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Abstract. We apply Leifer-Milner RPO approach to the A-calculus, en-
dowed with lazy and call by value reduction strategies. We show that,
contrary to process calculi, one can deal directly with the A-calculus syn-
tax and apply Leifer-Milner technique to a category of contexts, provided
that we work in the framework of weak bisimilarities. However, even in
the case of the transition system with minimal contexts, the resulting
bisimilarity is infinitely branching, due to the fact that, in standard con-
text categories, parametric rules such as 3 can be represented only by
infinitely many ground rules. To overcome this problem, we introduce the
general notion of second-order context category. We show that, by car-
rying out the RPO construction in this setting, the lazy (call by value)
observational equivalence can be captured as a weak bisimilarity equiv-
alence on a finitely branching transition system. This result is achieved
by considering an encoding of A-calculus in Combinatory Logic.

1 Introduction

Recently, much attention has been devoted to derive labelled transition systems
and bisimilarity congruences from reactive systems, in the context of process lan-
guages and graph rewriting, [Sew02LM00/SS03IGMO05BGKO6/BKMO6/EK06].
In the theory of process algebras, the operational semantics of CCS was orig-
inally given via a labelled transition system (lts), while more recent process
calculi have been presented via reactive systems plus structural rules. Reactive
systems naturally induce behavioral equivalences which are congruences w.r.t.
contexts, while Its’s naturally induce bisimilarity equivalences with coinductive
characterizations. However, such equivalences are not congruences in general, or
else it is an heavy, ad-hoc task to prove that they are congruences.

Generalizing [Sew02], Leifer and Milner [LMO0Q] presented a general categor-
ical method for deriving a transition system from a reactive system, in such a
way that the induced bisimilarity is a congruence. The labels in Leifer-Milner’s
transition system are those contexts which are minimal for a given reaction to
fire. Minimal contexts are identified via the categorical notion of relative pushout
(RPO). Leifer-Milner’s central result guaranties that, under a suitable categori-
cal condition, the induced bisimilarity is a congruence w.r.t. all contexts.

In the literature, some case studies have been carried out in the setting of
process calculi, for testing the expressivity of Leifer-Milner’s approach. Some dif-
ficulties have arisen in applying the approach directly to such languages, viewed
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as Lawvere theories, because of structural rules. Thus more complex categorical
constructions have been introduced in [Lei0I], and by Sassone and Sobocinski
in [SS03USS05]. Moreover, often intermediate encodings have been considered, in
graph theory, for which the approach of “borrowed contexts” has been developed
[EKO06], and in Milner’s bigraph theory [Mil07].

In this paper, we focus on the prototypical example of reactive system given
by the A-calculus, endowed with lazy and call by value (cbv) reduction strategies.
We show that, in principle, contrary to process calculi, one could deal directly
with the A-calculus syntax and apply Leifer-Milner technique to the category
of term contexts induced by the A-terms, provided that we work in the setting
of weak bisimilarities. However, even in the case of the transition system with
minimal contexts, the lts and the induced bisimilarity turn out to be infinitely
branching. This is mainly due to the fact that, in the category of contexts, the
[B-rule cannot be described parametrically, but it needs to be described exten-
sionally using an infinite set of pairs of ground terms. In order to overcome this
problem, we consider the combinatory logic and we introduce the general no-
tion of category of second-order term contexts. Our main result amounts to the
fact that, by carrying out Leifer-Milner’s construction in this setting, the lazy
(cbv) contextual equivalence can be captured as a weak bisimilarity equivalence
on a (finitely branching) transition system. Technically, this result is achieved by
considering an encoding of the lazy (cbv) A-calculus in KS Combinatory Logic
(CL), endowed with a lazy (cbv) reduction strategy, and by showing that the
lazy (cbv) contextual equivalence on A-calculus can be recovered as a lazy (cbv)
equivalence on CL. It is necessary to consider such encoding, since the approach
of second-order context categories proposed in this paper works for reaction rules
which are “local”, that is the reaction does not act on the whole term, but only
locally. But the substitution operation on A-calculus is not local.

Finally, the second-order approach carried out in this paper for the A-calculus
suggests a new general technique for dealing with any calculus with parametric
rules, alternative to the one of luxes in [KSS05]. Moreover, the correspondence
results obtained in this paper about the observational equivalences on A-calculus
and CL are interesting per se and, although natural and ultimately elementary,
had not appeared previously in the literature.

Summary. In Section [2|, we summarize the theory of reactive systems of
ILMOOQ]. In Section [3] we present the A-calculus together with lazy and cbv re-
duction strategies and observational equivalences, and we discuss the RPO ap-
proach applied to the A-calculus endowed with a structure of context category.
In Section |4} we focus on Combinatory Logic (CL), we show how to recover on
CL the lazy and cbv strategies and observational equivalences, and we discuss
the RPO approach applied to CL, viewed as a context category. In Section [} we
introduce the notion of second-order context category, and we apply the RPO
approach to CL viewed as a second-order rewriting system, thus obtaining char-
acterizations of lazy and cbv observational equivalences as weak bisimilarities on
finitely branching Its’s. Final remarks and directions for future work appear in
Section [6} For lack of space, proofs are omitted in this paper, however they are
available in [DHLOS].



2 The Theory of Reactive Systems

In this section, we summarize the theory of reactive systems proposed in [LMO0]
to derive 1ts’s and bisimulation congruences from a given reduction semantics.
Moreover, we discuss weak variants of Leifer-Milner’s bisimilarity equivalence.

The theory of [LMOQ] is based on a categorical formulation of the notion of
reactive system, whereby contexts are modeled as arrows of a category, terms
are arrows having as domain 0 (a special object which denotes no holes), and
reaction rules are pairs of terms.

Definition 1 (Reactive System). A reactive system C consists of:
- a category C;

— a distinguished object 0 € |C|;

— a composition-reflecting subcategory D of reactive contexts;

- a set of pairs R C Uy ¢ C[0,1] x C[0,I] of reaction rules.

Reactive systems on term languages can be viewed as a special case of reactive
systems in the sense of Leifer-Milner by instantiating C as a suitable category of
term and contexts, also called the (free) Lawvere category, [LMOQ].

Given a reaction system with reactive contexts D and reaction rules R, the
reaction relation — is defined by: t — u iff t = dl, u = dr for some d € D and
(I,r) € R.

The behavior of a reactive system is expressed as an unlabelled transition
system. On the other hand, many useful behavioral equivalences are only defined
for 1ts’s. The passage from reactive systems to lts’s is obtained as follows.

Definition 2 (Context Label Transition System). Given a reactive system
C, the associated context lts is defined as follows:

— states: arrows t : 0 — I in C, for any I;

— transitions: t—>cu iff ¢ € C and ¢t — u.

In the case of a reactive system defined on a category of contexts, a state
is a term ¢, and an associated label is a context ¢ such that ct reduces. In the
following, we will consider also Its’s obtained by reducing the set of transitions
of the context lts. In the sequel, we will use the word lts to refer to any such lts
obtained from a context lts. In the standard way, any lts induces a bisimilarity
relation. In [LMOQ], the authors proposed a categorical criterion for identifying
the “smallest context allowing a reaction”.

Definition 3 (RPO/IPO).

i) Let C be a category and let us consider the commutative diagram in Fig. (z)
Any tuple (I, e, f, g) which makes diagram in Fig.[1|(ii) commute is called a can-
didate for (i). A relative pushout is the smallest such candidate, i.e. it satisfies
the universal property that given any other candidate (I €', f',¢'), there exists a
unique mediating morphism h : Is — Ig such that both diagrams in Fig. (m)
and Fig. [1(iv) commute.

it) A commuting square such as diagram in Fig (z) is an idem pushout if
(I4,¢,d,idy,) is its RPO.
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Fig. 1. Redex Square and Relative Pushout.

Definition 4 (IPO Transition System).
— States: arrows t : 0 — I in C, for any I;
— transitions: t—=rdr iff d € D, (I,r) € R and the diagram in Fig. |1 I(z) is an
IPO.

That is, if inserting ¢ into the context ¢ matches dI, and c is the “smallest”
such context (IPO condition), then ¢ transforms to dr with label ¢, where r is
the reduct of [. Let ~; denote the bisimilarity induced by the IPO Its.

Definition 5 (Redex Square). Let C be a reactive system and t : 0 — Iy an
arrow in C. A redex square (see Fig.[1|(i)) consists of a left-hand side | : 0 — I3
of a reaction rule (I : 0 — Is,r : 0 — I3) € R, a context ¢ : [s — Iy and a
reactive context d : I3 — I, such that ct = dl.

A reactive system is said to have redex RPOs if every redex square has an RPO.

The following is Leifer-Milner’s central result:

Theorem 1 ([LMOQ]). Let C be a reactive system having redex RPOs. Then
the IPO bisimilarity ~y is a congruence w.r.t. all contexts, i.e. if a~yb then for
all ¢ of the appropriate type, ca~ych.

2.1 Weak Bisimilarity

For dealing with the A-calculus, it will be useful to consider the weak versions of
the context and IPO Its’s defined above, together with the corresponding notions
of weak bisimilarities.

One can proceed in general, by defining a weak lts from a given lts:
Definition 6 (Weak Its and Bisimilarity). Let —— be a lts, and let T be a
label (identifying an unobservable action).

i) We define the weak lts == by

t if v =
t =" u zﬁ{j)*u fa=7
t—

o T * .
t —u — u otherwise .

where —— denotes the reflexive and transitive closure of —.
it) Let us call weak bisimilarity the bisimilarity induced by the weak Its.



The above definition differs from the one proposed in [LMO00]. We cannot use
that in [LMOQ], since it discriminates A-terms which are equivalent in the usual
semantics. The following easy lemma gives a useful characterization of the weak
bisimilarity, whereby any ——-transition is mimicked by a ==-transition:

Lemma 1. Let - be a lts and let == be the corresponding weak lts. The

induced weak bisimilarity is the greatest symmetric relation R s.t.:
f

(@b eR N a-tod = W. oLt A (@ V)eR.

For dealing with the A-calculus, we will consider a notion of weak IPO bisim-
ilarity, where the identity context is unobservable. Such notions of weak IPO
bisimilarities are not congruences w.r.t. all contexts, in general, however, as ob-
served in [LMOO] (end of Section 5), they are congruences at least w.r.t. reactive
contexts:

Theorem 2. Let C be a reactive system having redex RPOs. Then the weak
IPO bisimilarity ~j, where the identity context is unobservable, is a congruence
w.r.t. reactive contexts.

3 The Lambda Calculus

First, we recall the A-calculus syntax together with lazy and cbv reduction strate-
gies and observational equivalences. Then, we show how to apply the RPO tech-
nique to A-calculus, viewed as a context category, and we discuss some problem-
atic issues.

The set of A-terms A is defined by (A 3) M == = | MM | Az.M , where
x € Var is an infinite set of variables. Let F'V (M) denote the set of free variables
in M, and let us denote by A° the set of closed A-terms.

As usual, M\-terms are taken up-to a-conversion, and application associates to
the left. We consider the standard notions of 8-rule (Ax.M)N —g M[N/z] and
By-rule (Az.M)N —g, M[N/z]. We denote by =5 and =g, the corresponding
conversions.

A reduction strategy on the A-calculus determines, for each term which is not
a value, a suitable g-redex appearing in it to be contracted. The lazy and cbv
reduction strategies are defined on closed A-terms as follows:

Definition 7 (Reduction Strategies).
i) The lazy strategy —;C A° x AY reduces the leftmost (3-redex, not appearing
within a A-abstraction. Formally, —; is defined by the axiom:

N —1 N/
(\z.M)N =, M[N/z] NP = NP

ii) The call by value strategy —,C A% x A° reduces the leftmost By -redex, not
appearing within a \-abstraction. Formally, —, is defined by the following rules:

N —, N’ N —, N’
O MV —, M[V/a] NP =, NP O MN =, Oz MN'




where V' is a A-abstraction.

We denote by —7% the reflexive and transitive closure of a strategy —,, for
o € {l,v}, by Val, the set of values, i.e. the set of terms on which the reduction
strategy halts (which coincides with the set of A-abstractions in both cases), and
by M ||, the fact that there exists V' € Val, such that M —% V.

As we will see in Section [3.1] below, each strategy defines a reactive system
on A-terms in the sense of Definition |1 To this aim, it is useful to notice that
the above reduction strategies can be alternatively determined by specifying
suitable sets of reactive contexts, which are subsets of the following (closed)
unary contexts, i.e. contexts with a single hole: C[] == [] | PC[] | C[]P .

Remark 1. i) The lazy strategy —; is the closure of the S-rule under the reactive
contexts, corresponding to the (closed) applicative contexts: D[] == []| D[]P,
ii) The cbv strategy —, is the closure of the By -rule under the following (closed)
reactive contexts: D[] == []| D[]P | (Az.M)D[] .

Each strategy induces an observational (contextual) equivalence & la Morris
on closed terms, when we consider programs as black boxes and only observe
their “halting properties”.

Definition 8 (c-observational Equivalence). Let —, be a reduction strategy
and let M, N € A°. The observational equivalence ~, is defined by
M =, N iff for any unary context C[ ], C[M] {,< C[N] Js -

The definition of ~, can be extended to open terms by considering clos-
ing substitutions, i.e. for M, N € A st. FV(M,N) C {x1,...,z,}, we define:
M=, N iff for all closing substitutions P, M[P/x] ~, N[P/x].

Remark 2. Notice that the definition of unary contexts does not include M-
abstraction contexts, i.e. contexts where the hole appears under the scope of
a A-abstraction. Namely, such contexts are not relevant, since ~, is defined on
closed terms. Moreover, often in the literature, the observational equivalence is
defined by considering multi-holed contexts. However, it is easy to see that the
two notions of observational equivalences, obtained by considering just unary or
all multi-holed contexts, coincide.

The problem of reducing the set of contexts in which we need to check the
behavior of two terms has been widely studied in the literature. In particular, for
both strategies in Definition [7] above, a Context Lemma holds, which allows us
to restrict ourselves to applicative contexts of the shape [ | P, where P denotes a
list of terms. Let us denote by ~%P? the observational equivalence which checks
the behavior of terms only in applicative contexts. This admits a coinductive
characterization as follows:

Definition 9 (Applicative o-bisimilarity).

i) A relation R C A% x A% is an applicative o-bisimulation if the following holds:
(M,NYeR = (Ml,s NJ{,) ANVPeA" (MP,NP)eR.

ii) The applicative equivalence ~%P is the largest applicative bisimulation.



The Context Lemma, a well-known resut [AO93/EHRI2Z|, states ~s,=~2PP.
By the Context Lemma, the class of contexts in which we have to check the
behavior of terms is smaller, however it is still infinite, thus the applicative
bisimilarity is infinitely branching. In the following, we will study alternative
coinductive characterizations of the observational equivalences, arising from the
application of Leifer-Milner technique.

3.1 Lambda Calculus as a Reactive System

Both lazy and cbv A-calculus can be endowed with a structure of reactive system
in the sense of Definition [T} by considering a suitable variant of context category.

Definition 10 (Lazy, cbv \-reactive Systems). C2, for o € {l,v}, consists
of
— the category whose objects are 0,1, where the morphisms from 0 to 1 are the
closed terms (up-to a-equivalence), the morphisms from 1 to 1 are the unary
contexts (up-to a-equivalence), and composition is context insertion;
— the subcategory of reactive contexts is determined by the reactive contexts for
the lazy and cbv strategy, respectively, presented in Remark [1}
— the (infinitely many) reaction rules are (Ax.M)N —g, M[N/z], for all
M,N.

The above definition is well-posed, in particular the subcategory of reactive
contexts is composition-reflecting.

One can easily check that the system C) admits RPOs; since there are no
abstraction contexts, this fact can be proved by repeating the corresponding
proof for the category of term contexts, [Sew(2].

Lemma 2. The reactive system C, for o € {l,v}, has redex RPOs.

The TPO contexts of a closed term for the lazy and cbv reactive systems are
summarized in the first two tables of Fig. [2l The applicative IPO contexts appear
in the third table. This class of contexts is interesting, since it is sufficient for
determining the observational equivalence (see Theorem [3| below).

Lazy lts Cbv lts Lazy/cbv appl. lts’s
lterm [IPO contexts‘ lterm [IPO contexts Hterm [IPO cont. ‘
Ax.M [ 1P, PC] Ax.M [ 1P, RC[], (Az.Q)[ ]|| \x.M [P
(Az.M)NPI|[], PC[] (Az.M)NP|[], RC[] (Az.M)NP|[]

where R is not a cbv value.

Fig. 2. IPO contexts for the lazy/cbv lts’s and for their applicative restrictions.

The strong versions of context and IPO bisimilarities are too fine, since they
take into account reaction steps, and tell apart G-convertible terms. Trivially, I
and II, where I = \z.x, are equivalent neither in the context bisimilarity nor in



the IPO bisimilarity, since I LA, while 77 1 (both in the lazy and cbv case). On
the other hand, one can easily check that the weak context bisimilarity, where
the identity context [ ] is unobservable, equates all closed terms.

The main result of this section, whose proof can be found in [DHLO0S|, is the
following:

Theorem 3. Both for lazy and cbv strategies, the observational equivalence,
the weak IPO bisimilarity (where the identity context is unobservable), and the
applicative weak IPO bisimilarity (where only applicative contexts are considered)
coincide.

Theorem [3| above gives us interesting characterizations of lazy and cbv ob-
servational equivalences, in terms of lts’s where the labels are significantly re-
duced. However, such lts’s (and bisimilarities) are still infinitely branching, e.g.

o.M 5 1, for all P € A°. This is due to the fact that the context categories un-
derlying the reactive systems C and C; allow only for a ground representation
of the f-rule through infinitely many ground rules. In order to overcome this
problem, one should look for alternative categories which allow for a parametric
representation of the S-rule as (Az.X)Y — X[Y/x], where X, Y are parameters.
To this aim, we introduce the category of second-order term contexts (see Sec-
tion [5| below). However, as we will see, this approach works only if the reaction
rules are “local”, that is they do not act on the whole term, but only locally. In
particular, the operation of substitution on the A-calculus is not local and thus
it is not describable by a finite set of reaction rules. To avoid this problem, in
the following section we consider encodings of the A-calculus into Combinatory
Logic (CL) endowed with suitable strategies and equivalences, which turn out
to correspond to lazy and cbv equivalences.

4 Combinatory Logic

In this section, we focus on Combinatory Logic [HS86] with Curry’s combinators
K, S, and we study its relationships with the A-calculus endowed with lazy and
cbv reduction strategies. An interesting result that we prove is that we can define
suitable reduction strategies on CL-terms, inducing observational equivalences
which correspond to lazy and cbv equivalences on A-calculus. As a consequence,
we can safely shift our attention from the reactive system of A-calculus to the
simpler reactive system of CL. In this section, we apply Leifer-Milner construc-
tion to CL viewed as a (standard) context category, and we study weak versions
of context and IPO bisimilarities. Our main result is that we can recover lazy
and cbv observational equivalences as weak IPO equivalences on CL*, a variant
of standard CL. Here the approach is first-order, thus the IPO equivalences are
still infinitely branching. However, the results in this section are both interesting
in themselves, and useful for our subsequent investigation of Section [5, where
CL is viewed as a second-order rewriting system, and characterizations of the
observational equivalences as finitely branching IPO bisimilarities are given.



Definition 11 (Combinatory Terms). The set of combinatory terms is de-

fined by: (CL3) M == z | K|S | MM, where K, S are combinators.

The set of combinatory terms is endowed with the following reaction rules:
KMN — M SMNP — (MP)(NP)

Let CL denote the set of closed CL-terms.

4.1 Correspondence with the A-calculus
Let A(K,S) denote the set of A-terms built over constants K, S. The following
is a well-known encoding, [HS86]:

Definition 12 (A-encoding). Let T : A(K,S) — CL be the transformation
defined as follows:

T(x)==x T(C)=C ifCe{K,S}
T(MN)=T(M)T(N) T(Ax.MN)=S8T(Ax.M)T (A\z.N)
T (A\x.x) = SKK T ( Az \y. M) T (Ax. T (\y.M))
T(Az.y) =Ky T(\x.C)=KT(C) if C € {K,S}

In particular, if we restrict the domain of T to A, we get an encoding of the
A-calculus into CL.

Vice versa, there is a natural embedding of CL into the A-calculus € : CL — A:
EK) = xyx  E(S)=Axyz.(z2)(yz) Ex)=x EMN)=EM)E(N)

Definition 13 (Lazy/cbv Reduction Strategy on CL).
i) The lazy reduction strategy —;C C'LY x CL° reduces the leftmost outermost
CL-redex. Formally:

—— M =y MY
SM1M2M3 —1 (MlMg)(MgMg) KM1M2 —1 M1 MP —1 M/P

ii) The cbv strategy —,C CL% x CL® is defined by

M1 — M{
S‘/i‘/ng — (%Vg)(‘/ng) KV1V2 v Vl KM1 — KM{
Mg — MQ/ M1 — M{ M2 — Mé
KV, M, —, KV M} SM, —, SM] SViMy —, SV, M;
Mz —, M M —, M’
SViVaMs —,, SV1V2Mj MP —, M'P

where Vi, Vo, Vs are values, i.e. non —,-reducible CL-terms:

V u= K|S |KVI|SV|SVV .

Alternatively we could define the lazy strategy —; as the closure of CL-
reaction rules under the following reactive contexts (which coincide with the
applicative ones): D[] == []| D[ ]P
Similarly, by considering the restriction to values of the reaction rules of Defini-
tion we could define the cbv strategy —., as the closure of CL-reaction rules
under the following reactive contexts:

D[] == [)| D[P |KD[] | KVD[]|SD[]| SVD[]|SVaD[].
Let |, denote the convergence relation on CL, for o € {I,v}.



Definition 14 (Lazy/cbv Equivalence on CL).

i) A relation R C CL° x CL® is a CL lazy/cbv bisimulation if:

(M,N)eR = (M |,& N|,) ANVPeA (MP,NP)€R.

i) Let ~,C CL® x CL be the largest CL lazy/cbv bisimulation.

iii) Let =, C CL x CL denote the extension of ~, to open terms defined by: for
M,N € CL s.t. FV(M,N) C {x1,...,zn}, ME,N iff for all closing substitu-
tions P, M|P/x] ~, N[P/xz].

The following theorem, whose proof is in [DHLOS§]|, is interesting per se:

Theorem 4. For all M,N € A, M, N <— T(M)=,T(N) .

4.2 The First-order Approach: CL as a Context Category

In the lazy case, where the reactive contexts coincide with the applicative ones,
we can endow CL with a structure of reactive system in the sense of [LM00], by
considering the smaller context category consisting of just applicative contexts.
This allows us to obtain directly an lts with only applicative labels. In the cbv
case, where the set of reactive contexts is larger, one can reduce the labels of
the IPO bisimilarity only a posteriori, see [DHLOS] for more details. For lack of
space and in order to focus on other important aspects, we work out in detail
only the lazy case.

Definition 15 (Lazy CL Reactive System). The lazy CL reactive system
C| consists of:

— the context category whose objects are 0,1, where the morphisms from 0 to
1 are the closed terms, the morphisms from 1 to 1 are the closed applicative
contexts, and composition is context substitution;

— the reactive contexts are all the closed applicative contexts;

— the reaction rules are KMy My — My and SMyMsMs — (MyMs) (M Ms),
fO’f‘ all Ml, Mg, Mg.

It is easy to prove that the reactive system C; has redex RPOs. One can
easily check that the minimal contexts are of the shape [ |P, where P has the
minimal length for the top-level reaction to fire.

The strong versions of context and IPO bisimilarities are too fine, since, as
in the A-calculus case, they take into account reduction steps, and tell apart
[B-convertible terms. Thus we consider weak variants of such equivalences, where
the identity context [ ] is unobservable. Weak context bisimilarity is too coarse,
since it equates all terms. However, we will prove that the weak IPO bisimilarity
“almost” coincides with the lazy equivalence. Moreover, we will show how to
recover the exact correspondence by considering a suitable variant of CL.

First of all, let ~;; denote the lazy weak IPO bisimilarity obtained by consid-
ering the identity context as unobservable. By Theorem [2| ~;; is a congruence
w.r.t. reactive contexts, i.e.:

Proposition 1. For all M,N,P € CL°, M ~; N = MP ~;; NP.

10



The rest of this section is devoted to compare the lazy weak IPO bisimilarity
~;; with the lazy equivalence on CL ~; defined in Definition [T4]
Using coinduction and Proposition [I| one can easily prove that ~;;C~;.

However, the converse inclusion, i.e. ~;C~;;, does not hold, since e.g. K ~;

S(KK)(SKK), while K 2;; S(KK)(SKK). Namely S(KK)(SKK)-%;, while

[P
K /7. The problem arises since the equivalence ~;; tells apart terms whose top-

level combinators expect a different number of arguments to reduce. In order
to overcome this problem, we consider an extended calculus, CL*, where the
combinators K and S become unary, at the price of adding new intermediate
combinators and intermediate reductions (the reactive contexts are the ones in

Definition .
Definition 16. Let CL* be the combinatory calculus defined by

— Terms: M =2z |K|S|KM|SM|S"MN| MN
where K, K, S, S', 8" are combinators.
— Rules: KM — KM K'MN — M

SM—~S'M  S'MN—S'MN  S'MNP — (MP)(NP)

Notice that the calculus in the above definition is well-defined, since the set
of terms is closed under the reaction rules.

Now let use denote by ~j; the weak IPO bisimilarity obtained by considering
the lazy reactive system over CL*. Then, we have K ~}; S(KK)(SKK). More
in general, by considering the reactive system over CL*, the induced weak IPO
bisimilarity ~;; coincides with the lazy equivalence on CL:

Theorem 5. For all M,N € CL°, ~j=~.

As a consequence of Theorem [4] and Theorem [5] above, we can recover the
lazy observational equivalence on A-terms as weak IPO bisimilarity on CL*.

Proposition 2. For all M,N € A°, M ~; N <= T (M) ~; T(N).

However, such notion of weak IPO bisimilarity still suffers of the problem
of being infinitely branching, since IPO contexts are either [ ] or [ |P, for all
P € (CL*)°. This problem will be solved in Section where CL* is endowed
with a structure of second-order context category.

5 Second-order Term Contexts

The definition of term context category [LMOQ] can be generalized to a definition
of second-order term context. The generalization is obtained by extending the
term syntax with function (second-order) variables, that is variables not standing
for terms but instead for functions on terms. The formal definition is the following

Definition 17 (Category of Second-order Term Contexts). Let X be
a signature for a term language. The category of second-order term contexts
over X is defined by: objects are finite lists of naturals (nqy,...,ng), an arrow

11



(m,...,mp) — (n1,...,ng) s a k-tuple (t1,...,tx), where the term t; is de-
fined over the signature X U{F{"", ..., F;""}U{X;1...,X;n,}, where F{"" is a
function variable of arity m;, X; ; is a ground variable. The category of second-
order linear term context, 75 (X'), is the subcategory whose arrows are n-tuples
of terms, satisfying the condition that the n-tuples have to contain exactly one
use of each function variable F]™".

One can check that the standard category of term contexts over X' coin-
cides with the subcategory whose objects are the lists containing only copies of
the natural number 0; in fact this subcategory uses function variables with no
arguments and the ground variables do not appear.

Since the simplest way to define composition in category T4 (%), and more
generally in the category of second-order term context, is in terms of S-reduction,
it is useful to represent morphisms, i.e. terms on the signature YU{F/"*, ... F}""}
U{Xi1,...,Xin,}, using a A-notation for binding variables, that is, instead of
writing a term with free variables, we write its lambda closure. To avoid ambi-
guities we use a different symbol A for this form of lambda abstraction. With
this notation a term ¢ on the signature X U {F{™,... . F;""} U {X1,..., X}
is written as: AFY"! ... F}"" AX, ... X, .t, or as AF.]AX .t for brevity. In general

a second-order context (t1,...,t5) : (my,...,my) — (nq,...,ng) is written as
AFAANX 1t AX ).

(i) The 1dent1ty on (ny,...,ng) is: AF.( AX1.F"(X1),..., AX . F*(Xy)).
(ii) The composmon between the morphisms AF.( AX1.51,..., AXp.85) :
<l1,.. > — <m1,..., > and )\G< )}\Yl.tl,..., )}\th]> : (ml,...,mk> —
(n1,...,n;) is the S-normal form of the expression

)\F()\G()\Yltl, e ,)}\Yj.tj» ()\Xl.sl, e ,)\stk) : <ll, ceey lh> — <TL1, ey nj>.
Informally, the composition is given by a j-tuple of expressions ¢; in which every
function variable G is substituted by the corresponding expression s;, with the
ground variables of s; substituted by the corresponding parameters of G; in t;.
For example, considering the signature for natural numbers {0, S, +}, the compo-
sition between AF. AX;.F(X1,0): (2) — (1) and AG. AY1Y2.(G(S(Y1))+Y2) :
(1) — (2) is the second order context: AF. AY1Y2.F(S(Y1),0)+Ys : (2) — (2).

Note that the identity morphism is defined as a A-term implementing the
identity function, while composition on morphisms is defined by the function
composition in the A-setting. Given this correspondence, it is easy to prove that
the categorical properties for the identity hold, while the associativity of com-
position essentially follows from the unicity of the normal form.

The main general result on second-order term contexts is the following;:

Proposition 3. For any signature X', the category of second-order linear term
contexts over X admits RPOs.

5.1 CL as Second-order Rewriting System

In this section, we consider the second-order context category for the combina-
tory calculus CL* and we show that the weak IPO bisimilarity thus obtained
coincides with the observational equivalence on A-calculus. Interestingly, the
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second-order open bisimilarity gives a uniform characterization also on open
terms. For simplicity, we work out in detail only the lazy case. However, the
main result holds also in the cbv case.

Note that the terms of CL are defined by signature Yoy, = {K, S, app}, where
app is the binary operation of application that is usually omitted. So the term
SKK actually stands for app(app(S, K), K).

Definition 18 (Lazy CL* Second-order Reactive System). The lazy second-
order Reactive system C?* consists of:

— the category whose objects are the lists with at most one element, and whose
arrows € — (n) are the terms of CL* with, at most, n (first order) variables,
and the whose (m) — (n) are the second-order applicative contexts of the
shape F(My, ..., Mp)Ny ... Ny, with, at most, n (first order) variables;

— the reactive contexts are all the second-order applicative contexts;

— the reaction rules are:

KX1 — K/Xl K/XlXQ — X1
SX1 — S/Xl S,X1X2 — S”XlXQ S”X1X2X3 — (XlXQ)(Xng)

To maintain the notation for contexts used in Sections 3, 4, in the sequel
a second-order applicative context F(My,..., My, )Ny...Ni : (m) — (n) will

be more conveniently written as [ JoNi... Nk, where 6 is a substitution s.t.

0(X;) = M; for alli = 1,..., m, moreover we write M oP np iy (MOYP — M.

Given Proposition [3] and the underlined RPOs construction, we have:
Corollary 1. The reactive system Clz* has redex RPOs.

Using Lemma |1} one can check that the lazy weak IPO bisimilarity for C#*,
obtained by considering the identity context as unobservable, can be character-
ized as follows:

Lemma 3 (Second-order Lazy Weak IPO bisimilarity).
i) A symmetric relation R on terms of CL* is a second-order lazy weak IPO

bisimulation if the following holds

(M,N) € R and M [El M’ then there exists N’ such that N [g)] N’ and

(M',N") e R.
ii) The second-order lazy weak IPO bisimilarity ~7 is the greatest second-order
lazy weak IPO bisimulation.

Notice that, for a given term, there could be infinitely many second-order
IPO reductions, where the redex is entirely contained in the context. E.g. for

the term XM, XM, oy K'Y M; and XM, K'Y:YoM; are
both IPO reductions of this shape. However, there are only finitely many IPO
contexts s.t. the redex is not entirely contained in the context. One can show
that such IPO reductions are sufficient for determining the weak IPO bisimilarity,
thus getting a finitely branching characterization.

Ezample: Let M = X M;. The “relevant” IPO reductions of M (i.e. those which
are not entirely contained in the context) are the following:

[ Jixyivo/x)
—

13



[ ]{K/X} [ ]{K’Y/X} [ ]{K’/X} []

/ v (8/X} o/
XMl i KMl,XMl i Y,XMl — Ml;XMl — 81\417

[ ]{S/Y/X}

’ Y 1"
xon U gy xn Y sy xan e (v g
1" Z 1" YZ
(YMy); XM, Ulesrwyx) (YM)(YZ); XM, Usrx) (M,Y) (M, Z).

In general, the relevant IPO contexts are summarized in the following table:

’term \IPO contexts ‘ In order to prove that the IPO contexts in
X [] ©y/x) [] © X}Y the table are sufficient for determining the
XNP[| ©/x} weak IPO bisimilarity, one can show (by
C o X “coinduction up-to”) that the bisimilarity
CNP|[], obtained by considering only such contexts

is a congruence w.r.t. substitutions.
Ce{K,S,K'M,S'"M,S"MN | M,N € CL}
Ce{K,S,K'Z,S'Z,S"Z1Zy | Z,Z1,Z5 fresh variables}.

More in general, by Theorem ':121* is a congruence w.r.t. reactive contexts:

Proposition 4. For all terms of CL* M, N, for all substitutions 8, for all CL*-
terms Py,..., Py, M~ N = (MO)P ~% (NO)P .

The following is the main result of this section:
Proposition 5. For all M,N € A, M&/N <= T (M)~} T(N).
The proof of the above proposition, which appears in [DHLOS]|, proceeds by

showing that ~%' coincides with the natural extension of ~; to open terms.
Notice that Proposition [5| gives a uniform finitely branching characterization

also on open terms.

6 Final Remarks and Directions for Future Work

— There are several other attempts to deal with parametric rules in the liter-
ature. In particular, in [KSS05], the authors introduce the notion of luzes to
generalize the RPO approach to cases where the rewriting rules are given by
pairs of arrows having a domain different from 0. When instantiated to the
category of contexts, the luxes approach allows to express rewriting rules not
formed by pairs of ground terms but, instead formed by pairs of contexts (open
terms), and so allowing parametricity. Compared to our approach, based on the
notion of second-order context, the approach of luxes is more abstract and can
be applied to a wider range of cases (categories). However, if we compare the
two approaches in the particular case of context categories, we find that luxes
approach has a more restricted way to instantiate a given parametric rule. This
restriction results in a not completely satisfactory treatment of the A-calculus.
It remains the open question whether substituting the notion of second-order
contexts with a more abstract one, that should look like a general second-order
Lawvere theory. In this way, it should be possible to recover the extra generality
of luxes.

— A possible alternative approach for dealing with the A-calculus in Leifer-
Milner’s RPO setting, it that of using suitable encodings in the (bi)graph frame-
work [Mil07]. However, we feel that our term solution based on second-order
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context categories and CL is simpler and more direct. Alternatively, in place of
CL, one could also consider a A-calculus with explicit substitutions, in order to
obtain a convenient encoding of the (-rule, allowing for a representation as a
second-order reactive system. This is an experiment to be done. Here we have
choosen CL, since it is simpler; moreover, the correspondence between the stan-
dard A-calculus and the one with explicit substitutions deserves further study.

— We have considered lazy and cbv strategies, however also other strategies, e.g.
head and normalizing could be dealt with, possibly at the price of some compli-
cations due to the fact that such strategies are usually defined on open terms. It
would be also interesting to explore non-deterministic strategies on A-calculus.

References

A093. S. Abramsky, L. Ong. Full Abstraction in the Lazy Lambda Calculus, In-
formation and Computation, 105(2), 159-267, 1993.

BKMO06. F. Bonchi, B.Konig, U. Montanari. Saturated Semantics for Reactive Sys-
tems, LICS06, 2006.

BGKO06. F. Bonchi, F. Gadducci, B. Konig. Process Bisimulation via a Graphical
Encoding, ICGT 06, LNCS 4178, 168-183, 2006.

DHL08. P. Di Gianantonio, F. Honsell, M. Lenisa. RPO, Second-order
Contexts, and A-calculus, Extended version, 2008, available at:
www.dimi.uniud.it/pietro/papers/socl.pdf.

EHR92. L. Egidi, F. Honsell, S. Ronchi Della Rocca. Operational, Denotational and
Logical Descriptions: a Case Study, Fundamenta Inf., 16(2), 149-169, 1992.

EKO6. H. Ehrig, B. Konig. Deriving bisimulation congruences in the DPO ap-
proach to graph rewriting with borrowed contexts, Mathematical Structure
in Computer Science, 16(6), 1133-1163, 2006.

GMO5. F. Gadducci, U. Montanari. Observing Reductions in Nominal Calculi via
a Graphical Encoding of Processes, LNCS 3838, 106-126, 2005.

HS86. R. Hindley, J. Seldin. Introduction to combinators and l-calculus, Cam-
bridge University Press, 1986.

KSS05. B. Klin, V. Sassone, P. Sobocinski. Labels from reductions: Towards a gen-
eral theory, CALCO’05, LNCS 3629, 30-50, 2005.

LeiO1. J. Leifer. Operational congruences for reactive systems, PhD thesis, Uni-
versity of Cambridge Computer Laboratory, 2001.

LMOO0. J. Leifer, R. Milner. Deriving bisimulation congruences for reactive systems,
Proc. CONCUR’00, LNCS 1877, 243-258, 2000.

Mil07. R. Milner. Local bigraphs and confluence: two conjectures, Proc. Express’06,
ENTCS 175, 65-73, 2007.

SS03. V. Sassone, P. Sobocinski. Deriving bisimulation congruences: 2-categories
vs precategories, FoSSaCS 2003, LNCS 2620, 409-424, 2003.

SS05. V. Sassone, P. Sobocinski. Reactive systems over cospans, LICS’05, IEEE,
311-320, 2005.

Sew02. P. Sewell. From rewrite rules to bisimulation congruences, Theoretical Com-
puter Science, 274(1-2), 183-230, 2002.

Sob04. P. Sobocinski. Deriving process congruences from reduction rules, PhD the-

sis, University of Aarhus, 2004.

15



	RPO, Second-order Contexts, and -calculus
	Pietro Di Gianantonio  Furio Honsell  Marina Lenisa

