
Unifying Recursive and Co-recursive Definitions

in Sheaf Categories?

Pietro Di Gianantonio Marino Miculan

Dipartimento di Matematica e Informatica, Università di Udine,
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Abstract. In this paper we present a theorem for defining fixed-points
in categories of sheaves. This result gives a unifying and general account
of most techniques used in computer science in order to ensure conver-
gency of circular definitions, such as (but not limited to) well-founded
recursion and contractivity in complete ultra metric spaces. This gen-
eral fixed-point theorem encompasses also a similar set theoretic result
presented in previous work, based on the notion of ordered family of

equivalences, and implemented in the Coq proof assistant.

1 Introduction

Circular definitions are pervasive and fundamental in many fields of Mathematics
and Computer Science. However, it is well known that not all circular definitions
are meaningful, i.e. converging. Many different criteria and techniques have been
introduced for establishing when a circular definition is well given, and in this
case to calculate what is its meaning—the fixed point.

One approach is to look for syntactically decidable criteria for recognizing
well-given circular definition. For defining objects in inductive datatypes we have
thus, beside the traditional iteration and recursion schemata, various criteria
such as the guarded by destructors condition (adopted in Coq [13,8]). For defin-
ing objects in coinductive datatypes we have several coiteration and corecursion
schemata, and the guarded by constructors condition of Coq [6]. These syntac-
tic, intensional criteria can be completely automatized in order to mechanically
check that a given definition is correct. However, syntactic criteria have always
a limited expressive power, and many sound definitions are rejected.

In order to overcome this expressivity limitation, another approach is to es-
tablish general results about the existence of fixed points in suitable semantic
domains. In this case, a well-formed circular definition comes equipped with a for-
mal assessment of its convergency, according to the theoretical properties of the
intended model. A well-known and very general method for building models sup-
porting recursive definitions is well-founded recursion (and variations thereof)
[12,1,7,2]. A formal definition of a function by well-founded recursion must con-
tain also the definition of the order over which the recursion goes, and the proof
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that the order is well-founded. In this case, the model is specified by the well-
founded order, and a general result ensures the existence of the unique function
recursively defined.

Another important method for constructing models supporting circular def-
initions is based on the Banach fixed point theorem for complete (ultra)metric
spaces. In this case, the fixed point of a (contractive) function f : D → D is
obtained by starting from an arbitrary point x ∈ D, and iterating the f function
ω times; this leads to a sequence

x, f(x), f2(x), f3(x), . . .

whose limit xω, which exists by completeness, is the desired fixed point. Despite
its proved usefulness in many fields (e.g., in concurrency theory [3]), Banach fixed
point theorem has some limitations. First of all, one can find several examples in
Computer Science and Mathematics where the fixed point of a function cannot
be reached simply by this construction, but in which it is necessary to go beyond
ω iterations, e.g. to construct a chain

. . . , xω , f(xω), f2(xω), f3(xω), . . . x2ω, f(x2ω), f2(xω), . . . , xω2 , . . . , xωω . . .

by repeatedly applying the function f and limit construction, until a fixed point
is eventually reached. This sort of transfinite constructions cannot be accommo-
dated inside a complete ultra metric space structure.

Another striking limitation is that in these approaches, the realm of “recur-
sive” definitions in inductive spaces, and the realm of “co-recursive” definitions
in co-inductive spaces are kept well apart: well-founded induction applies only to
recursive definition and Banach fixed point theorem applies only to co-recursive
definition. However, it is common in Computer Science to face mixed recursive-
corecursive definitions, i.e., definitions whose soundness relies on both recursive
and co-recursive arguments at once (see [4] for examples). Neither the sole Ba-
nach fixed point theorem, nor the mere well-founded induction principles are
enough for dealing with these mixed definitions.

Therefore, what we need is a more general class of models, unifying the ap-
proach based on Banach fixed point theorem in (ultra)metric spaces and that
based on the well founded induction principle, with a general result for estab-
lishing fixed points of circular definitions. This result should support “mixed”
definitions, with both recursive and co-recursive aspects at once, and possibly
with transfinite fixpoint constructions. This is the subject of this paper.

A first step in this direction has been made in [4], where we introduced a fixed
point theorem which can be used to prove the convergency of mixed recursive/co-
recursive definition. This theorem is a generalization of the Banach fixed point
theorem on ultra-metric space, with the idea of allowing the construction of a
fixed point by iteration beyond the cardinal ω. An aim of [4] was to give a result
which can be formalized and used easily inside a logical framework (e.g., Coq, or
Isabelle as in [11]), in order to prove the existence and to effectively construct
fixed points of functions. For this purpose, our theorem had to be constructive,
and to deal with very simple structures. This simplicity is useful because in order
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to apply the theorem in the proof editor (Coq, in this case) on a function f defined
on a structure X , we need to prove explicitly that X is a instance of our gener-
alized complete ultrametric space and that the function f is indeed contractive.
In order to keep this overhead as low as possible, we looked for a minimal set of
relevant and simple features of generalized complete ultrametric spaces and con-
tractive functions. Thus, in [4] we come to the set theoretic notion of (complete)
ordered family of equivalences, which can be seen as a generalization and a sim-
plification at once of the notion of complete ultra metric space. Over c.o.f.e.’s
we defined a natural and general notion of contractivity, encompassing most
schemata usually adopted for ensuring soundness of circular definitions. The con-
ditions that a space has to satisfy in order to be a c.o.f.e. are simple and direct,
hence the burden on the user for applying the fixed point theorem is limited.

One natural question arising from this previous work is whether the condi-
tions presented in [4] (and the similar ones in [11]) were somehow arbitrary, or
they can be explained within a more general setting—and possibly generalized
further. In this work, we answer positively to this question. We analyze these
constructions using categorical-theoretic tools, namely sheaf categories. Quite
surprisingly, it comes out that the completeness conditions that we defined in
[4] are almost equivalent to the amalgamation condition on sheaves, and there-
fore that our generalized ultra metric spaces can be seen as a particular kind of
sheaves. Moreover, the set-theoretic fixed point construction by well-founded in-
duction of [4] can be extended to more general sheaves over a topology satisfying
a sort of well-founded condition.

In summary, the results of this work are twofold. First, we give a sheaf-
theoretic explanation of the theory developed in [4], given by a correspondence
between the completeness of o.f.e.’s and the amalgamation condition of sheaves.
Moreover, in this categorical setting we can generalize further our previous fixed
point theorem. This leads for instance to a more elegant treatment of one of the
leading applications, i.e. the definition of functions by well-founded recursion.

Synopsis. In Section 2 we recall the basic definitions about topological spaces,
and presheaves and sheaves over topological spaces. In Section 3 we develop a
general theory of fixed points in sheaf categories, unifying inductive and coin-
ductive aspects of circular definitions. The connections between the categorical-
theoretic results of this work, and the set-theoretic ones presented in previous
work (and implemented in Coq) is described in Section 4. Final conclusions and
future work are discussed in Section 5.

2 Basic definitions

2.1 Topological spaces

Recall that a topological space is a pair (X,O(X)) where X is a set and O(X),
the topology over X , is a subset of ℘(X) closed by arbitrary union and finite
intersection, and ∅, X ∈ O(X). We often denote a topological space by its topol-
ogy. We assume the reader familiar with the basic notions and properties from
topology theory; see e.g. [9].
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Definition 1. A base for a topological space (X,O(X)) is a family K ⊆ O(X) of
open sets, ranged over by K, such that for every V ∈ O(A) there exists a family
(Ki)i∈I of elements of the base, called a covering of V , such that V = ∪i∈IKi.

A particular example of topological space that we will use quite often is the
following:

Definition 2. Let (A, <) be an order. We defined the downward closed topology
over A, denoted by O(A), as the one whose open sets are all downward closed
sets: for U ⊆ A, U ∈ O(A) if and only if for all a ∈ U , if b < a then b ∈ U .

It is immediate to see that O(A) is closed under arbitrary intersection and union,
thus O(A) is indeed a topology. The smallest base for the downward closed
topology is the set of cones on (A, <), that is the sets of the form ↓a , {a′ |
a′ < a} ∪ {a}. In the following the set of cones of A will be denoted by KA.

In several example we will consider the set ω of the natural numbers to-
gether with the standard order. It is immediate to see that the open sets of
the downward closed topology over ω are cones. In particular, by the standard
construction of defining an ordinal number as the set of its predecessor, we have
that O(ω) = ω+1. In other words, the elements of O(ω) are the natural numbers
and the set ω itself.

2.2 Presheaves

Any topology O(X) with the subset relation forms an order (a complete Heyting
algebra, actually). Therefore, as usual in category theory, we can see O(X) as a
category with exactly one morphism inU,V : U → V whenever U ⊆ V .

Definition 3. A presheaf over (the topology) O(X) is a functor P : O(X)op →
Set. Presheaves and natural transformations among them are objects and mor-

phisms of the functor category Ô(X) , SetO(X)op

.

In particular we consider the following running examples:

Example 1. (a) (Partial functions) A classical example of presheaf is the one
formed by sets of partially defined continuous functions on a topological set.
Let O(X),O(Y ) be two topological spaces. The presheaf FX,Y : O(X)op →
Set of partial continuous functions to Y is defined on objects as follows:

FX,Y (U) , U → Y

On morphisms, FX,Y is defined by function restriction: given a morphism
inU,V : U → V in O(X) (i.e. U ⊆ V ), and a continuous function f : V → Y ,
then

FX,Y (inU,V )(f) , f |U

i.e. the restriction of f to the elements of U .
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(b) (Ultra-metrics) Recall that an ultra-metric space S is a metric space whose
distance d : (S × S) → R satisfies a stronger version of the triangular in-
equality, namely for all r, s, t ∈ S: d(r, s) ≤ max{d(r, t), d(t, s)}. As a con-
sequence, balls in an ultra-metric space are equivalence classes. An ultra-
metric space S together with a real number c ∈ (0, 1) induce a presheaf
MS,c : O(ω)op → Set, defined on objects by MS,c(α) , S/≡α, where ≡α is
the equivalence on S defined by

s ≡α t
4

⇐⇒ ∀n ∈ α . d(s, t) ≤ cn

or, more concretely,

s ≡n+1 t ⇐⇒ d(s, t) ≤ cn s ≡ω t ⇐⇒ s = t.

On morphisms MS,c is defined by class immersion: given a morphism inα,α′

in O(ω) we define
MS,c(inα,α′)([s]α′ ) = [s]α

(c) (Ordered families of equivalence) Recall from [4] that an ordered family of
equivalences (o.f.e.) is a tuple O = 〈A, <, X,≡〉 where A (the carrier) and
X (the domain) are sets, < is a well-founded order on A and ≡ is an A-
indexed family of equivalence relations {≡a}a∈A on X . If U ⊆ A, we define
the equivalence relation ≡U on X as

x ≡U y
4

⇐⇒ ∀a ∈ U . x ≡a y

Along the same lines of the previous example, given an o.f.e. (A, <, X,≡) one
can define a presheaf EA,X : O(A)op → Set, formed by equivalence classes,

as ES,c(U) , X/≡U . On morphisms EA,X is defined by class immersion in
the same way of MS,c.

Notation. Let P : O(X)op → Set be a presheaf, and inU,V : U → V a morphism
between two open sets of the topology (i.e. an inclusion). For a ∈ PV , the element
PinU,V

(a) ∈ PU will be denoted by a|U as a syntactic shorthand.

2.3 Sheaves

We consider now the category of sheaves Sh(A) over a topological space (A,O(A)),
as defined in [10, II.10].

Definition 4. A presheaf P : O(X)op → Set is called a sheaf if it satisfies the
following property: for all U ∈ O(X), for all open covering {Ui}i∈I of U (that
is U =

⋃
i∈I Ui), and for all sections {si ∈ PUi

}i∈I pairwise compatible (that
is, for all i, j ∈ I: si|Ui∩Uj

= sj |Ui∩Uj
), there exists a unique s ∈ PU (called the

amalgamation) such that for all i ∈ I: s|Ui
= si.

The full subcategory of Ô(A) whose objects are sheaves is denoted by Sh(A).
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By applying this definition to the three running examples we have:

Example 2. (a) (Partial functions) For any two topological spaces O(X), O(Y ),
the presheaf FX,Y is always a sheaf. In fact given an open set U ∈ O(X),
and an open covering {Ui}i∈I of U , a family of sections {[fi] ∈ FX,Y (Ui)}i∈I

is pairwise compatible if for every pair i, j ∈ I we have ∀x ∈ Ui∩Uj . fi(x) =
fj(x). The amalgamation [f ] of this family can be defined as

f(x) , fi(x) with x ∈ Ui

It is immediate to check that the definition is independent from the choice
of i and therefore correct.

(b) (Ultra-metrics) The presheaf MS,c is a sheaf if and only if the space S is
complete as a metric space. In fact, given a complete metric space S, a
cardinal α ∈ O(ω), and a set {ni}i∈I of cardinals having α as lub (i.e., a
covering of α), the sections {[si]}i∈I in MS,c are pairwise compatible if for
every pair i, j ∈ I, whenever ni ≤ nj we have that d(si, sj) ≤ cni−1. If α
is a natural number then there exists ni = α and the amalgamation point
can be readily defined as s = si. If α = ω then one can choose an increasing
sequence of naturals nk0

< nk1
< nk2

< . . .; it is then immediate to check
that snk0

, snk1
, snk2

, . . . is a Cauchy sequence whose limit (which exists by
completeness) is the amalgamation point.
The proof of the other implication, namely that if MS,c is a sheaf then S is
a complete metric space, is almost immediate.

(c) (Complete ordered families of equivalence) Given an ordered family of equiv-
alences (A, <, X,≡), the presheaf EA,X is a sheaf if and only if the order
family of equivalence (A, <, X,≡) is complete, in the sense of [4]. We will
examine the connection between complete o.f.e.’s and sheaves in more detail
in Section 4.2 below.

3 Fixed points in sheaf categories

In this section, we present a general result for defining fixed points in sheaves.
Our aim is to unify the coinductive approach, typical of complete metric spaces,
and the inductive approach of definitions over well-founded orders. The amalga-
mation condition of sheaves provides what is needed for dealing with coinductive
parts; on the other hand, the inductive counterparts corresponds to requiring a
well-founded condition on the topology:

Definition 5. A base K for a topological space (X,O(X)) is said well-founded
if (K,⊆) is a well-founded order, i.e., there exists no succession of base elements
K1, K2, K3, . . . ∈ K such that K1 ⊃ K2 ⊃ K3 . . . .

A topology is well-founded if it has a well-founded base.

In particular, an order (A, <) is well-founded if and only if the downward closed
topology on A is well-founded. Indeed, the set of cones KA on A form a minimal
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base for O(A); therefore, O(A) is well founded if and only if KA is, and moreover
the well-founded condition on KA is immediately equivalent to the well-founded
condition for (A, <).

An example of not well-founded topology is the real line R with the Euclidean
topology. Let K be any basis for R, and K ∈ K. Let us consider any open interval
U ⊆ K, and let V be the open interval formed by the first half of U ; clearly V is
open, and therefore there exists K ′ ∈ K such that K ′ ⊆ V ⊂ U ⊆ K. Repeating
this procedure, we can define a non well-founded chain K ⊂ K ′ ⊂ K ′′ . . . .

In order to define a notion of contractivity for morphisms on (pre)sheaves we
need to introduce the following definition:

Definition 6. Let K be a base for a topological space (X,O(X)). We define the
predecessor operator p : O(X) → O(X) as follows

pU ,
⋃

{K ∈ K | K ( U}

The operator p is clearly monotone so it can be seen as a functor on O(X).
Moreover, p is decreasing (for all U ∈ O(X): pU ⊆ U), so there exists a (unique)
inclusion natural transformation i : p −→ Id.

Note that p differs from the identity only on the elements of the basis and
that in the topology O(ω) we have that pn = n − 1 and pω = ω.

In the following, for P : O(X)op → Set, we will denote by Pp : O(X)op → Set
the presheaf obtained by composition, i.e. (Pp)U = PpU and for inU,V : U → V ,
(Pp)inU,V

= PpinU,V
: PpV → PpU . Similarly, P i is the natural transformation

P i : P −→ Pp defined by componentwise application: for U ∈ O(X), (P i)U =
PiU = PinpU,U

: PU → PpU (since iU = inpU,U : pU → U).

Definition 7. Given a well-founded base K for the topology O(X) and a presheaf
P : O(X)op → Set, a natural transformation f : P −→ P is contractive
(w.r.t. K) if it factorizes along the natural transformation P i : P −→ Pp, i.e.,
there exists a natural transformation f : Pp −→ P such that f = f ◦ P i:

P
f //

P i   A
A

A

A

A

A

A

A

P

Pp

f

OO that is, for U ∈ O(X) : PU

fU //

(P i)U=PinpU,U !!C
C

C

C

C

C

C

C

PU

PpU

fU

OO

It is interesting to observe that the above definition of contractivity encom-
passes most standard and well-known criteria used for ensuring existence of a
fixed point, such as the “guarded by constructors/destructors” conditions. More
generally, these criteria are subsumed by the following examples:

Example 3. (a) (Recursive definitions of functions) Given a well-founded rela-
tion < on a set A and a ∈ A, let us denote with �a the set �a , {b | b < a}.
Then a recursive definition of a function A → B is given by a function G
which maps an element a ∈ A and a function f : �a → B to a value in B.1

1 Using dependent types, the arity of G is G :
Q

a∈A
(�a → B) → B.
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In this setting the function h : A → B recursively defined by G is the unique
function satisfying the equation:

h(a) = G(a, h|�a)

Let consider the downward closed topology, O(A), on the partial order A
and the coarsest topology on B, i.e. the topology having as open sets just
the empty set and total space B. Given these two topological spaces, we
can consider the sheaves of partial continuous FA,B and we have that the
function G induces a natural transformation G∗ : FA,B −→ FA,B in Sh(A)
defined as follows:

G∗
U (f) , λa.G(a, f |�a)

It is straightforward to prove that G∗ is indeed a natural transformation.
Moreover, G∗ is contractive w.r.t. the base KA, formed by the cones of A:
indeed, we can define G∗ by

G∗
U (f |pU ) , λa.G(a, (f |pU )|�a)

The above definition is correct since for each U ∈ O(A) and a ∈ U we have
that �a ⊆ pU and therefore f |pU )|�a is well defined.

(b) (Ultrametrics) Let (S, d : (S × S) → [0, 1]) be an ultrametric space, and
f : S → S a function contractive with constant c ∈ [0, 1) (in the metric d).
Then, f induces a natural transformation f∗ : MS,c −→ MS,c given by

f∗
U ([s]U ) , [f(s)]U

Clearly f∗ is well-defined, and moreover contractive in the sense of Definition
7: the factorizing natural transformation f∗ is given by

f∗
U ([s]pU ) = [f(s)]U

The contractivity condition on the function f ensures that this definition
is correct, i.e. it preserves equivalences. Quite obviously f∗ satisfies the re-
quired factorization.

(c) (Ordered families of equivalence) Using the same pattern of the two previous
example we can reduce the notion of contractivity on o.f.e.’s [4, Definition
5], to the contractivity on presheaves of Definition 7. We will examine in
detail this case in Section 4.1 below. (Example 3)

Theorem 1 (General Fixed Point Theorem). Let A be a topology with a
well-founded base K, and P : Sh(A) a sheaf on A. Then, every natural trans-
formation f : P −→ P contractive w.r.t. K has a unique fixed point, i.e. there
exists a unique natural transformation µ : 1 −→ P in Sh(A) such that f ◦µ = µ.

Proof. In order to define µ = {µU : 1 → PU | U ∈ O(A)op}, it suffices to define
only the components on base elements, {µK ∈ PK | K ∈ K}, and prove that
they satisfy the naturality condition, i.e., for all K, K ′ ∈ K,

if K ′ ⊆ K then µK |K′ = µK′ (1)
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In virtue of this fact we can then extend by amalgamation the definition of µ to
any open set U . If U = ∪i∈IKi, then µU ∈ PU is defined as the amalgamation
of the sections {µKi

∈ PKi
| i ∈ I}, which are pairwise compatible by (1).

We will define the components µK and prove the equality (1) at the same
time, by well founded induction on the subset relation on the elements of the
base K. The definition of µ on elements of the base is the following:

µK , fK ◦ µpK

where µpK : 1 → PpK is defined as the amalgamation of the morphisms {µK′ :
1 → P ′

K | K ′ ( K}. The equality (1) is proved by observing that the following
diagram commutes:

1

µpK

##

µK

//

µK′

**

µpK′

++

PK
Pin

K,K′

// PK′

PpK
Pin

pK′,pK

//

fK

OO

PpK′

fK′

OO

In fact, µK = fK ◦ µpK and µK′ = fK′ ◦ µpK′ by definition, while the square
commutes by naturality of f . It remains to prove that PinpK′,pK

◦ µpK = µpK′ ,
i.e. that µpK |pK′ = µpK′ . Since for all K ′′ ( K ′ we have that (µpK |pK′)|K′′ =
µpK |K′′ = µpK′ it follows that µpK |pK′ is the amalgamation point of the elements
{µK′′ | K ′′ ( K ′} and therefore equal to µpK′ .

In order to prove the fixed-point equality f ◦ µ = µ it is sufficient to prove
that it holds on the element of the base. Indeed, for each K ∈ K the following
diagram commutes:

1

µK

((µK //

µpK ..

PK

fK //
PinpK,K

&&N

N

N

N

N

N

N

N

N

N

N

N

PK

PpK

fK

OO

in fact by equality (1) P inpK,K ◦µK is the amalgamation point of the morphisms
{µK′ | K ′ ( K} and therefore P inpK,K ◦ µK = µpK , while fK = fK ◦ P inpK,K ,
by contractivity of f .

Given any other fixed-point ρ, the following diagram commute

1

ρK

((ρK //

ρpK ..

PK

fK //
PinpK,K

&&N

N

N

N

N

N

N

N

N

N

N

N

PK

PpK

fK

OO
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because ρK = fK ◦ ρK by hypothesis, while fK = fK ◦ PinpK,K
, by contractivity

of f and PinpK,K
◦ ρK = ρpK by naturality of ρ.

Now we can finally prove, by inductions on the subset relation on the elements
of the base, that for all K ∈ K µK = ρK . In fact by inductive hypothesis for all
K ′ ⊂ K µK′ = ρK′ , so µpK = ρpK , since both arrows are amalgamation points
of equal sections. From this, by the last two diagrams, we have the thesis. ut

4 Ordered families of equivalences and presheaves

In previous work [4], we have introduced and studied the notion of (complete)
ordered families of equivalences, with the aim of developing a constructive, set-
theoretic approach (implemented in Coq) allowing for defining general fixed point
by mixed inductive/coinductive definitions. In this section, we develop a cate-
gorical account of (complete) o.f.e.’s, and relate them to the theory developed
in (pre)sheaf categories in Section 3.

4.1 Relating o.f.e.’s to presheaves

In Example 1(c), we have recalled the definition of ordered family of equivalences,
and shown that any o.f.e. can be seen as a presheaf. More precisely, we show now
that the category of presheaves over A is connected to the category of o.f.e.’s by
an adjunction.

Definition 8. Let (A, <, X,≡), (A, <, X ′,≡′) be two o.f.e.’s on the same order
(A, <). A morphism f : (A, <, X,≡) → (A, <, X ′,≡′) is a function f : X → X ′

such that for all x, y ∈ X, for all a ∈ A, if x ≡a y then f(x) ≡′
a f(y). The

o.f.e.’s over (A, <) and their morphisms form a category denoted by Ofe(A, <).

The definition can be generalized further. A morphism between two o.f.e.’s on
possibly different orders, is given by a pair (h, f) : (A, <, X,≡) → (A′, <′, X ′,≡′)
such that h : (A′, <′) → (A, <) is monotone and f : X → X ′ is such that for all
x, y ∈ X , for all a ∈ A, if x ≡ha′ y then f(x) ≡′

a′ f(y). This gives rise to the
category Ofe of all ofe’s over any well-founded order, which is a fibred category
over the category Wfo of well-founded orders. However, in the following we will
dwell only in a fiber of this category at once, i.e., we will consider only the more
restricted definition of morphisms.

We can define a functor F : Ofe(A, <) −→ Ô(A) as follows:

– for O = (A, <, X,≡) an o.f.e., and U ∈ O(A), let (FO)U , X/≡U , where
the equivalence relation ≡U over X is defined as

x ≡U y
4

⇐⇒ ∀a ∈ U : x ≡a y .

For inU,V : U → V a (unique) morphism in O(A), we define FO(inU,V ) :

X/≡V → X/≡U as FO(inU,V )([x]≡V
) , [x]≡U

. (In the following, for sake of
simplicity, we will denote [x]≡U

just by [x]U ).
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– for O = (A, <, X,≡), O′ = (A, <, X ′,≡′) and f : O → O′ in Ofe(A, <),
we define the natural transformation Ff : FO −→ FO whose component

(Ff )U : X/≡U → X ′/≡′
U is defined by (Ff )U ([x]≡U

) , [f(x)]≡′
U
.

The definition of the functor G : Ô(A) −→ Ofe(A, <) is as follows:

– the action of G on the object P is defined as GP , (A, <, PA,≡), where for

all a ∈ A: x ≡a y
4

⇐⇒ Pin↓a,A
(x) = Pin↓a,A

(y), ie if x|↓a = y|↓a

– If m : P −→ Q is a morphisms (i.e., a natural transformation) between two
presheaves over O(A), we define Gm , mA : PA → QA. Let us prove that
Gm = mA is a morphism in Ofe(A, <). Let x, y ∈ PA such that x ≡a y, that
is Pin↓a,A

(x) = Pin↓a,A
(y); then, by naturality of m,

Qin↓a,A
(mA(x)) = m↓a(Pin↓a,A

(x)) = m↓a(Pin↓a,A
(y)) = Qin↓a,A

(mA(y))

an thus mA(x) ≡a mA(y) in QA.

The above definition is motivated by the fact that PA is the limit of the functor
P and that Pin↓a,A

: PA → P↓a are the relative projections.
The functors F, G form an adjoint pair:

Proposition 1. Ofe(A, <)
F //
⊥ Ô(A)
G

oo .

Proof. Let O = (A, <, X,≡) be a o.f.e., and P : O(A)op → Set a presheaf over
O(A); we prove that Hom

Ô(A)
(FO , P ) ∼= HomOfe(A,<)(O, GP ).

For each natural transformation m : FO −→ P , we can define the corre-
sponding map f : O → GP simply as f : X → PA, f(x) , mA([x]≡A

).
On the other hand, for each morphism on the Ofe, f : O → GP we define the

corresponding natural transformation m : FO −→ P in Ô(A) as mU ([x]≡U
) ,

f(x)|U , for each U ∈ O(A), x ∈ X . It is readily proved than m is a natural
transformation.

It is easy to check that this bijection is natural in O and P , hence the thesis.
ut

Both F and G are neither full nor faithful.
Notice also that GF 6∼= Id; in fact GF : Ofe(A, <) −→ Ofe(A, <) is a quotient

operation on the o.f.e.’s. Indeed, if O = (A, <, X,≡) is an o.f.e., then GFO =

(A, <, X/≡A,≡′) where ≡A=
⋂

a∈A ≡a and [x] ≡′
a [y]

4
⇐⇒ x ≡↓a y.

Finally, it is easy to check that these functors respect the two notions of
contractivity on o.f.e.’s and on presheaves. Recall the definition of contractivity
on o.f.e.’s from [4]:

Definition 9 (Contractivity on o.f.e.’s). Given an o.f.e. O = (A, <, X,≡)
a function f : X → X is contractive if for every pair of elements x, y ∈ X and
for every element a in A, if ∀a′ < a . x ≡a′ y, then f(x) ≡a f(y).
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Then, contractive maps on o.f.e.’s correspond to contractive natural trans-
formations on presheaves:

Proposition 2. (i) Let O = (A, <, X,≡) be an o.f.e., and let f : O → O
be a contractive morphism. Then, Ff : FO → FO is a contractive natural

transformation in Ô(A).

(ii) Let m : P −→ P be a contractive natural transformation in Ô(A). Then,
Gm : GP → GP is a contractive morphism in Ofe(A, <).

4.2 Complete ordered families of equivalences and sheaves

The general fixed point theorem of [4] applies to o.f.e.’s where all “Cauchy-like”
successions have limits. We recall the following definitions from [4]:

Definition 10. Let O = (A, <, X,≡) be an o.f.e., I a subset of A, and (xa)a∈I

a family of elements in X, indexed by I.

– We say that (xa)a∈I is coherent if ∀a′, a ∈ I .a′ < a =⇒ xa′ ≡a′ xa.
– We say that (xa)a∈I has as a limit y if ∀a′ ∈ I . xa′ ≡a′ y.

Definition 11. A complete ordered family of equivalences (c.o.f.e.) is a tuple
O = (A, <, X,≡, lim·∈A, lim·<·) such that

– (A, <, X,≡) is an o.f.e.;
– lim·∈A is a function such that for all coherent families (xa)a∈A, lima∈A xa

is a limit for (xa)a∈A;
– lim·<· is a function2 such that for all a ∈ A and for all coherent families

(xa′ )a′∈↓a: lima′<a xa′ is a limit for (xa′)a′∈↓a.

For each well-founded order (A, <), the complete o.f.e.’s over it and their mor-
phisms as o.f.e.’s form a category denoted by Cofe(A, <).

In this definition of c.o.f.e.’s we explicitly require the existence of two func-
tions providing the limits for each coherent family. However, in order to establish
an adjuctions with the category of sheaves we need to adopt a weaker notion of
completeness, where we only require existence of limits without asking for the
limit functions:

Definition 12. A weakly complete ordered family of equivalences is a tuple
O = (A, <, X,≡) which is an o.f.e. and

– every coherent family of the form (xa)a∈A has a limit,
– for each a ∈ A, every coherent family of the form (xb)b∈↓a have a limit.

For each well-founded order (A, <), we denote by wCofe(A, <) the full subcategy
of Ofe(A, <) whose objects are weakly complete o.f.e.’s.

2 Using a “dependent type” notation, the arity of the two limit constructors is lim·∈A :
(A → X) → X and lim·<· :

Q

a∈A
(↓a → X) → X.
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Clearly, one can define a forgetful functor U : Cofe(A, <) ↪→ wCofe(A, <)
and there is an immersion functor wCofe(A, <) ↪→ Ofe(A, <). Moreover, the
category wCofe(A, <) is connected also to a suitable subcategory of the category
of sheaves Sh(A) over the topological space (A,O(A)), as we will see next.

Let E be the full subcategory of Sh(A) of epi-preserving functors, i.e. of
sheaves S such that for all U ⊆ V ∈ O(A) : SinU,V

: SV → SU is epi3. Clearly we

have the inclusions E ↪→ Sh(A) ↪→ Ô(A). We will show next that the adjunction
of Proposition 1 can be lifted along the two inclusions wCofe(A, <) ↪→ Ofe(A, <)

and E ↪→ Ô(A), by proving that F and G maps weakly complete o.f.e.’s in sheaves
and sheaves in weakly complete o.f.e.’s, respectively.

Let us prove that for O = (A, <, X,≡) a weakly complete o.f.e., the presheaf
S , FO is indeed a sheaf. Let U be an open subset of A, and U =

⋃
i∈I Ui be

an open covering of U . Let {si ∈ SUi
}i∈I be a family of pairwise compatible

sections; more explicitly, for all i, j ∈ I, we have that si ∈ X/≡Ui
, sj ∈ X/≡Uj

and S(ini)(si) = S(inj)(sj) where ini : Ui ∩ Uj ⊆ Ui and inj : Ui ∩ Uj ⊆ Uj . We
have to define a unique amalgamation of these sections, that is a unique s ∈ SU

such that for all i ∈ I : S(in)(s) = si, where in : Ui ⊆ U .
For each a ∈ U , there exists an open set Ui in the covering of U such that

a ∈ Ui. Let sa , S(ina)(si) ∈ S↓a = X/≡↓a (where ina : ↓a ⊆ Ui); this
definition is well given because it does not depend on the particular Ui we choose,
since the sections are pairwise compatible. For each a in U , therefore, let us
choose a representant xa ∈ sa of the equivalence class sa; we get thus a family
(xa)a∈U which is coherent (again for the compatibility of the sections). Therefore,
since O is a weakly complete o.f.e. and for the arguments used in [4, Prop. 1],
there exists the limit x for the coherent family (xa)a∈U . We can define the
amalgamation s as s , [x]≡U

. This amalgamation is unique: let s′ ∈ SU = X/≡U

be another partition such that for all i ∈ I: s′|Ui
= si in X/≡Ui

. Let y ∈ s′; since
s′|Ui

= SinUi,U
(s′), this means that for all i ∈ I : [y]≡Ui

= [x]≡Ui
, i.e. y ≡Ui

x.
Since ≡U=

⋂
i∈I ≡Ui

, we have that y ≡U x, and hence s′ = [y]≡U
= [x]≡U

= s.

On the other hand, we prove that the functor G maps epi-preserving sheaves
to weakly complete o.f.e.’s. Let S : O(A)op → Set be a sheaf in E , we prove
that the o.f.e. GS = (A, <, SA,≡) has all the required limits. Let a ∈ A and let
(xb)b∈�a be a coherent family in SA. To each xb we associate an element sb ,
Sin↓b,A

(xb) ∈ S↓b. It is immediate to see that this family {sb} forms a pairwise
compatible section, and that

⋃
b∈�a ↓b = p↓a = �a. Therefore, there exists a

(unique) amalgamation s ∈ S�a. Since S is epi-preserving, Sin�a,A
: SA → S�a is

epi, and therefore there exists an x ∈ SA such that x|�a = s. This means that
for all b ∈ �a : x|↓b = sb = xb|�b, that is x ≡b xb, as required.

A similar (and simpler) argument shows that any coherent family of the form
(xa)a∈A has limit. We have thus proved the following

Proposition 3. wCofe(A, <)
F //
⊥ E
G

oo

3 Each inU,V : V → U in O(A)op is epi because inU,V : U ↪→ V is mono in O(A).
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Ofe(A, <)
F //
⊥ Ô(A)
G

oo

a

��
a

Sh(A)
� ?

i

OO

wCofe(A, <)
F //
⊥

� ?

OO

E
G

oo
� ?

OO

The diagram aside summarizes the relationships
between the categories introduced in this paper. The

functor a : Ô(A) −→ Sh(A), left adjoint of the inclu-
sion functor i, is the associated sheaf functor. Intu-
itively, a(P ) is the “closest” sheaf to the presheaf P ,
i.e., the “best approximation” of P where the GFPT
can be applied.

This diagram points out also the GFPT over
Sh(A) is strictly stronger than the previous result
over c.o.f.e.’s [4, Theorem 1]. Indeed the latter can
be derived as a corollary of the former:

Corollary 1 (GFPT for c.o.f.e.’s). Let C = (A, <, X,≡, lim·∈A, lim·<·) be a
c.o.f.e., and f : C → C a contractive map. Then, there exists x ∈ X such that
f(x) ≡A x. Moreover, for all y ∈ X such that f(y) ≡A y, we have that x ≡A y.

Proof. By applying the forgetful functor, U(C) = (A, <, X,≡) is a weakly com-
plete o.f.e., and f is a contractive map on U(C). For Proposition 3, S , F (U(C))
is an epi-preserving sheaf, and in particular it is a sheaf in Sh(A). By Propo-
sition 2, F (f) : S −→ S is contractive, and therefore, by Theorem 1, there
exists a unique natural transformation µ : 1 → S such that F (f) ◦ µ = µ. In
particular, this means that µA : 1 → S is a partition class (i.e., µA ∈ X/≡A)
such that F (f)A(µA) = µA. By definition of F , this means that for all x ∈ µA:
[f(x)]≡A

= µA = [x]≡A
, that is, f(x) ≡A x. If there is another y ∈ X such

that f(y) ≡A y, then [y]≡A
= [f(y)]≡A

= [f(x)]≡A
(by uniqueness of m), and

therefore [y]≡A
= [x]≡A

, that is x ≡A y. ut

5 Conclusions

In this paper we have presented a novel approach to the problem of establishing
fixed points of circular definitions. Our approach, based on categories of sheaves
over “well-founded” topologies, unifies the well-founded induction principle and
a generalization of Banach theorem. This result encompasses most known tech-
niques used in Mathematics and Computer Science for ensuring convergency of
circular definitions, and moreover it can be applied also to definitions which are
both recursive and corecursive at the same time.

Our work has been motivated also by the need of understanding better and
generalize a similar set theoretic result, based on the notion of “(complete) or-
dered family of equivalences” [4]. In fact, we have shown that c.o.f.e.’s can be
seen as a particular case of sheaves on well-founded topologies, suited for im-
plementation in proof assistants. However, the generality we have achieved in
this paper goes well beyond this; for instance, the new model offers a cleaner
and more elegant treatment of the important case of functions defined by well-
founded recursion.
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Future work. As pointed out before, the theory of sheaves over well-founded
topologies presented in this paper is stronger than the theory of c.o.f.e.’s im-
plemented in Coq (and the similar development in Isabelle/HOL). A way for
gaining this expressive power could be to formalize directly the theory presented
in this paper as it is; however, such a formalization would be quite different from
the one of c.o.f.e.’s—and likely not as easy to use. Another possibility would be
to look for a counterpart of Sh(A) within the category of o.f.e.’s. In other words,
we conjecture the existence of a reflective subcategory C ↪→ Ofe(A, <), such that
Cofe(A, <) ↪→ C and connected to Sh(A) by the adjunction F a G. This would
complete the diagram above, and would lead to a compact, implementation-
oriented representation of sheaves.

In this paper, we have considered presheaves and sheaves over a precise kind
of topology, namely the one formed by downward closed sets. It is interesting
future work to understand at what extent the notions and results of this paper
can be generalized to other topologies. For instance, the key notion of “well-
founded topology” should be readily adapted to general Grothendieck topologies.

Another interesting future work is to consider the internal language of the
category Sh(A). As for any topos, Sh(A) supports directly the interpretation of
a typed (intuitionistic) higher order logic, but moreover, we should be able to
extend this language with specific constructors and rules for fixpoint definition.
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