every type σ having rank strictly smaller that 2 (σ = r or
σ ∈ T1) the function eσ ◦ qσ : RD†

σ → RD†
σ can be extended to a continuous

and computable function cσ : RDσ → RDσ, that is: cσ|RD†
σ

= eσ ◦ qσ.

cσ is the continuous extension of the function c′σ : RD◦
σ → RD◦

σ defined by
structural induction on the type σ as follows:

c′r([a, b]) =
⊔{[c, d] | c < a, b < d}

c′r→σ1
(g◦)(s◦) =

{ ⊥ if s◦ = ⊥
⊔

I∈pc(s◦){⊓s′∈I{c′σ ◦ g◦ ◦ c′r(s
′)}} otherwise

Proof. It is easy to check that the c′σ is a well defined and monotone function
RD◦

σ → (RD◦
σ). It follows that cσ is a well defined continuous function.

The prove of computability for cσ is done by induction on σ. It is easy to
show that the function cr is computable. The computability of cr→σ1

follows
by induction hypothesis and by the fact that given a finite element s◦ ∈ RDr it
is possible to enumerate in an effective way the partition coverings of s◦

In order to prove the equality cσ|RD†
σ

= eσ ◦ qσ we first state the following
two lemmas.

Lemma 32 For every continuous function g : RDr→σ and for every finite ele-
ment s◦ ∈ RD◦

r we have:

cr→σ(g)(s◦) =

{ ⊥ if s◦ = ⊥
⊔

I∈pc(s◦){⊓s′∈I{cσ ◦ g ◦ cr(s
′)}} otherwise

The proof is easy.

Lemma 33 For every continuous function g : RDr→σ and for every finite ele-
ment s◦ ∈ RD◦, s◦ 6= ⊥ we have:

⊔

{t◦ | g(
∨
s◦) ⊆

∨

t◦} =
⊔

I∈pc(s◦)

{⊓s′∈I{g(s′)}}

Proof of the lemma.

We proof first that:

⊔

{t◦ | g(
∨
s◦) ⊆

∨

t◦} ⊑
⊔

I∈pc(s◦)

{⊓s′∈I{g(s′)}}

Let t′◦ ∈ RD◦
σ be a finite element such that: t′◦ ⊑ ⊔{t◦ | g(

∨
s◦) ⊆

∨

t◦} ,

then: g(
∨
s◦) ⊆

∨

t′◦ , that is: ∀x ∈
∨
s◦. t′◦ ⊑ g(x).

By the continuity of g we have:

∀x ∈
∨
s◦. ∃x◦ ∈ RD◦. (s◦ ⊑ x◦ ⊑ x) ∧ (t′◦ ⊑ g(x◦)).

46

If s◦ 6= ⊥ then
∨
s◦ is a compact set so we can find a finite set I = {x◦

1 . . . x◦
n}

such that I is a partition covering of s◦ and ∀i 1 ≤ i ≤ n. t′◦ ⊑ g(x◦
i)

From this follows that: t′◦ ⊑ ⊔

I∈pc(s◦){⊓s′∈I{g(s′)}}
The inequality is thus proved.

Next we prove the inverse:

⊔

I∈pc(s◦)

{⊓s′∈I{g(s′)}} ⊑
⊔

{t◦ | g(
∨
s◦) ⊆

∨

t◦}

Let t′◦ ∈ RD◦
σ be such that:

t′◦ ⊑ ⊔

I∈pc(s◦){⊓s′∈I{g(s′)}}
This implies that there is a finite set {I1 . . . In} of partition coverings for s◦ such
that:
t′◦ ⊑ ⊔

1≤j≤n{⊓s′∈Ij
{g(s′)}}

Let d be the rational number
d = min{(b − a) | ∃j. [a, b] ∈ Ij}
and consider the partial covering I of s◦ defined as
I = {[a, b] | b − a = d and s◦ ⊑ [a, b]}
then: ∀j. ⊓s′∈Ij

{g(s′)} ⊑ ⊓s′′∈I{g(s′′)} which yields:
⊔

1≤j≤n{⊓s′∈Ij
{g(s′)}} ⊑ ⊓s′′∈I{g(s′′)} which implies:

t′◦ ⊑ ⊓s′′∈I{g(s′′)} which in turn:

∀s′′ ∈ I. g(
∨

s′′) ⊆
∨

t′◦ and so g(
∨
s◦) ⊆

∨

t′◦

that is

t′◦ ⊑ ⊔{t◦ | g(
∨
s◦) ⊆

∨

t◦}.
This complete the proof of the lemma.

We can now prove by structural induction on cσ that cσ|RD†
σ

= eσ ◦ qσ.
Basic step. Easy.
Inductive step. Given a finite element s◦ ∈ RD◦ and g ∈ RD†

r→σ

(er→σ ◦ qr→σ)(g)(s◦) = er→σ(qσ ◦ g ◦ er)(s
◦) =

=

{ ⊥ if s◦ = ⊥
⊔{t◦ | eσ ◦ qσ ◦ g ◦ er ◦ qr(

∨
s◦) ⊆

∨

t◦} otherwise

by induction hypothesis

=

{ ⊥ if s◦ = ⊥
⊔{t◦ | cσ ◦ g ◦ cr(

∨
s◦) ⊆

∨

t◦} otherwise

from lemma 2

=

{ ⊥ if s◦ = ⊥
⊔

I∈pc(s◦){⊓s′∈I{(cσ ◦ g ◦ cr)(s
′)}} otherwise

and from lemma 1

47

= cr→σ(g)(s′).

The retract construction cannot be extended to spaces of functions having
rank strictly larger than 1. In fact, given a type σ ∈ T ′

2, although it is possible
to define a function qσ : RD†

σ → IRσ that associates, in a natural way, to each
element in RD†

σ the function on real numbers represented by it, there is no
topology on IRσ and no function eσ : IRσ → RD†

σ which makes the pair of
functions qσ, eσ a retraction.

As far as the functions having rank 2 are concerned, we give the following
result.

Theorem 34 For every type σ of rank 2 there exist two functions
qσ : RD†

σ → IRσ and eσ : IRσ → RD†
σ such that qσ ◦ eσ = idIRσ

.
The functions are defined by structural induction as follows:

qσ→σ′ := λG. qσ′ ◦ G ◦ eσ

eσ→σ′(F) is the continuous extension of the function F : RD◦
σ → RDσ′

F (s◦) :=







⊔{t◦ | eσ′ ◦ F ◦ qσ(
∨
s◦) ⊆

∨

t◦} if σ = r

⊔{t◦ | eσ′ ◦ F ◦ qσ(
∨

cσ(s◦)) ⊆
∨

t◦} if σ ∈ T1

where with
∨

cσ(s◦) we denote the set {s ∈ RD†
σ | cσ(s◦) ⊑ s}

Proof. The proof is similar to the one given for Proposition 30. The main
difference is the following. To prove that eσ→σ′ is well defined, it is necessary to

prove that for every σ ∈ T1 and for every s◦ ∈ RD◦
σ the set

∨

cσ(s◦) is not empty.
The details of this proof are left to the reader.

Also in this case qσ associates to each functional on RD the functional
on IR represented by it, and eσ chooses a canonical representation for each
continuous functional on IR. The fact that qσ◦eσ = id implies that all continuous
functionals on IR can be represented by an appropriate functional on RD.

A new definition of computability for functionals can now be given:

Definition 17 Given a type σ with ∂(σ) ≤ 2, an element f ∈ IRσ is RD-
computable if there exists a computable element g ∈ RDσ such that f = qσ(g).

It is interesting to observe that the definitions of RD-computable and of
domain-computable function coincide:

Proposition 35 For every type σ ∈ T ′ with ∂(σ) ≤ 2 the sets IRσ and IRd
σ

coincide and both contain the same subset of computable elements.

48

Proof Follows immidiately from Theorem 34.

From the above a very interesting property of computable functionals it
follows.

Theorem 36 Every RD-computable functional is continuous, w.r.t. the com-
pact open topology on function spaces.

Proof Omitted.

This is a useful criteria for determining the non computability of functionals.
Starting from this result it is easy to demonstrate that the following functionals
are not computable.

1. Derivative.

F (f) =
df

dx

2. The functional that given a function f and an interval [a,b] yields the
point x in [a, b] where the value f(x) is minimum.

F (f, [a, b]) = x if f(x) = min{f(y) | y ∈ [a, b]}

3. The functional that given a function f and an interval [a, b] yields a point
x in [a, b] where the value f(x) is zero or is equal to a if such a value does
not exist.

F (f, [a, b]) =

{
x if f(x) = 0 and x ∈ [a, b]
a if ∀x ∈ [a, b]. f(x) 6= 0

So we have thus an important topological characterization of the computable
functionals on the real numbers. We are not aware of any similar result in the
literature.

6.3 Partial functions

It is possible to extend the interpretation functions qσ to the whole space RDσ.
An element in RDσ, not contained in RD†

σ, denotes a partial function on
IR.

In the following we give a topological characterisation of the partial real
functions obtained in this way.

Definition 18 Given a type σ = σ1 → . . . → σn → r such that: 1 ≤ ∂(σ) ≤ 2,
IRp

σ denotes the set of partial functions from IRσ1
× . . . × IRσn

to IR.
The function pσ : RDσ → IRp

σ is defined by:

pr(s) :=

{
qr(s) if s ∈ RD†

undefined otherwise

pσ(g) := λ〈x1 . . . xn〉.pr(. . . (g(eσ1
(x1))) . . . (eσn

(xn))))

49

In the definition of IRp
σ an operation of “currying” has been carried out.

Using this trick the function pσ can be interpreted as an extension of the function
qσ.

Proposition 37 Given a type σ with ∂(σ) = 1, the partial function h ∈ IRp
σ

belongs to the image of the function pσ if and only if
1) the domain of h is a countable intersection of open sets.
2) h is continuous on its domain.

Proof Omitted.

It is now natural to extend the notion of RD-computable function to the
partial functions

Definition 19 An element h in IRp
σ is RD-computable in there is a computable

element g in RDσ such that h = pσ(g).

So we have that every RD-computable partial function h is defined on a set
that is countable intersection of open sets and is continuous on its domain of
definition.

50

Chapter 7

A programming language

for real numbers

In chapters 3 and 4 we showed how computable real numbers and computable
functions on real numbers can be defined via closed PCFS terms.

This was done either using the partial interpretation functions Ri[[]]σ or
using the partial functions vai

σ(E[[]]). These functions however can not be total
functions.

Let us consider for example the digit notation and corresponding functions
R3[[]]σ. Given a closed term f ∈ ES(N)→S(N) the value R3[[f]]r→r can be
undefined for various reasons. Various phenomena can in fact occur
i) there can be a term e representing a real number such that the evaluation of
f e is undefined;
ii) there can be a term e representing a real number such that the evaluation of
f e defines a sequence containing not admissible digits.
iii) there can be two terms e1 and e2 defining the same real number and such
that fe1 and fe2 define different real numbers.

We investigate now the possibility of defining a language for computation
on real numbers which is free from at least some of the undesired phenomena
discussed above. In particular we will show how to avoid inadequacies of the
kind ii) and iii). We should look for a language which generates just correct
sequence of digits, but more importantly it preserve the equivalence between
different representation of the same real number.

Moreover we require that the language is sufficiently expressive to define all
computable real functions.

Equivalently we can express our task also as the problem of finding a defin-
ition of computable real numbers as an abstract date type. This amounts to
finding a collection of primitive functions on reals which generate all other com-
putable functions on real numbers.

51

The solution we propose is given utilizing the domain RD. We present a
simply typed lambda calculus called RL. RL has a set of constants denoting
a set of computable functions on RD. Any other computable function on RD
will then be denotable by a suitable term in RL.

In this way, each term e having type r denotes a real or is a partial ap-
proximation of a real, and each term f having type σ with ∂(σ) ≤ 2 denotes a
(possibly partial) function on real numbers. All partial computable functions
as defined in the previous chapter can be denoted in this way.

7.1 Syntax

The set of type of RL is the set T ′ defined in chapter 3.
T ′ is generated by the grammar:

σ := r | σ → σ

The terms of RL are:

e := xσ | cσ | (eσ→σ′

)eσ | λxσ .eσ′

where cσ is a metavariable ranging over the set of constants C whose elements
are:

(−1), (+1), (×2), (÷2), PR : r → r,

cond : r → r → r → r, ∃ : (r → r) → r

Yσ : (σ → σ) → σ

type assignments and type constraints are defined as usual.

7.2 Semantics

The denotational semantics for RL is given using the set of domains
UD := {RDσ | σ ∈ T ′}

The semantic interpretation function E has the form:

E : RL → Env → UD

where Env is the set of environments. An environment is a function ρ from V ar
to UD satisfying the condition

ρ(xσ) ∈ RDσ

The definition of E is given by structural induction,

E[[c]]ρ := B[[c]]
E[[xσ]]ρ := ρ(xσ)
E[[eσ→τeσ]]ρ := E[[eσ→τ]]ρ(E[[eσ]]ρ)
E[[λxσ .eτ]]ρ := λa ∈ RDσ.E[[eτ]](ρ[a/x])

52

The interpretation of constants is defined using the function B :

The constants (+1), (−1), (×2), (÷2) implement the obvious functions on the
intervals (definition 12) viz.

B[[(+1)]], B[[(−1)]], B[[(×2)]], B[[(÷2)]] : RD → RD

are the continuous extension of the functions

B◦[[(+1)]], B◦[[(−1)]], B◦[[(×2)]], B◦[[(÷2)]] : RD◦ → RD

B◦[[(+1)]]([a, b]) = [a, b] + 1
B◦[[(−1)]]([a, b]) = [a, b] − 1

B◦[[(×2)]]([a, b]) =

{
[−∞, +∞] if b − a ≥ 2
[a, b] × 2 otherwise

B◦[[(÷2)]]([a, b]) = [a, b] ÷ 2

The constant PR implements a kind of projection on the interval [−1, 1]. If
[a, b] is consistent with [−1, 1] then B[[PR]]([a, b]) is equal to [a, b] ⊔ [−1, 1].
Formally B[[PR]] is the continuous extension of the function B◦[[PR]] : RD◦ →
RD,

B◦[[PR]]([a, b]) :=







[a, b] if −1 ≤ [a, b] ≤ 1

1− if 1 ≤ [a, b]

−1+ if [a, b] ≤ −1
[max{−1, a}, min{1, b}] otherwise

The constant cond is a test function. B[[cond]] checks if its first argument is
smaller or bigger than zero. B[[cond]] is the continuous extension of the function

B◦[[cond]] : RD◦ → (RD◦ → (RD◦ → RD))

B◦[[cond]]([a, b])([c, d])([e, f]) :=







[c, d] if [a, b] ≤ 0
[e, f] if 0 ≤ [a, b]
[c, d] ⊓ [e, f] otherwise

If the precision of the first argument is not sufficient to decide if it is smaller
or bigger than zero, the function B[[cond]] gives as output the most precise
approximation of the second and third argument.

Remark. The function cond is a parallel test function and cannot be imple-
mented sequentially. In [8] there is a proof showing that sequential primitives
are not sufficient to define real numbers as an abstract data type.

The constant ∃ is similar to the corresponding constant introduced in LCF
by Plotkin [21].

53

In LCF the interpretation of ∃ is the function H : (Nat → Bool) → Bool
defined by:

H(f) :=







false if f(⊥) = false
true if ∃n.f(n) = true
⊥ otherwise

∃ checks if there is any n making f(n) true.

In our case the constant ∃ checks if a function f : RD → RD gives for some
input value a result that is an approximation of a value smaller than zero.

The definition for B[[∃]] is

B[[∃]](g) :=







1 if g(⊥) = [a, b] ∧ 0 < a
−1 if ∃[c, d]. g([c, d]) = [a, b] ∧ b < 0
⊥ otherwise

The constants Y (σ→σ)→σ are the usual fixed point operators.

The following theorems relate computable elements in RD and closed ex-
pressions in RL.

Proposition 38 For every closed expression eσ and environment ρ, E[[eσ]]ρ is
a computable element of RDσ.

Proof. It is straightforward to prove that every expression in RL denotes a
computable element if and only if every constant in RL denotes a computable
element. To prove this second fact we use the following characterization of
the computable elements of a Scott Domain: an element in a Scott domain is
computable if it is the lub of a primitive recursive set of finite elements.

The proof follows in a straightforward way from the well known fact that
the recursive operators Y σ are computable and from the following equalities:

B[[(+1)]] =
⊔

enr(〈m, m′, n〉 + 1) ⇒ enr(〈m + 1, m′, n〉 + 1)

B[[(−1)]] =
⊔

enr(〈m, m′, n〉 + 1) ⇒ enr(〈m, m′ − 1, n〉 + 1)

B[[(÷2)]] =
⊔

enr(〈m, m′, n〉 + 1) ⇒ enr(〈m, m′, n + 1〉 + 1)

B[[(×2)]] =
⊔

enr(〈m, m′, n + 1〉 + 1) ⇒ enr(〈m, m′, n〉 + 1)

B[[cond]] =
⊔

enr(〈0, m′ + 1, 0〉 + 1) ⇒ enr(p) ⇒ enr(0) ⇒ enr(p)
⊔⊔

enr(〈m + 1, 0, 0〉+ 1) ⇒ enr(0) ⇒ enr(p) ⇒ enr(p)
⊔⊔

enr(0) ⇒ enr(p) ⇒ enr(p) ⇒ enr(p)

B[[∃]] =
⊔

(enr(p) ⇒ enr(〈0, 2n + m′ + 2, n〉 + 1)) ⇒ enr(〈0, 2n′

, n′〉 + 1)

⊔⊔
(enr(0) ⇒ enr(〈2n + m + 2, 0, n〉 + 1)) ⇒ enr(〈0, 2n′

, n′〉 + 1)

54

B[[PR]] =
⊔

|m−m′|≤2n enr(〈m, m′, n〉 + 1) ⇒ enr(〈m, m′, n〉 + 1)

⊔⊔
enr(〈m + 2, 0, 0〉+ 1) ⇒ enr(〈2n − 1, 0, n〉+ 1)

⊔⊔
enr(〈0, m′ + 2, 0〉+ 1) ⇒ enr(〈0, 2n − 1, n〉 + 1)

⊔enr(0) ⇒ enr(〈0, 0, 0〉+ 1)

Theorem 39 For every computable element d in RDσ there exists a closed
expression eσ in RL such that: E[[eσ]]ρ = d.

Proof. The essential idea in this proof is taken from the proof of theorem 5.1
in [21].

In the proof it is necessary to use the primitive recursive functions. In order
to denote function on natural number by RL terms, we code the natural numbers
using elements of RD. We choose to code the natural number n by the element
n.

We say that the function f in RD represents the function f between natural
numbers if

f(n1) . . . (ni) = n whenever f(n1 . . . ni) = n.

We say that a closed term t in RL defines a function f on natural numbers if
E[[t]]⊥ represents f .

Two lemmas are necessary here.

Lemma 40 For every primitive recursive function f there is a closed term f
in RL which defines f .

Proof. Left to the reader. Observe that the constant 0 is defined by the term
k0 = Yr(λf.λx.(÷2)(PR x)). The function successor is defined by the constant
(+1).

A second step in the proof is to show that for every type σ it is possible to
define three functions Cσ, Pσ and #σ. Where Cσ and Pσ are respectively a test
function and a projection function for high order types, while #σ(n)(ασ) checks
if the element ασ is greater than the finite element enσ(n). More formally:

Lemma 41 For every type σ there exist three terms Cσ, Pσ and #σ satisfying
the following conditions:

Cσ has type r → σ → σ → σ and

E[[Cσ]]([a, b])(ασ
1)(ασ

2) =







ασ
1 if b ≤ 0

ασ
2 if 0 ≤ a

ασ
1 ⊓ ασ

2 if a < 0 < b

Pσ has type r → σ → σ and if enσ(n) and ασ are consistent then E[[Pσ]](n)(ασ)
is equal to enσ(n) ⊔ ασ.

55

#σ has type r → σ → r and

E[[#σ]](n)(ασ) =







1 if eσ(n) ⊑ ασ

−1 if eσ(n) and ασ are inconsistent
⊥ otherwise

Proof. In the course of the proof we need to use the following terms:

Ωσ = Yσ(λασ .ασ)

Z = λn.(−1)((×2)n)

k0 = Yr(λf.λx.(÷2)(PR x)) k1 = (+1)k0 k−1 = (−1)k0

plus = λx.Yr→r(λf.λn.ifr Z n then x else ((+1)(f((−1)n))))

minus = λx.Yr→r(λf.λn.ifr Z n then x else ((−1)(f((−1)n))))

div = λx.Yr→r(λf.λn.ifr Z n then x else ((÷2)(f((−1)n))))

times = λx.Yr→r(λf.λn.ifr Z n then x else ((×2)(f((−1)n))))

E[[Ωσ]] is the bottom element in RDσ.
When n is equal to zero E[[Z]](n) is a negative value, for n natural number
different from zero E[[Z]](n) is a positive value. E[[k0]], E[[k1]], E[[k−1]] are the
values 0, 1, −1.
For every natural number n E[[plus]]([a, b])(n), E[[minus]]([a, b])(n), E[[times]]([a, b])(n)
and E[[div]]([a, b])(n) are the intervals [a+n, b+n], [a−n, b−n], [a×2n, b×2n]
and [a/2n, b/2n] respectively.

Moreover we have by lemma 40 DIV , MOD and EXP indicate RL terms
defining the primitive recursive functions f , g and h such that h(n) is equal to
2n, f(m, n) is the result of the rounded division of m by 2n and g(m, n) is the
rest of the division of m by 2n. In other words m = f(m, n)× 2n + g(m, n) and
g(m, n) < 2n.

Again by lemma 40 we have the terms Π1, Π2, Π3 which define three prim-
itive recursive functions i1, i2, i3 such that:

∀n 6= 0. n = 〈i1(n), i2(n), i3(n)〉 + 1 that is
∀n 6= 0. enr(n) = [(i1(n) − i2(n) − 1)/2i3(n) , (i1(n) − i2(n) + 1)/2i3(n)]

The proof is by induction on the type σ.

Basic step:

The term Cr is simply the constant cond.
In the following (ifσ t1 then t2else t3) will stand for Cσ(t1)(t2)(t3)

The term Pr is:

Pr = λn.λx.ifr Z n then x else
div (plus (minus (PR (plus (minus (times x(Π3n))(Π1n))(Π2n)))(Π2n))(Π1n))(Π3n)

56

To define the term #r we first define an auxiliary term out:

out = Yr→r→r→rλf.λm.λn.λx.
ifr minus x (DIV m n)

then k−1

else ifr minus x(DIV (plus m ((+1)(EXP n))) n)
then ifr Z n then k1

else f(MOD m n)((−1)n)(minus x (DIV m n))
else k−1

The term out has the following behavior:

E[[out]](m)(n)(x) =







1 if [m/2n, (m + 2)/2n] ⊑ x
−1 if [m/2n, (m + 2)/2n] and x are inconsistent
⊥ otherwise

Finally we can put:

#r = λn.λx.out(plus (Π1n)(minus (EXP (Π3n))(MOD (Π2n)(Π3n))))
(Π3n) (plus x ((+1)(DIV (Π2n)(Π3n)))

Inductive step:

let σ = σ1 → σ2.

The definition of Cσ and Pσ are the following ones:

Cσ = λx.λασ
1 .λασ

2 .λβσ1 .ifσ2
x then ασ

1βσ1 else ασ
2βσ1

Pσ = λm.λασ .λβσ1 .
Yr→σ(λf.λn.ifσ2

Z n then ασβσ1

else ifσ2
#σ1

(FIRSTσ m n)βσ1

then f((−1)n)
else Pσ2

(SECONDσ m n)(f((−1)n)))
(SIZEσ m)

Where FIRSTσ, SECONDσ and SIZEσ define three primitive recursive func-
tions f, g and h such that

enσ(m) =
⊔

{enσ1
(f(m, n)) ⇒ enσ2

(g(m, n)) | 0 < n ≤ h(m)}

We introduce other two auxiliary terms: norm and ∃. Their definitions are:

norm = Yr→rλf.λx.ifrZ x then k0 else (+1)(f((−1)x)))

E[[norm]] is a function that transforms every input value in bottom or in a value
of the form n for same natural number n. Moreover for every natural number,
n E[[norm]](n) = n.

∃ = λf.(∃(λx.f(norm x)))

57

E[[∃]]g checks if there exists a natural number n such that g(n) is a smaller than
zero in the real line order.

Finally the term #σ is defined by:

#σ = λm.λασ .Y r→r(λf.λn.
ifr Z n

then k1

else ifr ∃(λl.#σ2(SECONDσ m n)(ασ(Pσ1
(FIRSTσ m n)(Pσ1

l Ωσ1
))))

then k−1

else f((−1)n))
(SIZEσ m)

Observe that the function E[[λl.Pσn(Pσ l Ωσ)]] enumerates the finite elements in
the set {x◦ | enσ(n) ⊑ x◦}, and Pσn(Pσ Ωr Ωσ) = enσ(n).

This ends the proof of the lemma.
It is now possible to prove the theorem. Given a computable element x in

RDσ let f be a primitive recursive function such that

x =
⊔

{enσ(f(i)) | i ∈ N}

and let F be a term defining the function f then we have:

x = E[[Yr→σ(λg.λn.Pσ(Fn)(g((+1)n)))k0]]

In RL it is still possible to distinguish between different representations of
a given real number. In fact RL is a language based on the domain RD where
every dyadic rational have three representations. As a consequence in RL it is
possible to denote functions distinguishing between these three representations.
An example is the term
λxr.condrxk0k1

where k0 = Yr(λf.λx.(÷2)(PR x)) k1 = (+1)k0

which discriminates between the three RD representation of the number 0.
There is however an simple way to construct only “consistent” functions.

In proposition 31 the computable function cr is defined. cr sends evey repres-
entation of a real number in a canonical representation of the same number.
cr has been proved to be computable therefore there is a RL term Cr denot-
ing it. It is straightforward to prove that if ef is a closed term then the term
ef = λxr .ef (Crx

r) denotes the same function:
pr→r(E[[ef]]⊥) = pr→r(E[[ef]]⊥)
and moreover ef respects the equivalence relation between different representa-
tions of a real number.

The above construction can be easily generalized to terms denoting functions
with several arguments.

58

Chapter 8

Implementation Issues.

In this chapter we investigate the issue of efficiency of the exact real number
computation.

The implementation of the arithmetic operations play an important role in
the efficiency of computation on real number. In fact arithmetic operations are
the basic functions in most of the ordinary computations on real numbers. For
example the evaluation of an analytic function is almost always reduced to the
evaluation of a series. In the following we develop real number representations
that can lead to efficient implementation of arithmetic functions.

Surprisingly the literature on the efficiency of the real computation is very
small. Important contributions to this area are [6] and [33].

In [33] the continuous fraction notation is studied. That notation has been
shown to be feasible for the real number computation. Efficient algorithms for
a wide class of analytic functions are presented there.

Two other notations for real numbers, Cauchy sequences and digit notation,
are considered instead in [6]. There it is shown that in several implementations
the digit notation is the least efficient between the two.

This fact is rather surprising since from an abstract point of view the digit
notation has some advantages. For instance, in the digit notation, in order to
improve the accuracy, i.e. to increase the approximation, with which a result is
evaluated it is possible to take advantage from the previous computation. This
is not true for the Cauchy sequence notation. Here in order to improve the
accuracy of an evaluation it is necessary to repeat (with an higher precision)
almost all the computation.

Implementations based on the Cauchy sequence notation however lead to
more efficient algorithms because this notation permits to exploit better the
fact that integer arithmetic operations are always evaluated efficiently in modern
computers.

In this chapter we intend to make a case for the use of digit notation to
implement Reals computation. We propose two variants of the digit notation

59

that can improve the efficiency of implementations.
The two variants are designed so as to achieve efficient computations accord-

ing to two different strategies.
The two strategies are:
1) to implement the algorithms for real arithmetic operations directly in the

hardware.
2) to exploit the fact that in every computer, integer arithmetic is already

efficiently implemented into the hardware.

8.1 A binary notation for Reals.

If we intend to implement arithmetic operations directly into the hardware it is
useful to utilize digit notations that lead to a simplification of the complexity
of the hardware needed.

The most widely used hardware notation for integers is the binary one. The
question arises as to whether there are “two digit” notations suitable for real
number computation. It turns out that such notations exist, and that there are
infinitely many choices. We single out, among these, one that we claim to be
optimal for hardware implementation, w.r.t. the simplicity of the algorithms.

8.2 Real-base notations.

In the second chapter we showed that the standard binary notation is not suit-
able for real number computation. Other forms of notation are therefore needed.

A preliminary remark here is appropriate. By the word “base” of a digit
notation we mean the ratio between the weights of two consecutive digits in the
notation. More explicitly: if the base is b, the finite string of digits 0.a1 . . . an

denotes the number
∑

1≤i≤n ai/bi. Normally base and number of digits in a
notation coincide. The distinction between the two concepts is therefore of-
ten blurred. But nothing prevents us from defining notations where base and
number of digits are different, like in the negative digit notation. And nothing
prevents us from choosing as base a number that is not natural. Rational or
even irrational numbers can legitimately be chosen as bases. The only restric-
tion is that the base has to be a number strictly larger than 1 and smaller than
the number of digits in the notation.

Exploiting this idea it is possible to define a collection of real number nota-
tions.

Definition 20 For every natural number n and real computable number b with
1 < b ≤ n, the digit notation having base b and n digits is defined as follows:
a real number r is denoted by a triple [z, l, s] where z is an integer, l is a finite
sequence of natural numbers and s is an infinite sequence of natural numbers
such that:

60

i) z ∈ {−1, 1}
ii) ∀i ∈ dom(l). 0 ≤ li < n
iii) ∀i ∈ IN+. 0 ≤ si < n
iv) r = (z × ∑

i∈dom(l) li × bi) +
∑

i∈IN+ si × b−i

A notation for reals of the above form will be called a Real-base notation.
Loosely speaking we can say that in the triple [z, l, s] z represents the sign, l
represents the “integral” part and s represents the “fractional” part. Note that
the sign affects only the value denoted by the integer part.

The term [z, l, s] can be also written in a form that is more reminiscent of
the conventional “dot” notation. We will often indicate a triple [+1, l, s] with
the sequence l′.s and a triple [−1, l, s] with the sequence − l′.s where l′ is the
finite sequence l written in the reverse order.

It is easy to prove that in any real-base notation, every real number can be
denoted by a suitable triple, of corse not uniquely.

The real-base notation can be used to represent real numbers by PCFS
terms. We have:

Definition 21 Given a natural number n and a computable real number b with
1 < b < n, the partial representation function R4−n−b : ES(N) → IR is defined
by:
R4−n−b[[e]] = r if there is a sequence of natural numbers l0, l1, . . . such that:
i) ∀i.car(cdrie) ⇒ kli

ii) l0 ∈ {−1, 1}
iii) ∀i ≥ 2. 0 ≤ li ≤ n

iv) r = (l0 ×
∑l1

i=0 l(i+2) × bi) +
∑

i∈IN+ l(i+l1+2) × b−i

Informally: l0 is the sign, the value l1 is used to encode separation the
sequence l2 : l3 : . . . in an integer part and in a fractional part.

For any suitable n and b the partial representation functions R4−n−b is
computationally equivalent to the partial representation functions presented in
definition 5.

Proposition 42 For every natural number n and computable real number b
with 1 < b < n, there are two PCFS terms conv4−3 and conv3−4 such that for
every closed term e ∈ ES(N) the following equalities hold:

R3[[e]] ≃ R4−n−b[[conv4−3 e]]
R4−n−b[[e]] ≃ R3[[conv3−4 e]]

Proof A slight modification of the standard algorithm for base conversion
can be used for translating effectively from the negative digit notation to the
real-base digit notation, and vice versa. The terms conv4−3 and conv3−4 are
obtained by implementing inside PCFS these algorithms.

61

Using the machinery presented in chapters 3 and 4, definitions 8 and 10, it
is possible to define, for each partial function R4−n−b, a full hierarchy of both
language-computable and domain-computable functions. By propositions 6 and
12, these sets of computable functions are equal to the sets defined in definitions
8 and 11.

Remark The idea behind the real-base notation can be pursued further.
If the base of a digit notation is an imaginary number then a string of digit
represents a complex number. Every complex number can be then represented
in a digit representation, having a suitable imaginary number as base and a
suitable number of digits. Algorithms for the the arithmetic operations on
complex numbers can then be easily developed for these kinds of notations.

8.3 The golden ratio notation.

From the above results it follows that there are infinitely many binary digit
notations suitable for real number computation. We discuss now in detail the
one that we consider the most convenient for the simplicity of the algorithms.

It is worthwhile to mention that Brouwer was probably the first to notice the
computational difficulties of the standard binary digit notation. He suggested
as a possible solution the use of a binary notation with base 3/2 [3].

The binary notation with base 3/2 is not such a convenient choice if we
want to obtain simple algorithms. See below for more details. We claim that
the simplest algorithms for arithmetic operations are obtained when the value
of the base is the golden ratio, that is the number ϕ = (

√
5 + 1)/2.

An intuitive motivation for this fact is the following: when the base is the
golden ratio, the string 0.11 denotes the number 1. As a consequence, in the
golden ratio notation, it is possible to rewrite a group of digits in a string without
altering the value denoted by it. For example all the following strings denote
the number ϕ3, “100.0”, “11.0”, “10.11”, “10.1011”. Exploiting identities of
this kind it is possible to obtain quite simple algorithms for the arithmetic
operations.

The choice of the golden ratio as base is derived by identifying the values
denoted by the two strings “1.00” and “0.11”. The golden ratio is the only
suitable value for a base, which leads to that identity.

The key idea here is that there is a strict correspondence between bases and
rewrite rules for strings of digits which preserve the denotation of strings.

In fact other identities between values denoted by binary strings lead to other
possible choice for the bases. For example if we identify the values denoted by
1000.0 and 111.0 the base would be different. The base 3/2 is obtained if we
impose the identity (1.0 + 1.0 + 1.0) = (10.0 + 10.0).

Also these identities can be used to derive algorithms for the arithmetic
operation. But since the groups of digits involved in these identities are larger

62

than in the case of the golden ratio, the algorithms for the arithmetic operations
turns out to be more complex.

8.4 Algorithms for Arithmetic Operations.

In the following we describe the algorithms in the case of the arithmetic opera-
tions for the golden ratio notation.

The algorithms are given in two steps. First we define the algorithms for a
simplified notation of a significant subset of the real numbers. The algorithms
for the full notation can be then derived from the previous ones.

In the simplified notation a real number r is denoted by a sequence of binary
digits α = α1 : α2 : . . . such that:

r =
∑

i∈IN+

αi × ϕ−i

Just a subset of the real numbers can be denoted using this simplified nota-
tion. Namely the real numbers contained in the interval [0, ϕ]. This simplified
notation is essentially the fractional part of the full notation.

After having defined the algorithms for the arithmetic functions in the sim-
plified notation, it is not difficult to obtain the correspondent algorithms for the
full notation. It is only necessary to take care of the sign and of the integral
part. In the following we present just the algorithms for the simplified notation.

Since only a finite interval of Reals is represented in the simplified notation,
an overflow problem arises. To avoid this problem we describe algorithms that
yield results of the arithmetic operations divided by a power of ϕ. Note that in
the golden ratio notation the product and the division by ϕ are implemented
by simple algorithms.

Notation. Given a sequence of binary digits α = α1 : α2 : . . . we indicate
with [[α]]R the real number

∑

i∈IN+ αi × ϕ−i.

8.4.1 Addition

The algorithm executes the computation from left to right (from the most mean-
ingful digits to the least meaningful ones) and uses a carry consisting of two
digits. At each step, the algorithm needs to examine at most two digits of each
addend in order to determine which step to execute.

Formally we define a function A having the following behavior:
1) The inputs of A are two infinite binary sequences α and β, and a string

of two binary digits x : y (the carry).

63

2) The following equality holds

[[A(α, β, x : y)]]R = ([[α]]R + [[β]]R + [[x : y]]R)/ϕ2

A is defined by a set of stream recursion equations. From this set of equations
we can derive immediately a set of rewriting rules describing the algorithm.

To simplify the description and to stress the important points we write the
equations up to permutations between digits of the arguments having equal
weight. We use also the symbols x and y as metavariables ranging over binary
digits.

With this convention the equation:
A(0 : x : α, 1 : y : β, 1 : 1) = 1 : A(x : α, y : β, 0 : 0)
subsume the 8 equations:
A(1 : x : α, 0 : y : β, 1 : 1) = 1 : A(x : α, y : β, 0 : 0)
A(1 : x : α, 1 : y : β, 0 : 1) = 1 : A(x : α, y : β, 0 : 0)
A(0 : 1 : α, 1 : y : β, 1 : x) = 1 : A(1 : α, y : β, 0 : x)
A(1 : 1 : α, 0 : y : β, 1 : x) = 1 : A(1 : α, y : β, 0 : x)
A(1 : 1 : α, 1 : y : β, 0 : x) = 1 : A(1 : α, y : β, 0 : x)
A(0 : x : α, 1 : 1 : β, 1 : y) = 1 : A(x : α, 1 : β, 0 : y)
A(1 : x : α, 0 : 1 : β, 1 : y) = 1 : A(x : α, 1 : β, 0 : y)
A(1 : x : α, 1 : 1 : β, 0 : y) = 1 : A(x : α, 1 : β, 0 : y)

there equations are obtained by permuting the first digits of the three argu-
ments {0, 1, 1} and, separately, the second digits {x, y, 1}

Definition 22 The function A which implements addition between binary se-
quences is defined by the following set of equations:

1) A(0 : α, 0 : β, 0 : x) = 0 : A(α, β, x : 0)
2) A(1 : x : α, 0 : y : β, 0 : 0) = 0 : A(x : α, y : β, 1 : 1)
3) A(1 : 1 : α, 0 : 1 : β, 0 : 1) = 1 : 0 : A(α, β, 0 : 1)
4) A(0 : 0 : α, 1 : 0 : β, 1 : 0) = 0 : 1 : A(α, β, 1 : 0)
5) A(0 : x : α, 1 : y : β, 1 : 1) = 1 : A(x : α, y : β, 0 : 0)
6) A(1 : α, 1 : β, 1 : x) = 1 : A(α, β, x : 1)

Note. It is interesting to observe than in the set of equations there is a
duality between 0 and 1. If, in equations 1), 2) and 3), we substitute the digit
0 with 1 and vice versa we obtain respectively the equations 6), 5) and 4).

Proposition 43 1) For every α, β, x, y there is one and only one sequence γ
such that: A(α, β, x : y) = γ.

This amounts to say that A is a well defined function.

2) A has the intended behavior, that is:

[[A(α, β, x : y)]]R = ([[α]]R + [[β]]R + [[x : y]]R)/ϕ2

64

Proof.

1) Easy.

2) We prove by induction on the natural number n that for sequences α, β
and digits x, y we have:

| [[A(α, β, x : y)]]R − ([[α]]R + [[β]]R + [[x : y]]R)/ϕ2 |≤ ϕ1−n

The base step of the induction can be proved by a simple computation.
The proof of the induction step is done by cases. In each case we consider a

possible assignment to the first two digits of α and β and to x and y.
Alternatively we can prove this by showing that the induction step is valid

for all cases subsumed by each one of the 6 equations.
Here we present only the proof for equation 5). The proofs for the other

equations follow a similar pattern.

The following equalities are trivially true:

([[0 : x : α]]R + [[1 : y : β]]R + [[1 : 1[[R)/ϕ2 =

= ([[x : α]]R/ϕ + [[y : β]]R/ϕ + 1/ϕ + 1/ϕ + 1/ϕ2)/ϕ2 =

= ([[x : α]]R/ϕ + [[y : β]]R/ϕ + 1/ϕ + 1)/ϕ2 =

= ([[x : α]]R/ϕ + [[y : β]]R/ϕ + ϕ)/ϕ2 =

= 1/ϕ + ([[x : α]]R/ϕ + [[y : β]]R/ϕ)/ϕ2

and
[[A(0 : x : α, 1 : y : β, 1 : 1)]]R =

= [[1 : A(x : α, y : β, 0 : 0)]]R =

= 1/ϕ + [[A(x : α, y : β, 0 : 0)]]R/ϕ =

finally by the above equalities and by induction hypothesis we get:

| [[A(0 : x : α, 1 : y : β, 1 : 1)]]R − ([[0 : x : α]]R + [[0 : y : β]]R + [[x : y]]R)/ϕ2 |=

(| [[A(x : α, y : β, 0 : 0)]]R − ([[x : α]]R + [[y : β]]R + [[0 : 0]]R)/ϕ2)/ϕ |≤
ϕ1−(n−1)/ϕ = ϕ1−n

65

8.4.2 Subtraction.

We define a function “complement” C:

Definition 23 The function C is defined by the equations:
1) C(1 : α) = 0 : C(α)
2) C(0 : α) = 1 : C(α)

Proposition 44 1) C is a well defined function.
2) For every sequence α

[[C(α)]]R = ϕ − [[α]]R

Proof.

1) Trivial.
2) Follows from the equalities:

[[α]]R + [[C(α)]]R =
∑

i∈N+

1/ϕi = 1/(1 − ϕ) = ϕ

The above property of the function C can then be used to easily obtain an
algorithm for subtraction.

8.4.3 Multiplication.

An easy way to obtain an algorithm for multiplication is to reduce the multi-
plication to a series of additions.

Definition 24 The function P between sequences of digits is defined by the
following set of equations:

1) P (0 : α, β) = 0 : P (α, β))
2) P (α, 0 : β) = 0 : P (α, β))
3) P (1 : 0 : α, 1 : 0 : β) = 0 : A(A(α, β, 0 : 0), 0 : P (α, β), 1 : 0)
4) P (1 : 1 : α, 1 : 0 : β) = A(A(0 : α, β, 0 : 0), 0 : 0 : P (α, β), 1 : 0)
5) P (1 : 0 : α, 1 : 1 : β) = A(A(α, 0 : β, 0 : 0), 0 : 0 : P (α, β), 1 : 0)
6) P (1 : 1 : α, 1 : 1 : β) = A(A(α, β, 0 : 0), 0 : 0 : P (α, β), 1 : 1)

Proposition 45 1) P is a well defined function.
2) For every sequences α and β the following equality holds:

[[P (α, β)]]R =
[[α]]R × [[β]]R

ϕ2

66

Proof

1) Easy.
2) We argue as for the case of addition. By induction on the natural number

n it is possible to prove that for every natural number n and for every pair of
sequences α and β the following equality holds:

| [[P (α, β)]]R − [[α]]R × [[β]]R
ϕ2

| ≤ ϕ1−n

The time necessary to evaluate the first n digits of the multiplication using
the algorithm described above is proportional to n2. On the other hand the
time complexity is linear for the algorithm implementing addition.

It is possible to define more elaborated algorithms for multiplication which
are based on the fast Fourier transform, whose order of complexity is n× logn×
log log n [19]. But we do not discuss them here for lack of time.

8.4.4 Division.

An algorithm for the division, valid for the full notation, can be obtained from
the function D described here.

Definition 25 The function D between sequences of digits is defined by the
following equations:

0) D(α, 1 : β) = D1(0 : 0 : α, C(β))
1) D1(0 : 0 : α, β) = D2(A(α, 1 : β, 1 : 1), 0 : α, β)
2) D1(0 : 1 : α, β) = D2(A(α, 0 : β, 1 : 1), 1 : α, β)
3) D1(1 : 0 : α, β) = D2(A(α, 1 : β, 1 : 1), α, β)
4) D2(0 : 0 : γ, α, β) = 0 : D1(α, β)
5) D2(0 : 1 : 0 : γ, α, β) = 0 : D1(α, β)
6) D2(0 : 1 : 1 : γ, α, β) = 1 : D1(0 : 0 : γ, β)
7) D2(1 : γ, α, β) = 1 : D1(γ, β)

Proposition 46 For every pair of sequences α and β such that β has an initial
subsequence of the form 1 : 1 or 1 : 0 : 1 we have:

1) there is only a sequence γ such that: D(α, β) = γ;
2) the following equality holds:

[[D(α, β)]] =
[[α]]

[[β]] × ϕ3

There is a restriction in the use of the function D. D evaluates the division
between α and β only if β begins with 1, 1 or 1, 0, 1. This is not a severe
restriction. In fact, given a string β, it is easy to obtain a string β′ and a

67

natural number n such that [[β]]R × ϕn = [[β′]]R and where β′ begins with 1, 1
or 1, 0, 1.

The algorithm for division is defined by few equations, but its correctness
is quite difficult to prove. To reduce the number of equations employed many
arithmetic properties have to be used.

The algorithm is based on the euclidean algorithm for division. Roughly
speaking, the idea is the following: to obtain the result of the division of α by
β we consider first the value [[α]] × ϕ − [[β]] and then we try to determine if
this number is larger than zero or if it smaller than [[0101]]R. In the first case
we can safely generate 1 as first digit followed by the result of the division of
([[α]]×ϕ− [[β]])×ϕ by β. In the second case we can safely generate as first digit
0 followed by the result of the division of ([[α]]×)ϕ by β.

8.5 A “Large digit” representation

In this section we present an elaborate generalization of the negative digit nota-
tion for real numbers.

The motivation for defining a such notation is to improve significantly the
efficiency of the real number computation when lazy functional languages are
used.

The main idea is the following. In almost every computer the arithmetic
operation on the integer are implemented quite efficiently. We want therefore
to take as much advantage as possible from this fact.

As a first attempt to obtain this result we try use a negative digit notation
having a “large” base. Let us compare two negative digit notations; one having
as base a number smaller than ten, and the other having as base a number
with the same magnitude of the biggest integer representable by a word in the
computer. In the large base notation fewer digits are necessary to determine the
value of a real number with a given precision. The time necessary to evaluate a
new digit in the result of an arithmetic operation does not change significantly
between the two notations. This is so because the computation of a new digit
is mainly a sequence of arithmetic operation on integers. So fewer steps are
necessary to obtain the result of arithmetic operations, with a given precision,
when the large base is used.

This approach is analyzed in [6] where an significant difficulty is pointed out.
The best way to explain it is by an example. In every negative digit notation
in order to determine n digits (after the dot) in a sum (a + b) it is necessary
to determine n + 1 digits of a and n + 1 digit of b. Let us consider a program P
that evaluates the sum (a1 + (a2 + (. . . + ai) . . .) performing i − 1 additions in
the order defined by the parentheses. Observe that P needs to examine i digits
of the value ai to determine the first digit of the sum.

If the value of the base is large and if the number of addends is significant,
then in order to determine the first digit of the sum the program P needs to
determine the value of ai with a great precision. But such a great precision is

68

not strictly necessary. If the value ai is in turn the result of a procedure then
not strictly necessary extra computation has to be executed.

Phenomena of this kind are likely to happen in many other contexts. This
fact cancels all advantages deriving from a the large base notation. Using the
words of [6] the large base notations has a too large “granularity”. In [6] it is
suggested a possible solution for overcoming this difficulty connected to the large
granularity, which consists of a modification the lazy evaluation mechanism.

Here we present a solution of the “granularity problem” that goes in a differ-
ent direction. We intend to maintain the standard lazy evaluation and modify
instead the real number notation.

Definition 26 For every natural number b > 1 the digit-error notation with
base b is defined as follows: a real number r is represented by a sequence of pairs
of integers [d0, e0], [d1, e1], . . . such that:
i) ∀i ∈ N+. − b2 < di < b2

ii) ∀i ∈ N. − b ≤ ei ≤ b
iii) ∀i ∈ IN.ei ≥

∑

j∈IN+ di+j × b−j

iv) r =
∑

i∈IN di × b−i

In the digit-error notation an infinite sequence, having as finite subsequence
[d0, e0], . . . , [dn, en] denotes a real number bigger than
(
∑n

i=0 di × b−i) − en × b−n

and smaller than
(
∑n

i=0 di × b−i) + en × b−n.
The idea underlying this definition of the digit-error is simple: the approx-

imation with which the first n + 1 digits determine the value may change. The
values en indicate this precision. In other words the en’s give a limit to the
error contained in the digit dn. The n + 1-th digit corrects the errors contained
in the n-th digit.

It is not difficult to prove that it is possible to go in a effective way from
a digit-error notation to the negative digit notation. As a consequence, from
the theoretical point of view, the error-digit notation is therefore completely
equivalent to the other forms of real notation in definition 5.

Going back to the previous example we can see now how the problem of the
granularity is solved. In order to determine the n-th digit of a+b it is not always
necessary to know the first n+1 digits of a and b. If the error values associated
to the n-th digits of a and b are sufficiently small then it is not necessary to
consider the n + 1-th digits of a and b, the n-th digits are sufficient.

Using this digit-error notation, the algorithms are not any more forced to
evaluate the arguments with a precision that is much higher than the strictly
necessary.

As example, we present in appendix A a set of algorithms implementing
arithmetic operations in the digit-error notations.

These algorithms can be considered a modification of the standard algorithms
for the arithmetic operations. They are inspired by the same ideas.

69

The chosen programming language is “Scheme”. We employ an implementa-
tion of “Scheme” supporting arbitrary-large integer number computation. This
capability has been used in writing the programs.

In writing the programs we privilege simplicity in place of efficiency. More
elaborated programs can lead to more efficient implementations of the arithmetic
functions.

For the moment we did not test the efficiency of the algorithms.

70

Chapter 9

Conclusions and directions

for further works

In this work we analyzed the exact real number computations in functional
programming languages.

The thesis shows as domain theory can be usefully employed to carry on
an analysis of computability on real numbers. A limit of domain theory has
been pointed out: using Scott-domain we cannot obtained a completely faithful
representation of the real line. The main result presented in the thesis is a
topological characterization of the computable functionals on real numbers: we
show that every computable functional is continuous w.r.t. the compact open
topology on the functions space.

A second important result in the thesis concerns the issue of realizing an
abstract data type for the real numbers: we shown that such a data type exists
also if it can not be obtained using only sequential primitives.

In the thesis we presented moreover new alternative representation for the
real numbers. This representations can be usefully employed in some approaches
to the effective implementation of the real number computations. Particularly
interesting is the representation using as base the golden ratio.

Further direction of research are suggested by this work: in the thesis there
are several open problems that need to be investigated. Particularly interest-
ing is the question whether sequential computation is sufficiently powerful to
generate all the computable functionals on real number.

A second direction for further research is the to consider implementations of
the real number computation in other setting different from the classical func-
tional programming languages. Particularly appealing is to considered the real
number computation realized in a second order lambda calculus or, in a logical
framework. In these cases we can have languages where all the computations
converge and sufficiently rich to express all the useful functions on real num-
bers. It is an interesting issue to characterize the functions that are computable
in these settings. Moreover the problem of the existence of an abstract data

71

type for the real number can be reconsidered for these cases. In particular one
should investigate whether the sequential computation is sufficient to realize an
abstract data type in these settings.

Finaly we intend to develop further the implementation of the real num-
ber computation. In particular we intend to investigate whether the large base
representation can be a feasible approach to the practical real number compu-
tation. To do that it is necessary to improve the efficiency of the algorithms for
the arithmetic functions presented in the thesis and to develop the algorithms
for the all the basic the analytic functions.

72

Acknowledgements

A significant part of this thesis was originally done under the supervision of
Michael B. Smyth. I thank him for many interesting and illuminating discus-
sions. I thank also the other members of the “real group” at Imperial College
in London, Wilson De Olivera and Ian Stewart.

I would like to acknowledge also Roberto Amadio, Piero D’Ancona, Simone
Martini, Per Martin-Löf, Steve Vickers and most of all Giuseppe Longo for the
suggestions that they gave over the years. The comments and suggestions from
referees Robert Cartwright and Thierry Coquand helped me in improving the
first version of the thesis.

Finally I thank my advisor Furio Honsell for the encouragement and for
directing this work.

73

Bibliography

[1] O. Aberth, “Computable Analysis.” MacGraw-Hill, New-York 1980.

[2] A. Avizienis, “Binary-Computable Signed-Digit Arithmetic.” AFIPS Con-
ference Proceedings 26,1 (1964) 663-672.

[3] L.E.J. Brouwer, “Beweis, dass jede volle Funktion gleichmässig stetig ist”
Proc. Amsterdam 27 (1924) 189-194.

[4] M.J. Beeson, “Foundation of Constructive Mathematics” Spriger-Verlag,
Berlin, 1985.

[5] E. Bishop, “Foundation of Constructive Analysis.” McGraw-Hill, New
York, 1967.

[6] H.-J. Boehm, R. Cartwright, M. Riggle, and M.J. O’Donell, “Exact Real
Arithmetic: A Case Study in Higher Order Programming.” 1986 ACM
Symposium on Lisp and Functional Programming.

[7] H.-J. Boehm, “Constructive Real Interpretation of Numerical Programs.”
SIGPLAN Notice 22, 7 (July 87), pp. 214-221.

[8] H.-J. Boehm, R. Cartwright, “Exact Real Arithmetic: Formulating Real
Numbers as Functions” in “Research Topics in Functional Programming”
David Turner editor, Addison-Wesley, 1990, pp. 43-64

[9] D. Bridges and E. Bishop, “Constructive Analysis.” Springer-Verlag, Ber-
lin, 1985.

[10] K.E. Grue, “Unrestricted Lazy Numerical Algorithms.” Unpublished pa-
per.

[11] A. Grzegorczyk, “On the Definition of Computable Real Continuous Func-
tions.” Fund. Math. 44 (1957) 61-77.

[12] K. Ko and Friedmann, “Computational Complexity of Real Functions.”
Theoret. Comput. Sci. 20 (1982) 323-352.

[13] K. Ko, “Reducibilities on Real Numbers.” Theoret. Comput. Sci. (1984).

74

[14] C. Kreitz, K. Weihrauch, “Theory of representation” Theoret. Comp. Sci.
38 (1985) 35-53.

[15] D. Lacombe, “Quelques procédés de définitions en topologie recursif.” in:
Constructivity in Mathematics, North-Holland (1959) 129-158.

[16] P. Martin-Löf, “Note on Constructive Mathematics.” Almqvist and
Wiksell, Stockholm (1970).

[17] J. Myhill, “Criteria of Constructibility for Real Numbers.” J. Symbolic
Logic 18 (1953) 7-10.

[18] J. Myhill, “What is a Real Number?” America Mathematical Monthly
(1979) 748-754.

[19] N. Th. Müller, “Subpolinomial Complexity Classes of Real Functions and
Real Numbers.” Lectures Notes in Computes Science 226, Springer-Verlag,
Berlin (1987).

[20] M.B. Pour-El and J.I. Richards “Computability in Anality in Analysis and
Phisics.” Springer-Verlag, New York (1990).

[21] G.D. Plotkin, “LCF Considered as a Programing Language.” Theoret.
Comput. Sci. 5 (1977) 223-255.

[22] H.G. Rice, “Recursive Real Numbers.” Proc. Amer. Math. Soc 5 (1954)
784-791.

[23] H. Rogers, Jr., “Theory of recursive function and effective computability.”
MacGraw-Hill, New York (1967).

[24] W. Rudin, “Principles of Mathematical Analysis” MacGraw-Hill, New
York (1964).

[25] D. Scott, “Lattice Theory, Data Types and Semantics.”

[26] D. Scott, “Outline of the Mathematical Theory of Computation.” Proc.
4th Princeton Conference on Information Science (1970).

[27] D. Scott, “Data Types as Lattices.” SIAM J. Comput. 5 (1976) 522-587.

[28] M.B. Smyth, “Effectively given Domains.” Theoret. Comp. Sci 2 (1976)
257-274.

[29] M.B. Smyth, “Quasi-uniformities: Reconciling Domains and Metric
Spaces.” (Tulane, 1987), LNCS 1988.

[30] E. Specker, “Nicht konstruktiv beweisbare Satze der Analysis.” J. of Sym-
bolic Logic 14 (1949) 145-158.

[31] A.S. Troelstra and D. van Dalen, “Constructivism in Mathematics.”
North-Holland, Amsterdam (1988).

75

[32] A.M. Turing, “On Computable Numbers, with an Application to the
Entscheidungs Problem.” Proc. London Math. Soc. 42 (1937) 230-265.

[33] J. Vuillemin, ”Exact Real Computer Arithmetic with Continued Fraction.”
Proc. A.C.M. conference on Lisp and functional Programming (1988) 14-
27.

[34] K. Weihrauch, U. Schreiber, “Embeding Metric Spaces into cpo’s” The-
oret. Comp. Sci. 16 (1981) 5-34.

[35] K. Weihrauch and C. Kreitz, “Representation of the Real Numbers and
of the Open Subsets of the Set of Real Numbers.” Annals of Pure and
Applied Logic 35 (1987) 247-260.

[36] E. Wiedmer, “Computing with Infinite Objects.” Theoret. Comp. Sci. 10
(1980) 133-155.

76

