Games Characterizing Levy-Longo Trees
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Abstract. We present a simple strongly universal innocent game model
for Levy-Longo trees i.e. every point in the model is the denotation
of a unique Levy-Longo tree. The observational quotient of the model
then gives a universal, and hence fully abstract, model of the pure Lazy
Lambda Calculus.

1 Introduction

This paper presents a strongly universal innocent game model for Levy-Longo
trees [11,12] (i.e. every point in the model is the denotation of a unique Levy-
Longo tree). We consider arenas in the sense of [8,14] in which questions may
justify either questions or answers, but answers may only justify questions; and
we say that an answer (respectively question) is pending in a justified sequence
if no question (respectively answer) is explicitly justified by it. Plays are justified
sequences that satisfy the standard conditions of Visibility and Well-Bracketing,
and a new condition, which is a dual of Well-Bracketing, called

Persistence: If an odd-length (respectively even-length) play s has a
pending O-answer (respectively P-answer) — let a be the last such in s,
and if s is followed by a question g, then ¢ must be explicitly justified
by a.

We then consider conditionally copycat strategies, which are innocent strategies
(in the sense of [8]) that behave in a copycat fashion as soon as an O-answer
is followed by a P-answer. Together with a relevance condition, we prove that
the recursive such strategies give a strongly universal model of Levy-Longo trees
i.e. every strategy is the denotation of a unique Levy-Longo tree. To our knowl-
edge, this is the first universal model of Levy-Longo trees. The observational
quotient of the model then gives a universal and fully abstract model of the pure
Lazy Lambda Calculus [15, 3].

Related work. Universal models for the Lazy Lambda Calculus with conver-
gence test were first presented in [2] and [13]. The model studied in the former
is in the AJM style [1], while that in the latter, by McCusker, is based on an
innocent-strategy [8] universal model for call-by-name FPC, and is obtained via
a universal and fully abstract translation from the Lazy Lambda Calculus into
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call-by-name FPC. The present paper considers the pure (i.e. without any con-
stant) Lazy Lambda Calculus. Our model is the same as McCusker’s, except that
it has three additional constraints: Persistence, which is a constraint on plays,
and Conditional Copycat and Relevance, which are constraints on strategies.
Since Persistence constrains Opponent as well as Player, the model presented
here is not simply a submodel of McCusker’s.

An AJM-style game model of the the pure Lazy Lambda Calculus was pre-
sented by the second author in [6]. The strategies therein are history-free and
satisfy a monotonicity condition. Though fully abstract for the language, the
model is not universal (there are finite monotone strategies that are not deno-
table). However we believe it is possible to achieve universality by introducing a
condition similar to relevance. In [10, 9] game models based on effectively almost-
everywhere copycat (or EAC) strategies are constructed which are strongly uni-
versal for Nakajima trees and Bohm trees respectively. Several local structure
results for AJM-style game models can be found in [7].

2 Arenas and nested levels

An arena is a triple A = (Ma, a,Fa) where My is a set of moves; A\ :
My — {PQ, PA, OQ, OA} is a labelling function which, for given a move,
indicates which of P or O may make the move and whether it is a question (Q)
or an answer (A); and k4 C (A + {*}) x A, where * is a dummy move, is called
the justification relation (we read mq b4 mo as “m; justifies m2”) satisfying the
following axioms: we let m,m’, m; range over M4

1. Either % k4 m (in which case we call m an initial move) or else m~ k4 m
for some m .

. Every initial move is an O-question.

. If m k4 m' then m and m’ are moves by different players.

. If my B4 m and mo 4 m then my = mo.

. If m 4 m' and m is an answer then m' is a question (“Answers may only
justify questions.”).
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In the following we shall refer to standard arena constructions such as product
A x B, function space A = B and lifting A ; the reader may wish to consult
e.g. [8,14] for a definition. We use square and round parentheses in bold type as
meta-variables for moves as follows:

O-question  P-answer P-question O-answer

[ ] ( )

A justified sequence over an arena A is a finite sequence of alternating
moves such that, except the first move which is initial, every move m has a justi-
fication pointer (or simply pointer) to some earlier move m~ whereby m™ k4 m;
we say that m is explicitly justified by m~—. A question (respectively answer) in
a justified sequence s is said to be pending just in case no answer (respectively
question) in s is explicitly justified by it. This extends the standard meaning of



“pending questions” to “pending answers”. Recall the definition of the P-view
Ts7 of a justified sequence s:

Tel=¢
Tsm'="s"m if m is a P-move
Tsm'=m if m is initial
Tsmoum'="s"mgm if the O-move m is explicitly justified by myg

In "smoum™ the pointer from m to mg is retained, similarly for the pointer
from m in "sm™ in case m is a P-move.

Definition 1. A justified sequence s over A is said to be a legal position (or
play) just in case it satisfies:

1. Visibility: Every P-move (respective non-initial O-move) is explicitly justified
by some move that appears in the P-view (respectively O-view) at that point.

2. Well-Bracketing: Every P-answer (respectively O-answer) is an answer to
(i.e. explicitly justified by) the last pending O-question (respectively P-
question).

3. Persistence: If an odd-length (respectively even-length) s has a pending
O-answer (respectively P-answer) — let a be the last such in s, and if s is
followed by a question ¢, then ¢ must be explicitly justified by a.

Remark 1. Except for Persistence, all that we have introduced so far are stan-
dard notions of the innocent approach to Game Semantics in the sense of [8]. Note
that there can be at most one pending O-answer (respectively P-answer) in a
P-view (respectively O-view). It is an immediate consequence of Well-Bracketing
that no question may be answered more than once in a legal position.

Persistence may be regarded as a dual of Well-Bracketing: it is to questions
what Well-Bracketing is to answers. The effect of Persistence is that in certain
situations, namely when there is a pending O-answer, a strategy has no choice
over which question it can ask, or equivalently over which argument it can inter-
rogate, at that point (of course it may decide instead to answer an O-question).
An apparently similar restriction on the behaviour of strategies is imposed by the
rigidity condition introduced by Danos and Harmer [5]. (For any legal position
of a rigid strategy, the pointer from a question is to some move that appears in
the R-view of the play at that point.) However since Persistence is a constraint
on plays containing answers that justify questions, whereas rigidity is a condi-
tion on strategies over arenas whose answers do not justify any move, it is not
immediately obvious how the two notions are related.

Nested levels. Take any set M that is equipped with a function A : M —
{Q, A} which labels elements as either questions or answers. Let s be a finite
sequence of elements from M — call s a dialogue. Set #qn(s) and #ans(s) respec-
tively to be the number of questions and the number of answers in s. Following
[6], we define the nested level at sm (or simply the level of m whenever s is



understood) to be
_ Jé6—=1 if mis a question
NL(sm) = {6 if m is an answer

where § = #qn(sm) — #ans(s m); we define NL(¢) = 0. For example, the nested
levels of the moves in the dialogue [ () ([1[()]1) () ][ ( are:

Nested Level
3 0)
2 (101
1 () ( )()
0 [ 11

For [ > 0, we write s [ [ to mean the subsequence of s consisting of moves at
level I. We say that an answer o in a dialogue ¢ is closed if it is the last move in
t at level [, where [ is the level of a in t.

We state some basic properties of nested levels of dialogues.

Lemma 1. In the following, we let s range over dialogues.

1. For any s =umm', if m and m' are at different levels | and l' respectively,
then m and m' are either both questions (in which case ' =1+ 1) or both
answers (in which case ' =1—1). As a corollary we have:

2. If a and b in a dialogue are at levels I} and ls respectively, then for any
l; <1<y, there is some move between a and b (inclusive) at level [.

3. For any 1 >0, if | < NL(s) (respectively | > NL(s)) then the last move in s
at level 1, if it exists, is a question (respectively answer).

4. Suppose s begins with a question. For each I, if s | | is non-empty, the first
element is a question, thereafter the elements alternate strictly between an-
swers and questions.

5. Take any dialogue sq, where q is a question. Suppose NL(sq) = [ then an
answer a is the last occurring closed answer in s if and only if a is the last
move at level | in s.

The notion of nested level is useful for proving that the composition of strate-
gies is well-defined. Note that Lemma 1 holds for dialogues in general — there is
no assumption of justification relation or pointers, nor of the distinction between
P and O.

3 Conditionally copycat strategies and relevance

Recall that a P-strategy (or simply strategy) o for a game A is defined to be a
non-empty, prefix-closed set, of legal positions of A satisfying:

1. For any even-length s € o, if sm is a legal position then sm € o.
2. (Determinacy). For any odd-length s, if sm and sm' are in o then m = m/.



A strategy is said to be innocent [8] if whenever even-length sm € o then
for any odd-length s’ € o such that "s? = "s'", we have s'm € o. That is to
say, o is completely determined by a partial function f (say) that maps P-views
p to justified P-moves (i.e. f(p) is a P-move together with a pointer to some
move in p). We write f, for the minimal such function that defines o. We say
that an innocent strategy o is compact just in case f, is a finite function (or
equivalently o contains only finitely many P-views).

Definition 2. We say that an innocent strategy o is conditionally copycat
(or simply CQ) if for any odd-length P-view p € o in which there is an O-answer
which is immediately followed by a P-answer (i.e. p has the shape “---)]---"),
then pm € o for some P-move m which is explicitly justified by the penultimate
O-move in p.

CC strategies can be characterized as follows.

Lemma 2 (CC). An innocent strategy o is CC if and only if for every even-
length P-view p in o that has the shape u),],v

1. for any O-move m, if pm € o then pmm' € o for some P-move m/', and
2. if v is a non-empty segment, then v is a copycat block of moves. L.e. v has
the shape
aybyasbs -+ apby
where n > 1 such that
(a) for each i, the P-move b; is a question iff the preceding O-move a; is a
question
(b) 1, explicitly justifies a1 uniquely, ), explicitly justifies by uniquely, and
for each i > 1, b; explicitly justifies a;11 uniquely, and each a; explicitly
justifies b;y1 uniquely.
In other words v is an interleaving of two sequences vy and vs, such that in
each v;, each element (except the first) is explicitly justified by the preceding
element in the other sequence.

Composition of strategies. Suppose o and T are strategies over arenas A = B
and B = C respectively. The set of interaction sequences arising from o and
7 is defined as follows:

ISeq(o,7) = {u€ L(A,B,C):ul (4,B,b) €o,ul(B,C)eT}

where L(A, B,C) is the set of local sequences (see [8,14]) over (A4, B, (), and
where b ranges over occurrences of initial B-moves in u, u | (A, B,b) is the sub-
sequence of u consisting of moves from the arenas A and B that are hereditarily
justified by the occurrence b (note that the subsequence inherits the pointers
associated with the moves), and similarly for v | (B, C). We can now define the
composite strategy o ;7 over A= C aso;7 ={u | (A,C):u € ISeq(o,7) }. In
u | (A, C) the pointer of every initial A-move is to the unique initial C-move.

The nested level of an interaction sequence is well-defined, since an interac-
tion sequence is a dialogue. It is useful to establish a basic property about nested
levels of interaction sequences.



Lemma 3. For any mi and me in u € ISeq(o,7) and for any 1 > 0, if the
segment mq mo appears in u | 1, then my explicitly justifies ms in u.

Remark 2. The proof of the Lemma appeals to the assumption that u [ (B,C)
and u | (4, B, b) satisfy Persistence, and to the structure of interaction sequences
(in particular, Locality and the Switching Convention). If legal positions are not
required to satisfy Persistence, then the Lemma, does not hold.

A notion of relevance. We consider a notion of relevance whereby P is not
allowed to respond to an O-question by engaging O indefinitely in a dialogue
at one level higher, nor is P allowed to “give up”; instead he must eventually
answer the O-question.

Definition 3. We say that a CC strategy o is relevant if whenever f, : p[ —
(o, then there is some b > 0, and there are moves )y, (;,);,--*,(,)y, and ] such

that
foplG)o- Gy = 1

We call b the branching factor of o at the P-view p[. (The reason behind the
name is explained in the proof of Lemma 6.)

Theorem 1. If 0 and 7 are relevant CC strategies over arenas A = B and
B = C respectively then the composite o 57 is also a relevant CC strategy.

The category . We define a category called . whose objects are arenas and
whose maps A — B are relevant CC strategies of the arena A = B. It is
completely straightforward to verify that L is cartesian closed (see e.g. [8] for a
very similar proof): the terminal object is the empty arena; for any arenas A and
B, their cartesian product is given by the standard product construction A x B,
and the function space arena is A = B. However lifting (=) is not functorial.
We write L. for the subcategory whose objects are arenas but whose maps are
recursive (in the sense of [8, §5.6]), relevant, CC strategies.

Remark 3. (i) There is no way lifting can be functorial in a category of condi-
tionally copycat strategies. Take a CC strategy o : A — B. Since id | = id :
A, — By, o, is forced to respond to the initial move g in B, with the
initial move g4 in A, and to respond to the P-view gggaas with the move
ap. Now almost all P-views in o contain an O-answer a4 immediately followed
by a P-answer ap, and so, by Lemma 2, ¢, is almost always constrained to
play copycat, whereas o may not be restricted in the same way. (It is easy to
construct concrete instances of o and o .)

(ii) Functoriality of lifting is not necessary for the construction of our game
models of the Lazy Lambda Calculus. The domain equation D = [D = D], is
solved in an auxiliary category of games whose maps are the subgame relations
(see e.g. [2]), and lifting is functorial in this category. All we need are two
(relevant, CC) strategies, upp : D — D and dnp : D; — D, such that
dnp o upp =idp, which are easily constructible for any arena D.



(iii) Indeed functoriality of lifting is inconsistent with our model being fully
abstract. A feature of our model is that there are “few” denotable strategies
that are compact-innocent; indeed the innocent strategy denoted by a closed
term is compact if and only if the term is unsolvable of a finite order. Now we
know from [3, Lemma 9.2.8] that projections on the finite approximations D,, of
the fully abstract model D of the Lazy Lambda Calculus are not A-definable. If
all the domain constructions involved in the domain equation D = [D = D],
were functorial, these projections would be maps that are definable categorically,
which would imply that our model is not fully abstract.

4 Universality and full abstraction

The model. We denote the initial solution of the recursive domain equation
D = [D = D], in the category L as the arena D. The arena D satisfies the
properties:

1. Every question justifies a unique answer, and at most one question.
2. Every answer justifies a unique question.

With respect to the justification relation, D has the structure of a finitely-
branching tree in which every node has either one or two descendants; see Fig-
ure 1 for a picture of D. Note that [D = D], and D are identical (not just
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Fig. 1. A picture of D




isomorphic) arenas. For any closed A-term s, we shall write [s] for its denota-
tion in the model given by D in IL (so that [s] is a relevant, CC strategy over
D). By adapting a standard method in [4] based on an approximation theorem,
we have the following result:

Lemma 4 (Adequacy). For any closed term s, we have [ s] = L, the strategy
that has no response to the opening move, if and only if s is strongly unsolvable
(i.e. s is not B-convertible to a \-abstraction,).

Structure of P-views. We aim to describe P-views of D in terms of blocks
(of moves) of two kinds, called « and 3 respectively.

For n > 0, an «,-block is an alternating sequence of O-questions and P-
answers of length 2n + 1, beginning with an O-question, such that each element
except the first is explicitly justified by the preceding element, as follows:

[0][1] [nfll[n

We call [; the i-th question of the block.

For m > 0,s > 0and j > 1, a ﬂ#ﬂ)-block is an alternating sequence of
P-questions and O-answers of length 2m + 1, beginning with a P-question, such
that each element except the first is explicitly justified by the preceding element,
as follows:

() G) - G ) G

We call (; the i-th question of the block. The superscript (i, ) in ﬂr(,i’j) encodes
the target of the justification pointer of (, relative to the P-view of which the

Sf;’j)—block is a part (about which more anon). A EZ’j)—block is just a ﬁr(,i’j)—block
followed by a ), which is explicitly justified by the last question (,,. An a-block
is just an ay-block, for some n; similarly for a §-block.

Suppose we have a P-view of the form
p = A B AyBy - Ay By ---

where each Ay, is an ay,,-block and each By is a ﬂl(:“ ) _hlock. The superscript
(ik,jr) encodes the fact that the O-th question of the block By is explicitly
justified by the ji-th question of the block Aj_;, . Thus we have the following
constraints: for each & > 1

0<in<k A 1<jp<np (1)

The lower bound of jj, is 1 rather than 0 because, by definition of D (see Figure 1),
the only move that the 0-th question of any a-block can justify is an answer.
Note that since p is a P-view by assumption, for each k& > 2, the 0-th question
of the a-block Ay, is explicitly justified by the last question of the preceding
(3-block.



Remark 4. It is straightforward to see that given any finite alternating sequence
v of a- and -blocks

(1,51 iodk)

Y = Op, ﬂll ). Ay, ﬂl(k

subject to the constraints (1), there is exactly one P-view p of D that has the
shape 7. Therefore there is no harm in referring to the P-view p simply as 7,
and we shall often do so in the following.

Lemma 5 (P-view Characterization). Suppose the even-length P-view

w = Qny 6l1 T Qg ﬂlm

is in a relevant CC strategy o over D for some m > 0. Then exactly one of the

following holds:

(1) For each j >0, W a; € dom(f,).

(2) There is some n > 0 such that W «, € o\ dom(f,).

(8) There are some Nyiq > 0, some 0 <i<m+1 and some 1 < j < nppp1—;
such that fo : Wap,,,, — ((“); further by relevance, for somel > 0, we
have

fo - Wanerl El(l’]) = ]

Moreover by CC we have W ay,, ., Bl(w) 1C € dom(f,), for each (odd-length)

copycat block C, as defined in Lemma 2.

For any A-term s, if the set {i > 0 : ItAB F s = Axy---z;.t} has no
supremum in N, we say that s has order infinity; otherwise if the supremum
is n, we say that s has order n. A term that has order infinity is unsolvable
(e.g. yk, for any fixpoint combinator y). We give an informal definition of LT(s),
the Levy-Longo tree [11,12] of a A-term s, as follows:

— Suppose s is unsolvable: If s has order infinity then LT(s) is the singleton
tree T; if s has order n > 0 then LT(s) is the singleton tree L,,.
— Suppose s =g AT1 - Ty .YS1 -+ S, where m,n > 0. Then LT(s) is the tree:

ALy T Y

LT(s1) LT(s2) LT (spn)

It is useful to fix a variable-free representation of Levy-Longo trees. We write
N=1{0,1,2,---} and N} ={1,2,3,---}. A Levy-Longo pre-tree is a partial
function T" from the set (N4 )* of occurrences to the following set of labels

Nx(NxNp)xN U {L;:i>0} U {T}
such that



1. dom(T) is prefix-closed.
2. Every occurrence that is labelled by any of 1; and T is maximal in dom(7").
3. UT(ly- 1) =(n,(i,7),b) then:
(a) Iy - -lpl € dom(T) <= 1<1<b, and
(b)y 0<i<m+1,and
(¢) It 4 < m then T(ly ---Il—;) is a triple, the first component of which is
at least j.

(The case of i = m + 1 corresponds to the head variable at Iy - - -1, being a free
variable.) We say that the pre-tree is closed if T'(ly---1,,) = (n,(i,4),b) =
i <m. A Levy-Longo tree is the Levy-Longo pre-tree given by LT(s) for some
A-term s. In the following, we shall only consider closed pre-trees and trees.

To illustrate the variable-free representation, consider the following (running)
example.

Ezample 1. Set s = Az122.21 L1 (Ay192y3.Y2 (Az.z1)) T. The Levy-Longo tree
LT(s) as shown in the figure below

)\$1£L‘2.£L‘1
1y AY1Y2Y3-Y2 T
A\z.21

In variable-free form, LT(s) is the following partial function:

{GH (2,(0,1),3) 2~(3,(0,2),1) 21+ (1,(2,1),0)
1— 1 3—T

We Take LT(s) : 21 — (1,(2,1),0) which encodes the label Az.z; of the tree at
occurrence 21: the first component is the nested depth of the A-abstraction: in
this case it is a 1-deep A-abstraction (i.e. of order one); the second component
(i,7) says that the head variable (z; in this case) is a copy of the j-th (in this
case, first) variable bound at the occurrence 7 (in this case, two) levels up; and
the third component is the branching factor at the occurrence, which is 0 in this
case i.e. the occurrence 21 has 0 children.

Thanks to Lemma 5, we can now explain the correspondence between relevant
CC strategies over D and closed Levy-Longo pre-trees; we shall write the pre-tree
corresponding to the strategy o as T,,. Using the notation of Lemma 5, the action

of the strategy o on a P-view p € o of the shape «a, ﬂl(fl’jl) S ﬂl(i’"’jm) [
determines precisely the label of T, at the occurrence [y ---[,,. Corresponding
to each of the three cases in Lemma 5, the label defined at the occurrence is as

follows:



N =

1, where n > 0, and
3. (n, (i,7),b).
It is easy to see the occurrence in question is maximal in dom(7T}) in cases
1 and 2. Suppose case 3 i.e. T,(ly---1,,) = (n,(i,7),b). From the P-view p,
we can work out the label of T, at each prefix [y -- -l (where k < m) of the
corresponding occurrence, which is (ng11, (fk+1,Jk+1), bkr1 ), as determined by

) ) Alikt1,Jk41)
f Qn,y 6(“ ) . Ay, ﬁ b, Anppr 6bk+1 = ]

we set (Nynt1y (Gmt1s Jmt1), bmt1 ) = (n, (i,7),b). Note that by is well-defined
because of relevance. Thus the domain of T, is prefix-closed. Take any k < m.
For each 1 <1 < bj41, we have the odd-length P-view

/6(117]1 ﬂl(lk+171k+1) [ c

g

ik i)
Qny T Qpy, ﬂl ’ Xy gy

and so, we have [y -+ -l € dom(T,) <= 1 <1 < bgs1. Finally, we must have
Jkt+1 < Nk—iyy, » as the pointer of the 0-th (P-)question of the 8-block ﬂl(i’““’j’““)
is to the jjy1-th question of the a-block .

To summarize, we have shown:

Lemma 6 (Correspondence). There is a one-to-one correspondence between
relevant CC strategies over D and closed Levy-Longo pre-trees.

Ezample 2. Take the term s = Azyx2.x1 L1 (Ay1y2y3-y2 (Az.21)) T in the pre-
ceding example. In the following table, we illustrate the exact correspondence
between the relevant CC strategy [s] denoted by s on the one hand, and the
Levy-Longo tree LT(s) of the term on the other.

P-views in [s] occurrences labels of LT(s)
g o e (201),3)
Qs 51071) a € o\ dom(f,) 1 L
0,2)
o B0 ﬁ( -1 2 (3,(0,2),1)
s 5(071) a, —] forn>0 3 T
02 B0 0y 807 | a1 BV |1 2 (L@

For each P-view shown above, note that the subscripts in bold give the corre-
sponding occurrence in the Levy-Longo tree, and the label at that occurrence is
specified by the (subscripts and the superscript in the) block that is framed. The
first, third and fifth P-views define the “boundary” beyond which the copycat
response sets in.

Using an argument similar to the proof of [4, Thm 10.1.23], we can show
that every recursive closed Levy-Longo pre-tree T is the Levy-Longo tree of
some closed A-term. Thus we have:



Theorem 2 (Universality).

1. The denotation of a closed A-term s is a recursive, relevant, CC strategy
which corresponds to LT(s) in the sense of Lemma 6.

2. Every recursive, relevant, CC strategy over D is the denotation of a closed
A-term. Le. for every o € Lyec (1,D) there is some s € A° such that [s] = o.

It follows that two closed A-terms have the same denotation in D iff they have the
same Levy-Longo tree. As a straightforward corollary, the observational quotient
of the model then gives a universal, and hence fully abstract, model of the pure
Lazy Lambda Calculus.
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