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Abstract. We study models of the untyped lambda calculus in the set-
ting of game semantics. In particular, we show that, in the category of
games G, introduced by Abramsky, Jagadeesan and Malacaria, all A-
models can be partitioned in three disjoint classes, and each model in a
class induces the same theory (i.e. the set of equations between terms),
that are the theory H*, the theory which identifies two terms iff they
have the same Bohm tree and the theory which identifies all the terms
which have the same Lévy-Longo tree.
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Introduction

In this paper we explore the methodology for giving denotational semantics
based on games, recently introduced by Abramsky, Jagadeesan, Malacaria and
Hyland, Ong (see [AJM96,HO00]). We use game semantics to build models of
the untyped A-calculus, focusing on which A-theories can be modeled. A-theories
are congruences over A-terms, which extend pure S-conversion. Their interest
lies in the fact that they correspond to the possible operational (observational)
semantics of the A-calculus. Although researchers have mainly focused on only
three such operational semantics, namely those given by head reduction, head
lazy reduction or call-by-value reduction, the class of A-theories is, in effect,
unfathomly rich, see e.g. [Bar84,HR92,HL.95,Ber97] for interesting examples of
this complexity. Brute force, purely syntactical techniques are usually extremely
difficult to use in the study of A-theories. Therefore, since the seminal work
of Dana Scott on D, in 1969 [Sco72], semantical tools have been extensively
investigated.

Games semantics has been extremely successful in modeling sequential lan-
guages, and it has also been used to define a “fully abstract” model for the lazy
A-calculus [AM95].

In this paper we complete the work initiated in [GFH99] and give a complete
characterization of the theories induced by general games models. In [GFH99]



we considered just extensional models, i.e. models in which the 7-rule holds. In
order to obtain our new results new proof techniques have been introduced.

In particular we consider the class D of models of the untyped A-calculus
built in the Cartesian closed category K1(G) of games and history-free strategies;
however we do not considered the category of extensionally collapsed games &
[ATMO96].

We show that the theory induced by each A-model in Ki(G) is either: the
theory H* (the maximal sensible theory), the theory % which equates two terms
if and only if that have the same B6hm tree or the theory £ which equates two
terms if and only if they have the same Lévy-Longo tree.

This result suggests that there exists a strong connection between a strategy
which interprets a term in the game semantics setting and the tree form of the
term. The current notion of game appears indeed to carry a very strong bias
towards head reduction. A new notion of game seems to be necessary to model
different A-theories. This appears to be rather problematic, since we feel that
“head reduction” is intrinsic to games for which we can observe only interactions
with the environment.

This hypothesis seems to be confirmed also by the recent results presented
in the related works [KNOOO,KNO99], in the slight different game semantics
paradigm of Hyland and Ong [HO00]. There, two particular games A-models are
built and it is proved, using techniques quite different from ours, that the two
models induce respectively the theories H* and 8.

The present paper is organized as follows. In section 1, we introduce the
categories of games that we shall utilize, namely G, K,(G) and their extensions
G®, Ki(G®). In Section 2 we introduce the main tool for the study of the fine
structure of the models built in the categories of Section 1, that is the approxi-
mations strategies whose intended meaning is to give a finite approximation of
the interpretation of a A-term. Section 3 is devoted to the study of the models
previously introduced and to the proof of the main theorem of this work, i.e.
the characterization of all the A-theories induced by the models of the untyped
A-calculus in the category Ki(G).

We assume the reader familiar with the basic notions and definitions of
A-calculus, see e.g. [Bar84]. This paper is self-contained as far as the theory
of games, however the reader can refer to [AJM96,HOO00] for more details on
this topic.

Acknowledgements. We wish to thank Fabio Alessi, Corrado Béhm, Furio
Honsell and Luke Ong for useful discussions during the period of which this work
generated.

1 Categories of games.

This section is devoted to the introduction of the basic notions of games seman-
tics that will be used in the rest of the paper. Essentially, we will make use of the
category G of games and history-free strategies [AJ94,AJM96,AM95] and most
definitions are standard, with the only exception of the definition of the category



G*® of games and history-sensitive strategies that is new. This new category is a
straightforward extension (super-category) of G and it has been introduced for
technical reasons.

Definition 1 (Games). A game has two participants: the Player and the Op-
ponent. A game A is a quadruple (Ma,Aa, Pa,~4) where

My is the set of moves of the game.
A Ma — {0, P} x {Q, A} is the labeling function: it tells us if a move is
taken by the Opponent or by the Player, and if it is a Question or an Answer.
We can decompose A4 into \QF : M4 — {O, P} and )\%4 t My — {Q,A}
and put Aa = (A\QF ,/\ﬁA). We denote by — the function which exchanges
Player and Opponent, i.e. O = P and P = O. We also denote with Q¥
the function defined by AQ¥ (a) = AQF(a). Finally, we denote with A4 the
function (AQF X94).
Py is a non-empty and prefiz-closed subset of the set M (which will be
written as Py Cnerref M$), where M is the set of all sequences of moves
which satisfy the following conditions:

o s=at = A(a) =0Q

o (Vi:1<i<Is)AG" (si41) = AQ"(s4)]

o (VETs)[[t I M| <[t MT]]
where Mf and Mg denote the subsets of game mowves labeled respectively
as Answers and as Questions, s | M denotes the set of moves of M which
appear in s and C is the substring relation. P4 is called the set of positions
of the game A.

=4 is an equivalence relation on Pa which satisfies the following properties:
‘|

o 548 =>|s|=]s
e saxy s'a => s~y
o 548 A sa€ Py= (Ja)[sa =4 s'd]

In the above s, s', t and t' range over sequences of moves, while a, a', b and b’
range over moves. The empty sequence is written €.

Definition 2 (Tensor product).

Given games A and B the tensor product AQ B is the game defined as follows:

Magp = Ma + Mp

AeB = [Aa, AB]

Pagp C M§®B is the set of positions, s, which satisfy the following condi-

tions:

1. the projections on each component (written as s | A or s [ B) are
positions for the games A and B respectively;

2. every answer in s must be in the same component game as the corre-
sponding question.

smagB S <= s|Amas' | A s Brps | B, (Vi)s; € Ma & s} € My]



Here + denotes disjoint union of sets, that is A+ B = {in;(a) | a € A}U{in,(b) |
b € B}, and [—, —] is the usual (unique) decomposition of a function defined on
disjoint unions.

It is easy to see that in such a game only the Opponent can switch component.

Definition 3 (Unit). The unit element for the tensor product is given by the
empty game I = (@, @, {e},{(€,€)}).

Definition 4 (Linear implication). Given games A and B the compound
game A — B is defined as follows:

— Maop=Ms+ Mg
— A—B = [A4,AB]
— Pagp C Mf® g s the set of positions, s, which satisfy the following condi-
tions:
1. the projections on each component are positions for the games A and B
respectively;
2. every answer in s must be in the same component game as the corre-
sponding question.

— s5Npg s <s|A~nss [As| Brps' fB,(VZ)[Sz EMA<=>SQ~ GMA]
It is easy to see that in such a game only the Player can switch component.
Definition 5 (Exponential). Given a game A the game !A is defined by:

—M!A:wXMA:Z MA

= Aa((i,a)) = Aa(a)

- P4 C MS is the set of positions, s, which satisfy the following conditions:
1. (VZ S w)[s r <Z,A) S P<i7A>:|;

2. every answer in s is in the same index as the corresponding question.

i€Ew

— s ~4 8' <= 3 a permutation of indexes a € S(w) such that:
* — * * !
o mi(s) = a*(ri(s))
o (View)[ns(s [ a(i)) = m3(s [ )]
where m and my are the projections of w X M4, 7 and w4 are the (unique)
extensions of my and Wy to sequences of moves and s | i is an abbreviation

of s (i, A).

Definition 6 (Strategies). A strategy for the Player in a game A is a non-
empty set o C P§U°™ of positions of even length such that @ = o U dom(o) is
prefiz-closed, where dom(c) = {t € P{%¥ | (Jla)[ta € 0]}, and P and P{Ue™
denote the sets of positions of odd and even length respectively.

A strategy can be seen as a set of rules which tells (in some position) the
Player which move to take after the last move by the Opponent.

The equivalence relation on positions =4 can be extended to strategies in the
following way.



Definition 7. Let 0,7 be strategies, o =~ 7 if and only if

1. sab € 0,5'a'b’ € 1,50 =4 s'a’ = sab~, s'a'V!
2. s€o0,s €T,50 =4 s'a’ = (Ib)[sab € o] if (F')[s'a'V’ € 7]

Such an extension is not in general an equivalence relation since it might lack
reflexivity. If o is a strategy for a game A such that o =~ o, we write ¢ : A and
denote with [o] the equivalence class containing o.

Definition 8 (History-free strategies). A strategy o for a game A is history-
free if it satisfies the following properties:

1. sab,tace o =>b=c
2. sab,t € o,ta € Py = tab€e o

Together with the “standard category” G of games and history-free strategies,
we need to introduce also the category G° having as morphisms all the strategies.
We call these morphisms history-sensitive strategies. Notice that almost all the
definitions in the two categories coincide.

Definition 9 (The category of games G and G*). The category G has as ob-
jects games and as morphisms, between games A and B, the equivalence classes,
w.r.t. relation ~4_op, of the history-free strategies o : A — B.

The category G° has as objects games and as morphisms, between games A
and B, the equivalence classes, w.r.t. relation ~a_.p, of strategies o : A — B.

The identity, in both categories, for each game A, is given by the (equivalence
class) of the copy-cat strategy ida = {s € Par_oan | s | A’ = s [ A"} where the
superscripts are introduced to distinguish between the two different occurrences
of the game A.

Composition is given by the extension on equivalence classes of the following
composition of strategies. Given strategies 0 : A — B and 7 : B — C, 700 :
A — C is defined by

TOO = {8 I(4,0) | SE€E(Ma+Mp+Mc)* ANs|(4,B)eq,s | (B,C) EF}even

It is not difficult to check that the above definitions are well posed, that G is a
faithful sub-category of G° and that the constructions introduced in Definitions
2, 4 and 5 can be made functorial in both categories, with coincident definitions.

The introduction of G* will be motivated in the next sections: it essentially
allows a more flexible notion of “approximation” for strategies.

Notice that there is a natural isomorphism in the category of sets between
(Ma+Mp)+ Mc and M4+ (Mp+ M¢) which induces a natural transformation

AY g o hom(A® B,C) = hom(4, B — O)

in G and G®, that is the categories G and G° are monoidal close. If we define for
each pair of games B and C' of G the strategy

evl o ={s € Poroprgar—opn |8 A' =51 A" & s | B'=s|B"}

we have, for each strategy o : AQB —o C the identity [0] = [ev}; o]o(4Y 5 o([0])®
[idB]). However G and G° are not Cartesian.



Definition 10 (The Cartesian closed categories of games K;(G) and
K\(G®)). The categories Ki(G) and Ki(G*®) are the categories obtained by taking
the co-Kleisli category over G and G° respectively, over the co-monad (!,der,d)
[ATMY6], where for each game A the (history-free) strategies derg : 1A — A
and 64 : 'A — 1A are defined as follows:

— dery = {s € Paoa | s <0:A)
)

=35
— (5A={S€BA40 !!A|3 (p(la.j)aA)
is a pairing function

I A}
=s| (j,{i,A))} wherep: Nx N> N

It is worthwhile to observe that (I,[der],[d]) will not be a co-monad if we do
not consider strategies up to equivalence. By the above definition the categories
K\(G) and K)(G?®) have as objects games and as morphisms between games A
and B the equivalence class of the strategies for the game !A — B. Moreover,
K\(G) and K (G®) are Cartesian.

Definition 11 (Cartesian product). The Cartesian product A x B of two
games A and B is defined by:

— Maxp=Mas+ Mp
AaxB = [Aa,AB]

— Paxp=Pa+ Pg
— RAxB= RA t =B

The projection morphism wﬁ’B : A x B— A is defined by

A,B
=

Ty {8 € Pyrsxponr |8 A =s] A"} oder x|

From the isomorphisms (A x B) 2 1A ® IB and !I = I it follows easily that
K\(G) and K,(G®) are Cartesian closed [AJM96].

Definition 12 (Exponent). The ezponent game A = B is the game |A — B.
The natural transformation Aa B c : hom(A x B,C) — hom(A, B = C) is the
strategy Al g o, and evp,c = evlp o o (deripoc X idiB).

Definition 13. Given a game A and strategies o : A and 7 : A (hence such that
o=o and T~ T) we define

cCT<=VseodterT.s~t
and then [c]C [1] <= o C 7.

The above definition does not coincide with the standard one, but can be easily
proved equivalent. It induces a partial order on equivalence classes of strategies.



2 Approximation strategies.

Let us now introduce the general concept of approximation strategy, which can
be seen as a finite approximation of a strategy. It will be used to prove that the
interpretation of a term is the least upper bound of the interpretations of its
“approximate normal forms”.

Definition 14. 1. Let D be a game. We indicate with D™ the sub-game of D
(D™ 9 D) in which Pp» = {s € Pp | |s| < n}.

2. Let B be a sub-game of A and let o be a strategy for the game A. We write
o|B for the strategy {s € o | s € Pg}.

3. Let 0 : A — B be a strategy. We indicate with o™ the history-sensitive
strategy o|A — B™ and with [o]™ the equivalence class [o"].

Observe that if o &~ 7 then ¢” ~ 7", since equivalent positions have the same
length. Thus we can write [0]™ with no ambiguity.

In general the strategy o™ can be history-sensitive also if the strategy o
is history-free. This is because ¢™ can reply to a move a of the Opponent in
some position and does not reply in some others. In order to accommodate and
freely use the strategies 0™ we introduced the category G° of games and history-
sensitive strategies.

The strategies o™ can be seen as a finite approximation of the strategy o, and
they will be use to prove an approximation theorem along the same line of the
works [HR92,Hyl76,Wad78]. In these works the approximation of a semantical
point is obtained through a series of projection functions. We use a different
approach because, in the context of games, it is simpler and more direct.

We need to state a series of properties enjoyed by the approximation strate-
gies. The basic ones are the following:

Proposition 1. For each pair of games A and B and strategy o : A = B, the
following properties hold:

1. 0% = {¢}
2. o™ g Un+1
3 Upeulo™t =0

4. (o.n)m — o.min{m,n}

Proof. The property 1 follows from the fact that the first move in the game
A = B has to be in B. The other proofs are immediate. O

Properties concerning function spaces and approximations are the following:

Lemma 1. For each pair of games A and B we have:

1. (A — B)"tl g A" — pnt!
2. evféx,BKA" —B™)®@ A— B = evf473|(A — B) @ A™ — B™



Proof. 1. Let s € P 4_opy=+1 be a position. We obviously have that |s | B| <
n + 1, and since the first move of s has to be made in B we have that
[s | Al <n.

2. evf4,3|(A” —B™)®@ A— B=
{S € P(AT—CB{")@Ag—OBz | S rA{" =S [Az & s rB{n =S8 rBz} =
{SEP(A1—0B1)®A;—OB§“ |S rAl =S8 rAg' & s rBl =8 ngn}:
evly pl(A — B) ® A® — B™.

O

Finally we need to establish some properties concerning approximation and re-
tracts. In a generic category an object B is a retract of an object A if there exists
a pair of morphisms f: A — B and g : B — A such that f o g = idg. We write
(B <A, f,g) to indicate that B is a retract of A via f and g.

Lemma 2. For each retract object (B<1A, [p], [¢]) in the category G, ¢ : A — B
does mot contain any position sab with a,b € Mp.

Proof. By contradiction. Suppose there exists a position sab € ¢ with a,b €
Mpg. Let s | B = by ...b,. The position bibibhbs...bb, € Pp_op belongs to
the strategy idp, therefore there exists an equivalent position s' in the strategy
po1 =~ idg. It follows that s'ab belongs to ¢ o, and this is in contradiction
with the fact that p o1 ~ idp, since the sequence s'ab cannot be equivalent to a
copy-cat sequence of moves. O

Lemma 3. For each retract (B <1 A, [¢], [¢]) in G, for each strategy o : C — A
and n € w we have:
poa" C(poo)

Proof. By the previous lemma, for any position s € ¢ : A — B, we have |s |
B| < |s | A, and using the definition of composition one readily proof the
thesis. O

We remind here the definition of categorical A-model. A categorical A-model is a
reflexive object in a Cartesian closed category, that is a retract (D = D<D, f, g),
between an object and its exponent. We write (D, (£, g)) is indicate that D is a
reflexive object via morphisms f and g. Given a reflexive object (D, (f,g)) and
a generic object A, one can easily obtain a M-algebra (hom(A, D),-) by defining
the operation of application - as:

d
2y evppo((fox),y)

Finally we can state the fundamental properties satisfied by approximations in
each game A-model.

Proposition 2. Let A be a game, (D, ([¢],[¥])) be a reflexive object in the
Cartesian closed category of games K\(G) and o,7 : A = D be two strategies.
Then we have:

1. UO'T=€A:>D



2. 0"l 7 C (077",

Proof. 1. The following chain of relations holds:

0?7 =evppo{(poad®), ) Cevppo((po0)®,T)=evppoleas (D) T)

which, from the definition of evp,p, is equal to ea=p.
2. The following chains of relations holds:
o™t T=evppo((poa™tt),T)C

evp,p o {(po o)™t 1) =

(evp,p|(D = D)™™ x D = D)o{(poa),T) C
(eUD’D|(D"'$D"+1) x D= D)o{(poor),7)=
(evp,p|(D = D) x D" = D" o{(poo),T) =
(evp,p o ((po o), ™))"t = (g - 7).

3 The fine structure of the game models

In this section the study of the A-theory (i.e. the set of equations between A-
terms) supported by a A-model, for models built in K;(G) is carried out. The
theory induced by a model is also known as its fine structure. The equations
on terms are described by means of the equality of some tree of the terms. The
trees we consider are the Lévy-Longo trees [Lév75,Lon83] and the Bohm trees
[Bar84,Hyl76]. We remind briefly the definitions.

Definition 15. Let X' = {Az;1...2,.L | n € w}U{TIU{Az1 ... 20y | n € w},
let 22 = {1L}U{A21...2,.y | n € W}, let 21,... T,y € Var and let M € A be
a term.

1. The Lévy-Longo tree of M, LLT (M) is a X"-labelled infinitary tree defined
informally as follows:
— LLT(M) = T if M is unsolvable of order oo, that is for each natural
number n there exists a lambda term \zq ...z, M’ =3 M
-~ LLT(M) = Az ...2,.L if M is unsolvable of order n
—~LLT(M)=Az1...2n.y

/\
LLT(M),)...LLT (M)
if M is solvable and has principal head normal form \zq ... xp.yM;y ... My,.
2. The Bohm tree of M, BT(M) is a X*-labelled tree defined informally as
follows:
-~ BT(M) = L if M is unsolvable
~BT (M) =MAz1...2p.y

/\
BT(M;)...BT(My,)
if M is solvable and has principal head normal form \zq ... xp.yMy ... Mpy,.

On Lévy-Longo trees (Bohm trees) there is a natural order relation defined by
LLT(M) C LLT(N) iff LLT(N) is obtained by LLT (M) by replacing L in



some leaves of LLT (M) by Lévy-Longo-trees of A-terms or by replacing some
Az1...zn.L by T (BT(M) C BT(N) iff BT(N) is obtained by BT(M) by
replacing L in some leaves of BT (M) by Bohm-trees of A-terms).

Definition 16. Let D be the class of all reflexive objects (D, ([¢],[¢])) in the

category K (G). We define the following subclasses:

1. D = (D, ([¢], [¥))) € D | ¢ 0 o ~ idp}

2. DB = {(D, (¢}, [4) € D | Y0 €1m(psp) = €10 and 10 o % idp}
3. D = {(D,([¢], [¥])) € D | ¢ 0 €1(p=p) # €15}

The main result of this paper states that, given a lambda model D in the category
Ki(G), the theory it induces is either

1. H*, the theory induced by the canonical D, model of Scott [Sco72,Bar84]
and [Wad78], if D € D¢;

2. B, the theory which identifies two terms iff they have the same Bohm tree,
if D € D,

3. L the theory which identifies two terms iff they have the same Lévy-Longo
tree if D € D~.

The proof proceeds along the same lines of [Bar84,Wad78,Hyl76]. First we show
that if two terms are equated in one of the above theories then they are equal
on the corresponding model. In order to prove this we state an important prop-
erty satisfied by all the models: the approzimation theorem, which says that the
interpretation of a term is the least upper bound of the interpretations of its
approximants. The following definitions and lemmata are necessary to state this
result.

Definition 17. 1. The set of A2-terms, A(2)(3 M) is defined from a set of
variables Var(3 z) as M == | MM | Az.M | 02.

2. The set of (possibly) indexed terms A(2)N(> M) is the superset of A({2)
defined as M ==z | MM | Az.M | 2 | M™.

3. A term is truly indexed if it is of the shape M™. A term is completely
indexed if all its subterms of the shape variable, abstraction, and application
are immediate subterms of truly indexed terms.

Notice that in a truly indexed term the constant (2 could not be indexed. The
reduction rules are extended to indexed terms as follows.

Definition 18. 1. The following reduction rules are definable on A(2):
() Az.2—- 0 () M — 12

2. The following reduction rules are definable on indexed terms of A(2)N:
(o On— N (2% M°— 2
(Br) ((a.P™)™H QP — (P[Q/2])* (Biy) (M?)F — Mmintii}
where b = min{n,m + 1,h},a = min{m, p}

Lemma 4. A completely indezed term Q is 2"°B15; j-normalizing.

10



Proof. The proof uses the same arguments as in Theorem 14.1.12 of [Bar84]. O

Denotational semantics is readily defined. The denotation of a pure A-term M €
A is defined along the usual categorical definition. To accommodate indexed
terms we need to introduce two new rules and use the larger categories of games
and history-sensitive strategies.

Definition 19. Let D € D be a A-model. The interpretation of a term M €
AN (whose free variables are among the list A = {z1,...,z}) in D, in the
Cartesian closed category K,(G®), [M]R : DI4l = D is the strategy inductively
defined as follows:

|[.’L']]3 = quA;

[MN] = [M]2 - [N];
2. M]3 = o A(IM]3 ,);
[Mm% = ([M]2)"

[2]2 = epiaisp;

It is immediate to observe that for each term M € A, the strategy [M]} is
history-free.

Theorem 1 (Validity of indexed reduction). Rules ({22), (£2"), (£2°), (81)
and (B;,;) are valid in each game model D € D; the rule {2y is valid in each
model D € DE UDB. The Validity of a rule o is intended in the following sense:

for each P,Q € A(2)N if (P =4 Q) then [P]2 C [Q]2-

Proof. (125). [2M]3 = evpp o {p o [2]],[M]) by definition 19
=evp,po{poepiaimp, [M]Q) by definition 19

= evp,p © (€plal=(D=D)> [M]R) by the definition of retract

= €plaip for the structure of evp p.

"). [[Qn]]A ([Q]]A) = 53\A|:>D = €plalzD = [[Q]]B-

(12
(12%). By proposition 1.
B

)- [(Az.P)™ Q7)Y = ([(Az.P™)™ ]2 - [QP]R)" by definition 19
[Az.P?]2 - ([QP]R)™) ™ hmt1} by proposition 2

[Az.P"]Y - [[Qmi"{m”’}]]D yminth:m+1} py proposition 1

[z P")Qm'"{m”’}]]D ymanth,mA1} by definition 19
((Az.Pr)Qmirdmoplymin{h,m+ 13D by definition 19
(
(P

c

pr[Qmintm.p} [ gymin{hm+1}] by B_conversion
[Qmin{mop} [ pymin{h.m+1,n} D by definition 19 and proposition 1.

Iz

(
(
= (
[
[
[

(Bi). [(M1% = (IMI9)7 by definition 19
= (([M]R)?)? = [M™53H]D by proposition 1.
(21). [M2.02]] = o A([£2]R) by definition 19
=1 o A(eplai—p) by definition 19

=1 oeplain(p=p) by definition 12

11



= €plalwp by definition 16
= [2]2 by definition 19. O

Each term M € A can be approximated by a “partially evaluated” term A €
A(£2) which is called an approzimant. Different notions of approximants arise for
the different classes of models.

Definition 20. For each term M € A the sets of its approzimants are defined
by:

1. A°(M) = {A € A(2) | BT(A[AA/2]) C BT (M) and A is in fn2102>-nf }
2. AB(M) = {A € A(2) | BT(A[AA/]) C BT(M) and A is in B2, Qs-nf }
3. AE(M) = {A € A(Q) | LLT(A[AA/2]) € LIT(M) and A is in BQs-nf }

Lemma 5. For each game model D € D, A-term M and approximant A €
A*(M) with * € {€,B,L} we have:

[4]° C [M]°

Proof. The lemma can be straightforwardly proved by structural induction on
the approximant A, exploiting the fact that, in game categories, composition is
monotone. O

Definition 21. The erasing function R : A(2)N — A(£2) is inductively defined
as follows:

1. R(z) =x; R(2) =N 2. R(PQ) = R(P)R(Q)
3. R(\z.P) = \zR(P) 4. R(M™) = R(M)

Lemma 6. For each game model D € D*, and for each completely indezed term
M € A(R)N there exists a term N € A(2)N such that:

[M]P C [N]° and R(N) € A*(R(M))
with * € {€,B,L}.

Proof. Take for N the Q2™02°B;3; jn-normal form of M if* = &, or the 2™ 2°B;—
Bi,j-normal form of M if * € {B,L}. 0

Lemma 7. For each game model D € D, \-term M and natural number n there
ezists a completely indexed term M™* such that:

[[Mn]]D — [[M*]]D

Proof. Structural induction on M by observing that: [(\z.P)"]° = [(Az.P™)"]P
and [(PQ)"]° = [(P"Q™1)"]P for Proposition 2. o

Theorem 2 (Approximation theorem). For each game model D € D*, \-
term M the following equality holds:

[M]° =| {IAI° | A € A*(M)}
with * € {€,B,L}.
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Proof. [M]° =], {[M"]P} for Proposition 1

= | {[M*]P | M* a completely indexing of M} for Lemma 7

CLHINIP | N € A(2)N & R(N) € A*(M)} for lemma 6

C | {[A] | A € A*(M)} since [N]P C [R(N)]°

C [M] for lemma 5. |

From Theorem 2 we can readily conclude that if two terms have the same tree
they also have the same interpretation in the different game models, that is:

Proposition 3. For each model D € D, A-terms M, N we have:

1. if D € D and LLT(M) = LLT(N) then [M]° = [N]°;
2. if D € D® and BT(M) = BT(N) then [M]° = [N]°;
3. if D € Df then M =4. N <= [M]° = [N]P.

Proof. The first point can be proved observing that if LLT (M) = LLT(N) then
AL (M) = AX(N) and hence [M]P = [N]P by Theorem 2. A similar argument
can be applied to the second point. Point three follows from the fact that H*
is a mazimal theory and from the validity of the n-rule (and also the noo-rule
[GFH99)]) in the models D € Df. We recall that two terms are equal in the theory
H* iff they have the same Béhm tree up to infinitary n-expansion. O

In the following part of the section we shall prove that if two terms have different
Lévy-Longo trees or different Bohm trees they also have different interpretation
in corresponding game models of the A-calculus. This will characterize com-
pletely the theories induced by game models and will substantiate the intuitive
impression that the strategy which interprets a term is strongly connected with
the tree of the term.

Definition 22. Given two terms M, N € A, we say that M and N are sim-
ilar and we write M ~ N if both M and N are unsolvable or they are solv-
able with principal head normal forms respectively \xq ...xp.yMy ... M, and
ATy ... Zp Y’ Ni... Ny in whichy =y’ and m —n=m' —n'.

Lemma 8. For each compositional not trivial model of the \-calculus D, for
each pair of lambda-terms M, N if M # N then [M]P # [N]P.

Proof. The proof follows immediately from the fact that terms which are not
similar can be separated by a suitable context. A detailed proof can be found in
[Bar84], Cap. 10. ]

Lemma 9. For each non-extensional game model D € D® UD*, for each vari-
able £ and M\-term M = \y.M' we have that [z]° # [\y.M']P.

Proof. By contradiction: [z]° = idp and [M\y.M']P = ¢ o7 for some suitable
strategy 7 : D = (D = D). If ¢ o 7 = idp, this would mean that the strategy
v has a left (by definition of retract) and a right inverse, which, by categorical
arguments, need to coincide, contradicting the hypothesis that ¥ o p % idp. 0O
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Lemma 10. Let M, N solvable A\-terms such that M = A\xzy ...x,.yM; ... M,,,
N=Xz1...2p.yN1...Npy and FV(M) U FV(N) C A, let D be a non exten-
sional A\-model, D € DP UD~*. If n # n' then [M]° # [N]P.

Proof. Suppose n < n', it is not difficult to find a context C[] s.t. C[M] = x
and C[N] = Ay.N'. From the previous lemma we have the thesis. |

Lemma 11. For each lazy game model D € D, and for each pair of A-terms
M, N both unsolvable but of different order, we have that [M]P #% [N]P.

Proof. By the approximation theorem 2 we have that for each unsolvable term
P of order 0, [M]P = ¢, while one can readily calculate that for a lazy game
model D, for each term Q, [Mz.Q]P % €. Using suitable contexts one obtains the
thesis. O

Lemma 12. Let D € D be a game A-model, and let M = xM; ... M, and N =
Ny ... Ny, be two untyped A-terms, if [M]P ~ [N]P then for each 1 <i < m
we have that: [M;]° ~ [N;]P.

Proof. A premise is here necessary. A position in a strategy describes the inter-
action between Player and Opponent on the hypothesis that Player follows the
strategy and the Opponent exhibits a particular behavior. In defining the set of
positions forming a strategy, any possible behavior of the Opponent has to be
considered, also incoherent behavior that no Player is allowed to follow. For ez-
ample in the game !A — B the Opponent can have completely different behaviors
in the different components of A.

Now, suppose by contradiction that there exists 1 < i < m such that [M,-]]D %
[N:]P. Then, by Definition 13, there exists then a play s € [M;]P such that s % t
for each t € [N;]°. Using the definition of the interpretation of A-terms, it is
possible to calculate that the strategy [M]P : \D,, ®...ID, ... ® ID,, —o D replies
to the initial question of the Opponent repeating the question on a particular
copy, let say the j-th one, of Dy. If the Opponent behaves on the j-th copy of
D,, following the strategy [Az1 ...z;.7;]°, and on the other components with
the same behavior that led to the position s, we obtain a position s' contained in
[M]P. The strategy [N]P contains a positions t' equivalent to s', only if [N;]°
contains a position t equivalent to s, but this is negated by hypothesis. Therefore,
by Definition 13, [M]P # [N]P. O

We can finally state the following theorem:

Theorem 3. Let M and N be two untyped \-terms. Let D € D be a game
A-model. If [M]P = [N]P then we have:

1. LLT(M) = LLT(N) if D € D%;
2. BT(M) = BT(N) if D € D5.

Proof. We prove the converse. If LLT (M) # LLT(N) then there exist a natural
number n such that LLT (M) and LLT(N) differ at the level n, that is the
restrictions of LLT(M) and LLT(N) to nodes having depths less that n are
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different. We will prove that the semantic interpretation of M and N differ by
induction of the number n.
If n = 0 then one of the following cases need to occur:

1. The two terms are not similar. In this case from Lemma 8 one readily obtains
the thesis.

2. The two terms are both unsolvable but of different order. In this case from
Lemma 11 the thesis follows.

3. The two terms are similar but with a different number of A-abstraction. In
this case Lemma 10 applies.

Ifn=n'+1, then M and N are similar, solvable, with the same number of
lambda abstractions. Suppose they have hnf respectively Axq ...z xMq ... My,
and Axy ... 2. yNy ... Npy,. There exists i s.t. LLT(M;) # LLT(N;) at the level
n'. By induction hypothesis [M;]° # [N;]P, and from Lemma 12, using suitable
contexts, one obtains the thesis.

The case for the Béhm-trees can be readily proved following the same lines.
O

Finally the characterization of the theories induced by models built in the Carte-
sian closed category Ki(G) can be given.

Theorem 4. Let D € D be a A-model in K\(G). Then

1. if D € D¢ then M = N € Th(D) iff M = N € H*
2. if D € DB then M = N € Th(D) iff BT (M) = BT(N)
3. if D € DX then M = N € Th(D) iff LLT (M) = LLT(N)

4 Conclusions

In the present paper we have studied the A-theories induced by the games models
without performing the extensional collapse. Through the extensional collapse
it is possible to identify strategies that have the same observational behavior. In
general the extensional collapse is fundamental in order to obtain fully abstract
games models of programming languages.

Therefore it is still possible to use game models to capture A-theories that
are strictly coarser than the three considered in this paper. An example of such
a theory can be found in [AM95] where, through the extensional collapse of a
model D in D¥, a fully abstract model of the lazy A-calculus is obtained.

However, in general, models obtained through the extensional collapse are
more difficult to study, e.g. the equivalence between strategies is not decidable
also in the finite case.

Our main theorem defines precisely those theories that can be obtained using
simple (not collapsed) games models, and hence it implies also that the theories
obtained through the extensional collapse lie only in between the theories £ and
H*.
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A second consideration concerns the class of the game models we consider
in this work. We have focused on games and history-free strategies mainly for
historical reasons. We claim that the paper can be easily reformulated in order
to prove the same results for the category of games and innocent strategies
[HO00]. We can substantiate our claim by observing that the main tools used in
the proofs — history-sensitive strategies, approximation strategies, Lemma, 12
— are not peculiar to the history-free strategies and can be reformulated and
applied in the context of innocent strategies.

A final point concerns the constructions of games models. In this paper we
do not build any example of games model for the lambda calculus; however in
[GFH99] a general method to obtain non-initial solutions of recursive equations
is presented. It is then quite simple to find extensional game models: several
examples are presented there. Non-extensional games models can be obtained
through the standard tricks used in the setting of the cpo models. For example
a non-extensional model whose theory is B (£) can be obtained by taking the
initial solution of the recursive equation D = (D = D)xA (D = (D = D), xA),
where A is an arbitrary game.
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