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Many concrete notions of fuuctiou application, suitable for interpreting typed I~unbda calculi with 
recursive types, have been introduced in the literature. These m'isc iu different fields such as set 
thcury, mulliscl theory, lypc thcory and fiulclor theory and are apparently unrelaled. In this paper we 
ulm~ducc the general couccpl of ~q~plicative eaponential structure and show thai it subsumes all these 
UOIlUUS. Our approach ix based on a gcnefalizalion of the 11o11(71| of interseclion type. We construe 
all these slructurcs in a fillil;u'y way, so as Io be able to ulilize unifl~rmly a general form of type 
assignment system lor defining tile inlcrprctaliou fuller)on. Applicative exponential structures are 
jusl combiualory algebras, i,i gctteral. Our approach suggcsls a wide variety of entirely aew concrete 
notions of fimcliou application" e.g. in colmeclion will) boolean seL,~. Applicative exponential 
slruclufes cau be uscd for lnodcling variiltlS It))'ms of )ion-deterministic operators. 

1 Introduction 

Various natural concrete models of tile notion of function application arising in k-calculus 
have been discovered since the early seve,aties. G.Plotkin [13], inspired by earlier work of 
Scott, was the first to define a set-theoretical notion of application. By means of it he built a 
set theoretical model for untyped 7c-calculus. Since thei1, various other natural notions of 
application were discovered by Scott 1 151 and Engeler [7] in set theory, by Coppo, Dezani 
and Venneri 15, 31 i,a type theory and by Girard [8J, Ore [121 and Lamarche [11] in functor 
theory, in the theory of multisets and in analytic function theory. All these concrete notions 
of application give rise to concrete structures, albeit not always categories, which can be 
used as domains lbr denotational semantics. More precisely these structures are rich enough 
to model the behavior of application in typed ~.-calculi with lecursive types and appropriate 
constructors, destructors and fixed point operators. 

These notions of application, although apparently different, seem to share a common 
pattern. In this paper we try to capture this pattern by introducing a notioq of algebraic 
structure, termed applicative e.wonential .~'tructttre, which we show to be gener',.d enough 
subsume all the concrete notions mentioned earlier. In particular we define a general 
framework in which one can easily and uniformly express all classical constructions. One 
of the key features of our approach is the use of a generalized notion of type, inspired by 
that of "intersection type" [3], lk~r providing a finitary description of the structures under 
consideration. This analysis allows h~r the use of a uniform kind of type assignment system 
for defining the interpretation of the ~-calculus language. Intuitively types are understood as 
finite elements of the domain, possibly having some coefficients; and a term has a given 
type if its denotatio,a is approximated by a given type. Special care has to be taken in order 
to deal with the coefficients. This is a particularly interesting way of presenting the 
interpretation function since, besides being fi,~itary in nature, it constitutes an endogenous 
logic in the sense of Abramsky [l]. Moreover it can provide a proof theoretic analysis of 
the fine structure of the models. This technique was initially introduced for the study of 
filter models [4] but was later applied to Girard's qualitative domains in coherent semantics 
[10] and quantitative domains [6]. 

We think that our approach is successful and fi'uitful since, besides illuminating on the 
idea underlying so many apparently unrelated notions of function application, it suggests 
also a widc variety of new concrete alternatives. Particularly appealing and potentially 
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interesting is the notion of application which arises in connection with boolean sets. This 
notion yields a sort of "boolean valued" model of the k-calculus. It is closely related to th~t 
which arises if we carry out Plotkin's original construction in a Boolean-valued model of 
set theory. This kind of constructio,l can prove to be quite interesting for modeling 
programming languages which feature non-deterministic operators. Mot~eover, it seems to 
open a new area of applications of model theoretic concepts to the semantics of 
programming languages. 

For simplicity we shall not deal in this paper with the whole language of  typed 
k-calculus with reflexive types as in 1141 or [12]. We will discuss only the case of the 
untyped X-calculus language, as an i,ltercstitlg atld important example of a reflexive type. 
All the results can be extended with little difficulty to the more general case. 

Somehow unexpectedly, the abstract structure introduced in the paper, and many of the 
concrete examples given, do not model k-calculus in the sm)ngest possible way. In general 
the, so called, ~-rulc fails and these ate only combinatory algebras and not lambda models 
nor lambda algebras. Surprisingly enough the general constructioq does not seem to be 
amenable to a simple categorical presentation, unless further equivalence relations are 
superimposed. These will bc discussed in a forthcoming paper. 

A final remark is in order. We could have presented these results following more closely 
the approach of Girard[8] and Lamarche [ 1 I ]. This would amount to use as main source of 
inspiration the notion of atlalytic function in complex analysis. No substantial difference 
would arise. The approach via analytic functions is in fact "dual" to the one used here. In 
this paper we will only describe very briefly this alternative approach in Appendix A. 

The paper is organized as follows. In section 2 we define the structures normally utilized 
for modeling k-calculus using a style which focuses on the properties of the interpretation 
futaction. In section 3 we present some classical and new constructions of concrete models 
of the lambda calculus and gradually introduce our general framework. In section 4 we give 
the definition of applicative exponential structure and prove the main theot~em of this paper, 
i.e.: applicative exponential structures ate combinatory algebras. Finally in section 5 we 
give more examples of concrete applicative exponential structures yet uninvestigated and we 
outline a possible use of applicative exponcutial structures for modeling non-deterministic 
operators. 

Finally the authors would like to gratefully acknowledge Fabio Alessi and Simona 
Ronchi della Rocca for helpful discussions in the early stages of this work. 

2 Combinatory Structures 

Throughout the paper we assume the leader l:amiliar with standard notions trod notations in 
Lambda Calculus and Combinatory Logic as in [2]. Several different applicative structures, 
i.e. structures with a binary operation defined on them, have been introduced in the 
literature for interpreting the language of X-calculus: combinatory algebras, lambda algebras 
and lambda ,nodels. These differ by the strength of the equalities which they enforce on 
interpretations of X-tenns. Usually combinatory algebras are defined without any reference 
to the interpretation function using the standard combinators S, K and I. Contrary to this 
tradition will define uniformly all these structures in the style of [10]. By so doing the 
conncction with type assignment systems in the sequel will be clearer. 

The language A of A-calculus is dcfi,acd as usual by: M::= x I MN I Xx.M. Terms which 
do not have abstracted subterms will be called applicative terms. 

Definition 1 (~ la Hindley Longo) 
I) An applicative st,'ucture A,  is an algebra ( A : Set, o : A x A ~ A  ); 
2) An environment is a function p : Va," --, A. The set of environments is denoted by Env. 
3)An interpretation of A is a function II I1: Env ~(A ~A) .  As usual ~[x/a] denotes the 
environment defined as ~Ix/al(x)=a and ~[x/al(y)=~(y) if x~ y. 
4) A combinatoly structure, c.s. lbr short, is a pair (,4, I1 ]1: Env~(A~A))  consisting of an 
applicative structure and an interpretatio,a function defined over it; 
5) A lambda model is a c.s. where the interpretation function satisfies the following 
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properties: 
i) I[ X]ip = p(x) 
ii) l[ M N ]io= I[ M lip_ o 11 N lip 
iii) I[ ~.x.M Op o a = l[ M ]lo[x/al 
iv) I[ kx.M ]If, = U Z,y.([x/y]M)]ip provkled y~ FV(M) 
v) 1[ M ]If, = II M ]i~ provided p(x) = ~(x) for xe FV(M) 
vi) (Va. I[ M ]lptx/aJ = I[ N ]lplx/al ) ~ I[ kx.M ]ip = 1[ kx.N ]If' 

6) A lambda algebra ~s a c.s. where the interpretation function satisfies conditions i) - v) 
above and also the following rule: 
(~) I-k M = N = II Xx.M ]1o = II Xx.N llf' 

where I-k denotes derivability in the theory of k-calculus. 
7) A combinatoly algebra is a c.s. where the interpretation function satisfies only conditions 
i)-v) above. A 

It is well known that lambda models am lambda algebras and lambda algebras are 
combinatory algebras. The following propositioq illustrates the importance of combinatory 
algebras and establishes the equivalence of our definition with the usual ones. 

Proposi t ion 1. Let (A J[ ]1) be a combinatory structure. The following properties are 
equivalent: 
a) A can be extended to a combinatory algebra (A.I[ ]i'); 
b) There exist distinguished constants K and S in A such that for all constants a,b,ceA : 
((K o a )ob) = a and (((S oa) o)b o)c = ((a oc) o(b oc)); 
c) The interpretation function I1 ]1: Env -o(,x ~A)  satisfies conditions i) and ii) in Definition 
1, and moreover lbr all applicative term MeA such that FV(M)c_{xl ..... xn}, there is a 
constant c, such that I[M]l~=l[cxl...xnllb for xe Env. This property is usually called 
.fimctional completeness. 

Proof.  Standard 

3 C o n c r e t e  M o d e l s  o f  A p p l i c a t i o n  

In this section we present some classical constructions of concrete models of file untyped 
L-calculus language, some alternative presentations of these and some entirely new models. 
As remarked in the introduction any of these could be turned into a full-fledged domain 
structure for denotational semantics, but for lack of space we shall not do it here. 

Perhaps the best known example of a natural concrete model of lambda calculus is the 
Plotkin-Engeler set theoretical model scc [13, 7]. This model construction is closely related 
to the Filter Model constructions in [3, 5, 41, where arbitrary sets ate replaced by particular 
ones called filters. Inte,'estingly enough, Plotkin-Engeler Model and the Filter Model are 
indeed lambda models, the model introduced in [5], on the other hand, is only a lambda 
algebra. Nonetheless this lattc," structure, which wc call Intersection Algebra, is quite 
remarkable since it is the first example of a lambda algebra which has not been defined by 
purely syntactical means. 

In the literature the applicative structure underlying Plotkin-Engeler set theoretical model 
is defined as lbllows: 

Definition 2. The applicative structure (,.,~, o ) is defined inductively by: 
B0 is an arbitrary set of atoms, 

Bn+l -~ B0 • { (~,b) ]~ ~Bn, 13 finite, b e Bn} 

�9 ~ = fo (q )n  Bn) 
given U,Ve ~ we put UoV --- { b [ (l~,b) e U, 13 c_V }. h 

We now give an alternative presentation of the above structure. This will be the first 
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example of the standard format which will be used throughout the paper for presenting 
concrete applicative structures. The definition of the general notion of applicative 
exponential structure in Section 4 will build upon the shape of this format. The original 
presentation of Engeler's model, i.e.Definition 2, was given just for introductory purposes. 

We need first some notation. Given a set A and a set B we denote by [A~B] the set of 
functions from A to B. If B contains a distinguished point 0, we denote by [A-%B] the set 
of functions from A to B with value almost everywhere 0. As will become clear in the 
sequel these particular functions ate introduced essentially as a useful "trick" for encoding 
functions with a finite domain, without having to bother about issues of definedness. 

According to this intended meaniug, given re [A-~B], dom(r) will denote the set 

{a lae A,r(a)~)}; and the term {al:Xl ..... an:xn} will denote the function s :A~B defined by 

s(a) = / x i  if a=ai for some i l<i<n 
[0 otherwise 

Finally 2 will denote the boolean algebra of truth-values where "false" is taken to be 0 and 
"true" to be 1. 

Definition 3. Let J: lX/--~ Set be inductively defined by: 

J(0) -= Jo, an arbitrary set of atoms, J(n+l) = J(0)u([J(n)..%2] • J(n)). 

Now put J -=Un J(n) and ] - [J---> 2]. 

Let (,,~, o) be the applicative structurc where application is defined by: 

(fo g)(j) = ~ f((r,j)) x 1-I (r(k) = g(k)) 
rc [.I-%2 ] k~ dtnn(r) 

where f ,g%~, j e J ,  ~ is logical implication, + is disjunction and x is conjunction. A 

Notice that any function re [A ~ 2 ]  is indeed the characteristic function of a finite subset 
of A, just as any function f : A -~ 2 is the characteristic function of an arbitrary subset of A. 

The exwession 1-I (r(k) ~ g(k)) ,  used above, is therefore true, i.e. equal to 1 if and 
kedom(r) 

only if the finite set represented by r is a subset of the set represented by g. 
What we have done in this new presentation amounts to substituting subsets with their 

cbaracteristic functions. It is now easy to show that (,~, o) and (,)e, o) are isomorphic. 
Filter Models and Intersection Algebras can be accounted for similarly as follows. The 

structure (,,,V, o) is precisely the applicative structure underlying the Intersection Algebra in 
[5]. The applicative structure underlying the filter model in [3], instead, is obtained by 
taking ,,~ in Definition 3 to be the set of only those subsets of J which are filters. Elements 
of J behave in fact like intersection types. A filter f is a subset of J which is upwm'ds 
closed under the order relation < induced by the following rule: 

j<j '  V k e  dom(r ) .  3 k ' e  doln(r ' ) ,  k '<k 
(r,j) < (r ' , j ' )  

We are now ready to turn these applicative structures into combinatory structures. As 
remarked in the introductioq, wc will utilize throughout the paper,type assignment systems 
ill the sense of [3,4] to define the interpretation function. This is made possible because 
elements of J behave as a generalized "intersection types" [3,4]. In general we construe 
type assignment systems as formal systems lbr establishing assignment judgements of file 
lbrm [5 I--M:j where Me Term, .jeJ and [5 is a (multi)set of assumptions of the shape x:j'. 
Apart from file particular choice of the sct J, the type assignment systems in the paper will 
vary greatly in the structural rules assumed in the formal system. The intended meaning of 
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the judgement 13 }-- M-i will be made fonnalty precise case by case, but it will always mean 
something of the kind "under the assumptions recorded in I] the interpretation of M depends 
on the type j". This is both an "endogenous logic" and a "logical" presentation or "finitary" 
presentation of the structure, in the sense of Abramsky, [ 1 ]. 

In order to define the interpretation function in the Plotkin-Engeler set theoretical model, 
in the Intersection Algebra and in die Filter Model wc shall utilize judgements of die form 
I~ I- M:j where the bases I~ arc sets i.e. functions [~e [(Vat x J ) 2_) 2]. 

Def in i t ion  4. 
1) Consider thc following set of rulcs: 

(axiom) provided je  J 
{(x,j): l  } I- x:j 

(abstraction) 
+ { (x , j i ) : l  . . . . .  (x,jk):l } I- M:j 

13 t-- ~.x.M:(ljl: I .... ,jk:l },j) 
provided Vj 13((x:i)) = 0 

(application) 
~1-  M: ( { j l : I  .. . . . .  ik:l },.i) 

[5+ )-'- 1 <i<k [5 i 

131 I- N:jl  ... [~kl- N:jk 

I- MN:j  

(weakening) 
[51- M:j 

~+[5' l- M:j 

13 I- ~.x.Mx:j 
(q) 13 I- M :j provided x~ FV(M) 

boolean operations are extended pointwise to bascs. 
2) Let S! be the type assignment system consisting of the rules{(axiom), (abstraction), 
(application)}, $2 he the type assigt~ment system consisting of the rules {(axiom), 
(abstraction), (applicatioq), (weakening)} and $3 be the type assignment system consisting 
of the rules{(axiom), (abstraction), (application), (weakening), 01)}. 
3) Let the interpretation functions U II i: Env --,(A ~ j i ) ,  (ie { 1,2,3}), be defined as 

[1 M]lip(j) = Z ( H ([~(k) ~ p(k))) 
~1- i M:] kedoin(~) 

where we write [5 t-i M:j to indicate that tile judgment [5 I--M:j can be derived ill the system 
Si (ie { 1,2,3}); boolean operations are extended pointwise to environments which are 
taken to be functions p : (Vat x J) ~ 2; tke expression ~ deuotes the disjunction 

1$ l--i M:j 
over provable judgments in Si; and finally ,r andS2  are ,,~ of Definition 3 above, while 

j 3  is the set of filters on J .  A 

The definition above illustrates how type assignment systems can be used to define in a 
fiuitary way interpretation functions. The proposition below illustrates what we have 
achieved so far. 
Proposition 2. The combinatory structure ( J  1, ! ]11) is the intersection algebra of [5], 

the combinatory structure (,9r ! 112 ) is Plotkin-Engelcr's lambda model while (, ,f,3 1[ ]13) 
is the Filter Model [31. 

Proof. A tedious but routine verification that conditions in Definition 1 ate satisfied. A 
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Once we have presented Plotkin-Engeler's model in the format ( ,~2,[  ]]2) it is natural to 
generalize the role of the Boolean Algebra 2 in the construction of Definiton 3 to an 
arbitrary boolean algebra B. What we obtain is then an entirely new class of combinatory 
structures. This kind of construction is very closely related to that which would arise if we 
canied out the construction of (,,~, o) in a Boolean-valued universe of Set Theory: i.e. using 
boolean sets instead of ordinary sets. We ca,mot follow up this here. We give just 
appropriate generalizations of Definitions 3,4 and Proposition 2 to the case of an arbitrary 
complete boolean algebra. 

Definition 5. Let B be a complete boolean algebra and Ao an arbitrary sets of constants 
17 the combinatory structure (,,YlI, ~ is defined as follows: 
let JB: gq "-q' Set be inductively defined by 

JB(O) --- Ao and JB(n+l) ~.JB(O)to([JB(n)2r x JB(n)) 
now put JB -= k-Jn JB(n) and let,,~B -= [JB~ B], application over,,fB is defined by 

( f ~  ~ f i ( r , j ) )  x ~ ( r ( k ) ~  g(k)) 
r~ [,IB-%B l k~ dora(r) 

where f,g~,,$'ll and jCJB. 
2) Let SBI be the type assignment system consisting of the following rules and: 

(axiom) 
{(x,j): l  } I- x:j 

(abstraction) 
+ {(x,ji):bl . . . . .  (x,jk):bk} l- M:j 

13 I- ~Lx.M:({j l:bl .... :jk:bk } ,j) 
provided 'Vj ~((x,j)) = 0 

(application) 131- M:({ j l :b l  .... ,ik:bkl,j) 131 I- N:jI ... 13kb- N:jk 

13+E l<i<k(bix13i) I- MN:j 

[~l- M:j 
(weakening) 

9+13' 1- M:j 

where j~JB and b~B; 
3) let SB2 be the subsystem obtained from SBI by omitting (weakening); 

4) The interpretation fu,lctions U IlBi: Env ~(A ~,,i*tl) (i~ { 1,2}), are defined by : 

[[M~ (j) = E ( 1-'I (13(k) = p(k))). A 
It k--Bi M:j k(itltnn(~) 

Proposi t ion 3 
i) The combinatory structures ( ( J I l ,  o), I[ 11 i} (i~ { 1,2}) are combinatory algebras; 

ii) If B is not trivial then ((,caB, o), [1 ]]i) (i~ { 1,2}) are not lambda algebra 

Proof. i) Omitted, since it is a special case of the proof of Proposition 5 below. 
ii) Let B~ Xxyz.x(yz) denote the usual composition combinator, one has immediately that 
I-X Z.yz.Bx(Byz) = ~.yz.BfBxy)z) i.e. compostion of functions is associative. A tedious 
computation ,shows that l[ Xxyz.Bx(Byz) IIi # I[ Xxyz.B(Bxy)z)]] i " A 

It is interesting to notice that the role played by J in the above Proposition is again "akin 
to an "intersection type" to whom a "boolean weight" has been attached. The corresponding 
type assignment system is then built so as to take into account also tiffs non-standard 
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"weight". Boolean coefficients appear in the hypotheses and consequently, the structural 
rule ofcontraction is replaccd by a sort ol'boMean contraction.. This "boolean set" 
construction however, does not cven give rise to a category. We conjecture that in order to 
turn the structures ((,713, ~ I[ ]1 i) (i~ {1,2, }) into ~.-algebras we need to define a suitable 
quotient. 

So far we have only considered examples where sets, be thesc ordinary or boolean, 
were used in defining types, i.e. elements of J. Yet more examples of  combinatory 
su'uctures can be obtained by "repeating" Plotkin-Engeler's construction using multisets in 
the definition of types. Surprisingly cnough this construction amounts to the construction 
can'ied out by Ore [ 12]. This in turn was introduced as a simplified version of the notion 
due to Girard of quantitative domain [8]. Loosely speaking Girard's construction 
corresponds to Piotkin-Engeler's construction using arbitrary set-valued functions in place 
of multisets. Here we will analyze in detail only the multiset case. 

Ore's notion of domain can be put into our fi'amework by replacing the boolean algebra 
B in Definition 5 with ~ ,  the set of natural numbers. Of course, the boolean operations 
which appear in the definiton of application and interpretation, which in turn generalized the 
simple set theoretic conccpLs of Plotkin-Engeler's algebra, have to be replaced here with 
arithmetic operation on natural number, i.e. disjunction with addition, conjunction with 
multiplication and logical implication with cxponcntiation. It comes almost as a surprise that 
under this twist of  perspective, Girard-Orc's construction can be naturally related to 
Plotkin-Engeler's. Notice the close similarity between the following definition and 
Definition 5. 

Definition 6. Let Ao an arbitrary sets of atoms, tile combinatory structure (,,,aN, o) is 

defined as lbllows: let JN:~I ---) Set be inductively defined by 

JN(0) --- Ao and JN(n+l) = JN(0)t.-)(lJN(n)-%g~l] x JN(n)) 

p u t J N -  L)n JN(n) and let ,,YN - [JN-~ (INu{~~ application over J N  is defined by 

i f  o g ) / j )  = ,Y, f((r,  .i)) x 1-I t,'(k) ~ g ik ) )  
re [,JN2~ INJ ke dora(r) 

where f,g~,TN, j~ JN, arithmetic operations arc extended to N u {  oo } in the obvious way 
and ~ is the usual operation of exponentiation. A 

The above definition can be easily moditied to encompass the case of a notion of domain 
intermediate between that of Girard's quantitative domain and Ore's domain. This notion of 
domain is obtained using the set Card of cardinals in place of the set (l'qu { ~, ]). In order 
to avoid the use of proper classes we can always think of Card as the set of cardinals 

smaller than a given inaccessible cardinal. The structure ( f ~ ,  o) is then obtained taking,ff;~ 

to be [JN ~ Card ], the definition of application remaining unchanged. As remarked in the 
introduction, presentations in [121,[81 andl 11] rely heavily on the notion of analytic 

function. In fact both in ( J~] ,  o) and ( , i N ,  ~ we can interpret the tbr,nula defining the 

application as the evaluation of an analytic function. See Appendix A for a brief illusu'ation 
of this alternative viewpoinL 

Going back to the structure in Definition 6, the intelpretation of a k-term M with respect 
to ( J  N, ~ can be given again following the familiar pattern using a type assignment 
system. Again, in fact, elements of JN can play the role of generalized "intersection types". 
The coefficients being now integers. In this case however it is slightly more complex. In 
order to define the interpretation function it is necessary to introduce an equivalence relation 
on proofs of typing judgements to take care of multiplicities. 
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Def in i t ion  7. 
1) The type assignment system N consists of the following rules: 

(axiom) 
{(x,j): l  } I- x:j 

+ {(x,jl):ni . . . . .  (x,j~):nk} I- M:j 
provided Vj 13((xO)) = 0 

(abstraction) 131- ~,x.M:(ljl:nl ...... ik:nk},i) 

131- M:({jl:nl .... ,jk:nk],j) 

13i;t i l -  N:ji l<i<k l<ti<ni 
(application) 

13+ E 13i;ti 1- MN:j 
lSi<k 
ISli<n i 

Here a basis [~ can be seen as a finite multiset of hypothesis of the form x:j, accordingly 
arithmetic operations ate extended to bases in the natural way. 

2) The equivalence relation ~- on proofs of typing judgements is the finest equivalence 
relation satisfying dae following two conditions: 
a) -~ is a congruence relation on the structure of the proof, i.e.: 

A l...Ai...An A 1 ...A'i...An 
Ai ~- A'i :=> 

A A 

b) For every permutation ff of the set { 1 ..... k} 

13 I- M:({jl:nl .... ,jk:nk } :i) 13 l- M:({jt:nl .... ,jk:nk},j) 

13i;til- N:ji l<i<k l<ti<ni [~a(i);ia(i)l- N:jt(i  ) l<i<k l<ti<ni 
=-- 

13+ 2 [~i;til- MN:j 13+ E 13i;til- MN:j 
1 <i<k 1 <i<k 

l<ti<ni l<ti-<ni 

3) The interpretation of a ~,-term M in the applicative structut~e ( J N ,  o) is defined by: 

M~ = E • s = E E 
I~ A~ [[~I-M :jl] 13 A~ [[131- M : jl} 

where we use the abbreviation g[~ lbr 1~ (13(k) ~ g(k)) ; [A] denotes the equivalence 
k~ do,n(~) 

class modulo -= of A and { [G] } denotes the set of equivalence classes of proofs having the 
judgement G as conclusion. A 

The definition of the equivalence -= between proofs can be motivated as follows. When 
we apply the rule (application) wc must fix all order on the domain of the function 
{(il:nl)...(jk:nk)}. This order is completely arbitrary. The condition b) in Definition 7.2. 
sets two proofs to be equivalent if they differ just up to the order chosen on the domain of 
tile function {{jl:nl)...(jk:nk)}. 
We ate now ready to establish the properties of ( J N ,  ~ 

Proposition 4. The com.binatory structure ( ( J N ,  o),1[ ]l N)  is a lambda algebra but not 
a lambda model. 
Proof. The proof that ( ( i N ,  o),1l ]1N ) is a combinatory algebra is given in Appendix B. 
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For lack of space we omit the routine proof  that it is a ~.-algebra, see[12]. The following 
counterexample shows that the ~-rule fails in ((,,gN, ~ ]IN): let p(x)=(({jt: l  },j)>*) and 
P(Y)=(({j 1:2 } ,j):~), now Va.l[xzllpt'z/al=llYzll0[z/al but [[~-z.xzllp=l[Xz.yz]10. ,~ 

4 The General Case 

After having gone through various different examples in the previous section, we are now 
ready to introduce the general notion of applicative exponential structure. This notion 
subsumes all the concrete notions of application presented up to now. It denotes a general 
kind of structure where function application can be adequately defined via a 
type-assignment system. It arises from the abstract characterizations of the structure of tbe 
coefficients which are applied either to the "types" or to the "points" of the domains in the 
previous examples. It turns out infact, that two diffe~ent kinds of coefficients are actually 
involved in the construction; a fact this, which was never apparent in the previous 
examples. 

Definition 8. A preexponential structure co,asists of a triple ( A, E, ~ ) where: 
1) A ~- (A, +A, • 0A, IA ) is an infinitary commutative semiring, i.e. an algebraic 
structure where +A is an infinita,'y commt, tativc, associative operation over A, with identity 
0A, and • is an associative, commutative binary operation over A which distributes over 
+A, with identity IA. 
2) E -= (E, +E, • 0E, IE) is a commutative semiring, i.e. +E is a binary associative and 
commutative operation over E with identity 0E, and • is an associative, commutative 
binary operation over E which distributes over +E, with identity IE. 
3) there is a binary operation ~ :ExA~A satisfying the following axioms: 

a) (el +E e2) ~ a  = (el ~a)• ~ a )  
b) e ~ (alxAa2) = (e ~ a l )  xA(e ~a2) 
c) (el ~ (  e2=a))= el XE e2 ~ a  
d ) 0 E ~ a = l A  and I E ~ a = a  A 

As will become clear in the following prcexponential structures will be the abstract 
coefficients of our genral notion of applicative structure. Elements of E will be the 
"weights" of the "types" while elements of A will be the coefficients of the points. 

Condition 3) above shows that the function ~ satisfies essentially the properties of an 
exponential function. In the proof of Proposition 4 an essential property of exponentiafion 
over natural numbers is crucial: Newton's binomial expansion. The corresponding identity 
over booleans, necessary for proving P,'oposition 3. on the other hand is trivial. The notion 
of e.wonential structure below, is the appropriate abstract setting lbr carrying out the 
analogue of the "binomial expansion" over a prcexponential structure, where elements of E 
play the role of exponents (whence the name) and elements of A play the role of bases. 
Subscripts are omitted. 

Definition 9. Let ( A, E, ~ ) be a preexponential structure. 
1) An element e of E is called unitary i fe  :=* ~.jeJ aj = ~.jeJ (e :=~ aj) holds for all )-'.jej 
aj. The set of unitary elements of E is denoted with UE. 
2) Given eE E, a function l'e I'q-~ UEU{0} is a unitary tlecomposition of e if e = ~j~dom(0 
f(j). Given ee E the set of all unitary decompositions of e is denoted with U(e) 
3) An exponential structure is a preexponential structure ( A, E, ~ ) together with a 
function 
H : E ~ ([Iq--%UE~{0}]) which satisfies the following two axioms: 

Ax 1) For each e~ E there is a unitary decomposition of E; 
Ax2) The function H chooses a unitary decomposition for each element of E A 

This is the least intuitive definitio,1 among the ones given so far. But its complexity is 
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rewarding. We can now safely usc exponential structures as possible coefficients in the 
machinery that we put to work in the previous section for defining concrete combinatory 
'algebras. 

Definition 10. Given an exponential structure (A, E, ~ ,  H) and an arbitrary set of 
constants Co, an applicative exponential structure, a.e.s, for short, over (A, E, = ,  H ) is 

the c.s ( ( j A ,  ~ ]1) defined as follows: 

define inductively JE: Bl~Set by JE(0)m Co and 

JE(n+l) = JE(0)kg(([JE(n)2->E] • JE(n)); 

put JE - kin JE(n) and 3:E = [JE --->A], and,for f, ge,,,e A and je  JE, let application over 

, , ,~ be defined by (f o g)(J) -: ~ f((r,j)) x gr).  
r~ [.IE~INI 

The interpretation function I[ II:Env ~ ( A  "-Lf~)  is defined via the type assignment system 

S A by: I[ M ]lp(j) = E P[~ x ~ 1 = ~ E pl~ E 
13 Ae [[1~1- M:.jl] 1~ Ae [[13l-- M : j]} 

for j~ JEand M~A.  

S E consists of the lbllowing three rules: The system 

(axiom) provided j ~ JE 
{ ( x ,  j): 1 } I- x:j 

(abstraction) 
[5 + { (x , j l ) : e l  . . . . .  (x, jk):ek} I- M:j  

131-Z,x.M:({jl :ei  . . . .  ,ik:ek},j) 
provided Vj 13((x,j)) = 0 

13[-- M:({jI:el .... ,jk:ek},j) 

(application) 13i:t i l -  N:ji l<i<k tie dom(H(ei ) )  

13+ ~ H(ei)(ti)x13i;t i l- MN:j 
l_<i<k 

tie dtnn(l-l(ci)) 

The equivalence relation on prool~ used in the definition of I[ ]1 is that of Definition 7 and 
the abbreviations gr p[3 ale those of Definition 7. A 

The following Proposition is the main result of the paper. 

Proposition 5. Applicative exponential structures are combinatory algebras. 

Proof. The proof is very similar to the one given in Appendix B. a 

One can easily check that all the constructions in Section 3, fall under the above general 
definition. The only non-trivial issue is the choice of the function H in the definition of the 
exponential structure. Whenever E is instantiated by bI there is only one choice possible. 
Whenever E is a boolean algebra the choice is immaterial. Moreover in the latter case the 
summation over equivalence classes of proofs, in the definition of the interpretation 
function, is irrelevant. 
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5 A p p l i c a t i o n s  a n d  D i r e c t i o n s  f o r  F u t u r e  W o r k s  

The gcncral notion of applicative exponential structure suggests other notions of function 
application and hence other interesting constructions of concrete combinatory algebras. 
Here ate few examples. 

1) Lamarche [11] discusses at length the case of an a.e.s. ((oYl~, ~ ]]) where A is a 
t 

complete Hejting algebra. This is a slight variation of Ore's construction. In this case we 
have to deline the exponential (=) : ~IxA~A by: 

{ i a x . . . x a  i f n  > 1 
n = a  := i f  n 0 

2) Using the set of positive rational numbers Q+, or the set of positive real numbers IR +, 
we can lbrm the exponential algebras (Q+~j{oo}, ~1, ~ ,  U)and (IR+u{*o}, 1'4, ~ ,  U) 
where g4 is the set of natural numbers, addition and multiplication ate the standard ones and 

is the usual exponential, the ftmction U decomposes each natural number n in a sum of 

l's. In the corresponding ~.-algebras ( ( , ,yQ;u(~}  o),[[ ]1) and ((oJrR; Uj'*], ~  ]l) the 

points can be interpreted as formal power series, i.e. the description of analytic functions 
either on positive rational or on positive real numbers. More examples of this kind can be 
defined by restricting the range of the relevant operators to suitable intervals. 

3) Given any complete Heyting algebra G and indicating with InG the set of invertible 
elements in G, lnG = {a~ G 13E. a+~'= I, axE=0}, (G, InG, =-*) is an exponential algebra. 
In this case the function I decornposes every element a of InG in the a sum containing the 

G single element a. Combinatory algebras ((,"fine,' ~ ]1) generated as in Definition 10 by 

this kind of exponential algebras generalize the boolean c.s. of Definition 6. 

4) Let G be a finite Heyting algebra then (G, G, ~ ,  H) is an exponential algebra for an 

appropriate choice of H, which always exists. The c.s. ( ( , J  GG,o),I[]I) generated as in 

Definition l(I is yet another example of a combinatory algebra. 

The ideas outlined in this paper need to be investigated further. First of all one can try to 
strengthen the conditions in the definition of a.e.s, so as to obtain always lambda algebras. 
In another direction one can try to deline a cohelence predicate on the elements of J so as to 
be able to subsume notions of domain which involve stable functions. Finally one should 
explore the relation between the notions of domain arising in this setting, which for 
instance, are not necessarily to-algebraic, and those which are normally used in connection 
with Scott Domains. An abstract notion of implication between elements of  J can be 
possibly introduced, which could be used to introduce a general notion of filter. 

The structures introduced in this paper can tuna out to be quite useful from the point of 
view of programrning language semantics. For example, one can easily get a plethora of 
different denotationai semantics for a simple functional language featuring a 
non-detnninistic or operator. For any particular applicative exponential structure based on 
the exponential structure ( A, E, ~ ), one can give a denotation to the non-deterministic or 
in terms of the operators +A and XA. One can take it to be, for instance, an operation 
l[or]l:[J~A]2.-->lJ~A] defined by applying pointwise on J a suitable weighted average. 
The intuition behind this is that the meaning of or  is that of evaluating either the left hand 
with a suitable weight or the right hand with another weight. According to the particular 
choice made one gets different flavours of non-determinstic operators. Some of these ate 
interesting in themselves and can illuminate our intuition of non-determinism. For example, 
applicative exponential structures based on boolean sets, where weights are thought of as 
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sets of favorable events, yield a ki,ld of non-detenninsm which is settled once and forall 
before the computation is started; the resulting coefficient being the set of favorable events 
for a given result of a computation. Semantics based on multisets are more directly related 
to the fi'equency with which a given result is obtained following different computations, see 
[8,12]. Semantics based on real valued sets are finally closer to real probabilities. 
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Appendix  A 

Using the notation inu'oduced in Section 3, we outline, in the 7 points below, the alternative 
viewpoint under which applicative exponential structure can be considered. This viewpoint 
focuses on the notion of lbrmal power series and analytic function as a justification for the 

definition of application in (,,~r~, o) and (,.TN, ~ 

1) JN is taken to be a set of variables. ( In the tbllowing JN will be denoted simply by J.) 

2) any rc [J2..,qN] is viewed as a monomial in the variables J: 
i.e. r corresponds to the monomial 1-1 kr(k) 

kE dora(r) 
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3) all element ge olPN" [J--) (INu{oo})l is viewed as a vector consisting of J components; 

1-I (r(k) ~ g(k)) is then the result of the evaluation of the monomial r with die value 
ked(~n(|') 

respect to the vector g; 

4) a function h:(J2->N)--->(Nu{oo}) assigns a coefficient to every monomial and therefore 
determines a formal power series in the variables J : i.e. 

h(r) x r I  kr(k) ; 
r~ [JN-% IN] kE tk)m(r) 

5) a function h' : J--->([J-~ IN] ---) (lNu{oo)) associates a formal power series to each 
variable in J and is therefore a vector valued lbrmal power series. These functions are 
usually called analytic; 

6) the following isomorphisms hold: 
,,,a N ---J --4 (~u{oo}) = (J(0)u)((J 2.> N) x J ))---) (Nu{~}) =- 

= (J((l)--)(g,/u{oo}))x(((J 4~)x J )->(Nu{oo})) _= 

= (J(0)----)(~u{oo}))x(J ----)((J .-% IN)--)(INt.){oo})) 

therefore an element fe ..,fN is a vector ofJ componcnLs and containes tim representation 
of a vector valued formal power series; 

7) f o g is the vector obtained applying tile analytic functions described by f to dle vector g. 

Appendix B 

Proof of Proposition 4. 
First we need a lemma. 

Lemma.  The set { [[~ l- MN :j] } can be decomposed in disjoint singletons in the lbllowing 
way: 

~FA'A l:l...Ak;nk]~ 

{[~}I-MN-j]}= ~-J ~=J U tL JJ 
ft.= {(il:nl)...(jk:nk) ] ~, A'e [ [[~I-M:j]} 

~ I;I...131;||1 A l ; l" 'Al; i l l  

l]k;l...~k;nk Ak; l...Ak;llk 
~=[~'+~l;l+...+~k;nk Ai;hE [[~]i;h[-N:ji]} 

Proof  (lemma). The above lbrmula just enumerates all possible equivalence classes of 
proofs ofjudgmcnLs ~ ]-- MN:j. It is not difficult to see that the lbrmula is con'ect observing 
fllat: 
1) in all the proofs of ~ I-- MN:j tile last rule applied is tile application rule. 
2) ill the formula we consider just one of the possible orderings of the domain of the 

function a={ (jl:nl)...(jk:nk)}. A 

Proof  (Proposition) 
i ) We must prove I[ x lip = p(x), by definition we have: 
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It x  oo) : Z Z 
[~ ae [[[~1- x:.ill 

the only proofs of  judgments of the form: [3 I- x:j am given by an application of  the 

(axiom)-rule {(xO):l} l- x:j , so I[xllp(j) = p[(x,.i), I I = (p(x,j))l = p(x)(j). 
ii ) We must prove I[ MN lip(j) = (I[MIIo~ expanding the tetxn on the left of this 
equality we have: 
I [MNllp( j )  = ~ Z P I ~  : 

[~ Ae [[~[-MN:j]} 

=Z 

(by the previous lemma) 

('/.= [ (j Z :il I ) . . .(jk:nk) } [~' a'e [ [BI-M:jI} 
1~ l;l...[~ 1;111 A l ; l . . .A I ;ll Z ,.,Ak; l . . .Ak;llk 

~k;i ..~[.~k;ll k Ai;hE [ [l~l;h t-N:.ji] I 

13=[~'+p I ; 1 +...+[Sk;nk 

= Z Z Z pI~'+I] I' I +'''+13k'nk 
ft.= {(j l:nl)...(iktl|k)} ~' A'e [ [13 I-M:j] ] 

[~ I, Z...~ I ;11 l,.,l~k;I . . .~k;nk A I ; I . . .A l ; t l l  

Ak; l . . .Ak:nk 
Ai;he [ [l~i;h I--N:ji] } 

Expanding the term on the right we obtain: 

(I[M]Ip~ = Z I[M]Ip(~ l))n lX'"x(l[N]p(Jk))nk = 

Or=[ (j 1 :n I)...(ik:nk) I 

: z 
o.=[(h:nO...(ik:nk) I t[[~l-- M:(cc;j)I}) [, [~ AE [[[~ I- N:(h)l} ) 

Ae [ [~ I- N:(ik)ll 

Z 
c~=[(jl:nl)...(jk:nk)] 

Z Z P[i'xpI~ l;lx'"xpl3k'nk 

~' A'e { [l~ I-M:jll 
[~ I, 1 ...~ I,II 1 . . ,~k,  1 . - .~k, l lk A I ; I . . .A 1;111 

Ak; l . . .Ak;nk 
Ai;hE [ [~i;h I-N:ji] } 

and this expression is equal to what we obtained before expanding the other term. 

iii ) We must prove that (1[ ~.x.M]lpoa)(i) =l[M]lpla/x](D; by definition we have file following 
equalities, 

(1[ kx.M]lpoa)(i) = ~ (1[ ~,x.M]lp(oc;j))a a =  
o~ 
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ae [ [13 I- Z.x.M:fa,j)] } 

Ae {[~+xXxI-M:j] x~13} 

=~,Z Z PI~ x aCL = 
A~ [ [l~+x:a I- M:.i] I x~ 13 } 

(using distributivity) 

= ~  ~ P['dx] 13+ix:a} = 

a~ [ [p+x:a t- M:jl I x~ p } 

= ~  ~ p['dxlP'= I[Mllpta/x](i) ( by definition). 
p' ae [[p'l-M:j]} 

iv ) We must prove that V.i.l[ Z,x.M lip(i) = I[ 2~y.(lx/y]M)]lp(,i) provided y~ FV(M). By 
definition : 
[[ Xx.M]lo(i) = ~  ~ P13 = 

13 a e  { [l~ I-- ~.x.M:.il} 
if ya~ FV(M) then there is a bijection between proofs of 13 I- 2~x.M:j and proofs of 
13 I- 2~y.([x/ylM):j and these correspondence preserves the equivalence relation on proofs, 
thus 

E PP = if', E PP = 1[ 2~x([x/y]M)]]p(j) 
13 Ae [[131-- 2~x.M.'j]} 13 Ae [[pl- 2~y.([x/ylM):.j]] 

v ) We must prove that Vj.ll M ]lp(i) = l[ Xx.M ]1r provided p(x) = ~(x) for xeFV(M) 
By definition I[ M ]IP(j) = ~ P 13 x ~ 1 

P Ae [[l~l- M:i]} 
it is easy to show by induction that ill 13 I- M:j the domain of 13 contains only the free 
variables of M. Moreover P13 is equal to ~1~ if p and ~ am equal on the domain of 13. A 


