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Many concrele notions of function application, suitable for interpreting typed lambda calculi with
recursive types, have been introduced in the literature. These arise in different fields such as set
theory, multiset theory, type theory and lunctor theory and are apparently unrclated. In this paper we
mroduce the general concept ol applicative exponential structure and show that it subsumes all these
nottons. Our approach is based on a gencralization of the noton of intersection type. We construe
all these structures in a finitary way, s0 as (0 be able (o utilize uniformly a general form of type
assignment system for defining the interpretation lunction. Applicative exponential structures are
just combinatory algebras, in general. Our approach suggests a wide varicty of entirely new concrete
notions ol function application: e.g. in conncction with boolean scts, Applicative exponential
structures can be used for modeling various forms of non-deterministic operators.

1 Introduction

Various natural concrete models of the notion of function application arising in A-calculus
have been discovered sinee the carly seventics. G.Plotkin | 13], inspired by carlier work of
Scott, was the [irst to define a sct-theoretical notion of application. By means of it he built a
set theoretical model for untyped A-calculus. Since then, various other natural notions of
application were discovered by Scott { 15] and Engeler [7] in sct theory, by Coppo, Dezani
and Venncri [5, 3] in type theory and by Girard [8], Ore [12] and Lamarche [11] in functor
theory, in the theory of multiscts and in analytic function theory. All these concrete notions
of application give risc to concrete structures, albeit not always categories, which can be
used as domains for denotational semantics. More precisely these structures are rich enough
to model the behavior ol application in typed A-calculi with recursive types and appropriate
constructors, destructors and fixed point operators.

These notions of application, although apparcntly different, secm to share a common
pattern. In this paper we try 1o capture this pattern by introducing a notion of algcbraic
structure, ermed applicative exponential structure, which we show to be general enough
subsumc all the concrete notions mentioned carlier. In particular we define a general
framework in which one can casily and unilormly cxpress all classical constructions. One
of the key features of our approach is the use ol a generalized notion of type, inspired by
that of "interscetion type” 3], lor providing a (initary description of the structures under
consideration. This analysis allows [or the usc of a uniform kind of type assignment sysiem
for defining the interpretation of the A-calculus language. Intuitively types are understood as
finite elcments of the domain, possibly having somce coeflicients; and a term has a given
type il its denotation is approximated by a given type. Special care has to be taken in order
to deal with the coeflicients. This is a particularly interesting way of presenting the
interpretation function since, besides being finitary in nature, il constitutes an endogenous
logic in the sensc of Abramsky [1]. Moreover it can provide a proof theoretic analysis of
the fine structure of the models. This technique was initially introduced for the study of
filier models [4] but was later applicd to Girard's qualitative domains in coherent semantics
[10} and quantitative domains [6].

We think that our approach is successlul and {ruitful since, besides illuminating on the
idca underlying so many apparcently unrclated notions of function application, it suggests
also a widc varicty of new concrele alternatives,  Particularly appealing and potentially
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interesting is the notion of application which arises in connection with boolean sets. This
notion yields a sort of "boolcan valued” model of the A-calculus. It is closely related to thit
which arises i’ we carry out Plotkin's original construction in a Boolean-valued model of
set theory. This kind of construction can prove to be quitc interesting for modeling
programming languages which feature non-deterministic operators. Morcover, it seems (o
open a new arca of applications ol model theorelic concepts to the semantics of
programming languages.

For simplicity we shall not deal in this paper with the whole language of typed
A-calculus with rellexive types as in [14] or [12]. We will discuss only the case of the
untyped A-calculus language, as an intercsting and important cxample of a reflexive type.
All the results can be extended with litle difliculty (o the more general case.

Somchow uncxpectedly, the abstract structure introduced in the paper, and many of the
concrele cxamples given, do not model A-calculus in the strongest possible way. In general
the, s0 called, E-rule fails and these are only combinatory algebras and not lambda models
nor lambda algcbras. Surprisingly cnough the general construction does not seem to be
amcnable 1o a simplc categorical presentation, unless lurther cquivalence relations are
superimposcd. These will be discussed in a lorthcoming paper.

A [inal remark is in order. We could have presented these results following more closely
the approach of Girard[8] and Lamarche [ 11]. This would amount (o use as main source of
inspiration the notion of analytic function in complex analysis. No substantial difference
would arise. The approach via analytic functions is in fact "dual” o the one used here. In
this paper we will ouly describe very brictly this alternative approach in Appendix A.

The paper is organized as follows. In section 2 we define the structures normally utilized
lor modeling A-calculus using a style which locuses on the properties of the interpretation
Lunction. In section 3 we prescnt some classical and new constructions of concrete models
of the lambda calculus and gradually introduce our gencral {ramework. In section 4 we give
the definition ol applicative exponcential structure and prove the main theorem of this paper,
i.c.: applicative cxponential structures arc combinatory algebras. Finally in section 5 we
give more cxamples ol concrete applicative exponential structures yet uninvestigated and we
outline a possible usc of applicative exponential structurcs for modeling non-deterministic
operalors.

Finally the authors would like to gratefully acknowledge Fabio Alessi and Simona
Ronchi della Rocea lor helpful discussions in the carly stages of this work.

2 Combinatory Structures

Throughout the paper we assume the reader tamiliar with standard notions and notations in
Lambda Calculus and Combinatory Logic as in [2]. Scveral different applicative structures,
i.e. structures with a binary operation defined on them, have been introduced in the
literature for interpreting the language of A-calculus: combinatory algebras, lambda algebras
and lambda modcls. These differ by the strength of the cqualitics which they enforce on
interpretations of A-terms. Usually combinatory algebras are defined without any reference
to the interpretation function using the standard combinators S, K and 1. Contrary to this
tradition will define uniformly all these structures in the style of [10]. By so doing the
connection with type assignment sysiems in the sequel will be clearer,

The language A of A-calculus is defined as usual by: M::= x | MN | Ax.M. Terms which
do not have abstracted subterms will be called applicative rerms.

Definition 1 (2 Ia Hindley Longo)

1} An applicative structurc A |, is an algebra (A : Set,o: Ax A»A);

2) An environment is a function p : Var —» A. The set of environments is denoted by Env.
3)An interpretation of A is a [unction [[ f: Env —(A - A). As usual E[x/a] denotes the
cnvironment defined as E[x/a](x)=a and &[x/a](y)=E(y) if x= y.

4) A combinatory structure, c.s. [or short, is a pair 4, || 1: Env—(A—A)) consisting of an
applicative structure and an interpretation function defined over it;

5) A lambda model is a c.s. where the interpretation funclion satisfies the following
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properties:
i) [xlp=
ii) I[MN]I -I[M "p°“ N lp
ii) [[ Ax.M ﬁ) ca=[[M]

iv) [ Ax.M ]]p = Ay. ([x/?]M)le provided ye FV(M)

v) [ M]lp =1 M Jl¢ provided p(x) =E&( x) for xe FV(M)

vi) (Va. [ M Jppxsa) =1l N llpjxsap) = [ Ax.M Jlp = [[ Ax.N Jp
6) A lambda alge Era is a ¢.5. where the mtupm.xlmn 1uncuon satisfies conditions i) - v)
above and also the following rule:
@ FIM=N=[aMls =[N |
where |-, denoles dulvablhly in the lhuory ol A-calculus.
Ty A combinatory algebra is a c.s. where the interpretation [unction satisfics only conditions
i)-v) above. A

It is well known that lambda models arc lambda algebras and lambda algebras are
combinatory algebras. The following proposition illustrates the importance of combinatory
algebras and establishes the equivalence of our definition with the usual ones.

Proposition 1. Let {4,][ |} be a combinatory structure. The following properties are
equivalent:

a)A can be extended to a combinatory algebra (AL 11

b) There exist distinguished constants K and S in A such that for all constants a,b,ce A ;
((Kea)eb)=a and (((S -a) )b o)c = ((a =) o(b °c));

¢) The interpretation {unction {| J: Env —(A —A) satislics condilions i) and ii} in Definition
1, and morcover for all applicative term Me A such that FV(M)c{x1y,...,xn}, there is a
constant ¢, such that MJiz=[[cx]...xn]lg, for xe Env. This property is usually called
Sfunctional completeness.

Proof. Standard A

3 Concrete Models of Application

In this section we present some classical constructions of concrete models of the untyped
a-calculus language, some aliernative presentations ol these and some entirely new models.
As remarked in the introduction any ol these could be turned into a full-fiedged domain
structure for denotational scmantics, but for lack of space we shall not do it here.

Perhaps the best known example of a natural concrete model of lambda calculus is the
Plotkin-Engeler sct theoretical model see [13, 7], This model construction is closely related
1o the Filter Model constructions in |3, 5, 4], where arbitrary sets are replaced by particular
ones called filters. Intercstingly cnough, Plotkin-Engeler Model and the Filter Model are
indeed lambda models, the model introduced in |51, on the other hand, is only a lambda
algebra. Nonctheless this latter structure, which we call Interscetion Algebra, is quite
remarkable since it is the lirst cxample ol a fambda algebra which has not been defined by
purcly syntactical means.

In the literature the applicative structure underlying Plotkin-Engeler set theoretical model
is defined as follows:

Definition 2. The applicative structure (B, » ) is delined inductively by:

Bg is an arbitrary sct ol atoms,

Bue1 = Bo U { (8.6)|B By, B finitc, b e By)

& = (U, By)

given U,Ve & weput UeV={bl@p,b)eU,pcVv]. A

We now give an aliernative presentation ol the above structure. This will be the first
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example of the standard format which will be used throughout the paper for presenting
concrete applicative structures. The definition of the general notion of applicative
cxponential structure in Section 4 will build upon the shape of this formal. The original
presentation of Engeler’s model, i.c.Delinition 2, was given just for introductory purposes.

We need first some notation. Given a set A and a set B we denote by [A-B] the set of
functions from A 10 B. I B contains a distinguished point 0, we denote by [A23 B] the set
of functions from A to B with valuc almost cverywhere 0. As will become clear in the
sequel these particular [unctions are introduced cssentially as a useful "trick” for encoding
{unctions with a finite domain, without having to bother about issues of definedness.
According to this intended meaning, given re |[A3B], dom(r) will denote the set
{a lae Ar(a)#0}; and the term {ay:x1,....ap:X, } will denote the function s:A—B defined by

i nmas For come | [ <i<
s(a) E{x, il a a for somc i 1<i<n
0 otherwisc

Finally 2 will denote the boolean algebra of truth-values where "false” is taken to be 0 and
"true” to be 1.

Definition 3. Let  J: IN— Set be inductively defined by:

J(0) =Jo, an arbitrary sct of atoms, J(n+1) = JO)U([I(n)2 2] X J(n)).
Now put J =y Jn) and £ =[J— 2].

Let {_#, o) be the applicative structure where application is defined by:

Eoadi= 2 ) x J] ok = gk)
re [J*2] ke dom(r)
where [,ge #, jeJ, = is logical implication, + is disjunction and X is conjunction . A

Notice that any function re [A 22] is indecd the characteristic function of a finite subset
of A, just as any function [': A — 2 is the characleristic function of an arbitrary subset of A.

The expression H (r(k) = g(k)) ., used above, is therelore true, i.e. equal to 1 if and
ke dom(r)
only if the finitc set represented by ris a subset of the set represented by g.
What we have done in this new presentation amounts Lo substituting subsets with their
characteristic [unctions. It is now casy to show that (&8, <) and (£, =) are isomorphic.
Filter Modcls and Intersection Algebras can be accounted for similarly as {ollows. The
structure (_#, °) is precisely the applicative siucture underlying the Intersection Algebra in
[5]. The applicative structurc underlying the lilter model in [3], instead, is obtained by
taking _# in Definition 3 to be the sct of only those subscts of J which are filters. Elements
ol J behave in [act like intersection types. A [liller f is a subset of J which is upwards
closed under the order relation < induced by the lollowing rule:

i<’ Vkedom(r). 3k'e dom(r'). k'sk
(r,j) < (")

We arc now rcady Lo turn these applicative structures into combinatory structures. As
remarked in the introduction, we will utilize throughout the paper.type assignment systems
in the sensc of [3,4] to define the interpretation [unction. This is made possible because
clements of J behave as a gencralized "intersection types” [3,4]. In general we construe
type assignment systems as formal systems for establishing assignment judgements of the
form BM:j where Me Term, jeJ and B is a (multi)set of assumplions of the shape x:j'.
Apart from the particular choice of the st J, the type assignment systems in the paper will
vary greatly in the structural rules assumed in the formal system. The intended meaning of
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the judgement B M:j will be made formally precise case by case, but it will always mean
something of the kind "undcr the assumptions recorded in B the interpretation of M depends
on the type j*. This is both an "endogenous logic" and a "logical” preseniation or "finitary”
preseatation of the structure, in the sense of Abramsky, [1].

In order to define the interpretation [unclion in the Plotkin-Engeler set theoretical model,
in the Intersection Algebra and in (he Filter Model we shall utilize judgements of the form

B M:j where the bases B arc scts i.c. functions Be[(Var x J ) 252].

Definition 4.
1) Consider the [ollowing sct of rules:

(axiom) ——————  provided je]

[y xgj

B+ {0l ()i ) = M

(bsiaction) g1 M e e VIR =0
(application)  © E M lB+ £ 1 i i}S,jk)Bi Bll~ I~MN1\;j:; - B - Neji
(weakening) E_B[:—liv{l:le

m) %}AT—TL provided x¢ FV(M)

boolcan operations arc cxtended pointwisc (o bascs.

2) Let Sy be the type assignment system consisting of the rules{(axiom), (abstraction),
{application)}, S be the type assignment system consisting of the rules {(axiom),
(abstraction), (application), (weakening)} and S3 be the type assignment system consisling
of the rules{(axiom), (abstraction), (application), (weakening), (n)}.

3) Let the interpretation [unctions | ' Env —(A — ji) , (i€ {1,2,3}), be deflined as

IMILG = Y ( JTBw=pw)
Bl M:j  kedom(B)
where we write B M:j 1o indicate that the judgment B FM:j can be derived in the system
Si (ie { 1,2,3}); boolean operations arc cxtended poinlwise to environments which arc
taken to be functions p : (Varx J) — 2; the expression 2 denoics the disjunction
B i M:j

over provable judgments in Sj; and finally _#1 and _#2 arc _# of Definition 3 above, while
Fdis the set of filiers on J . A

The delinition above illustrales how type assignment systems can be used to define in a
finitary way interpretation functions. The proposition below illustrates what we have
achieved so lar,

Proposition 2. The combinatory structure (#1, [ 1) is the intersection algebra of [5],
the combinatory structure {£2, | 2 is Plotkin-Engeler's lambda model while (_#3, [ 13)
is the Filicr Model [3].

Proof. A cdious bul routine verification that conditions in Delinition [ are salisfied. A
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Once we have presented Plotkin-Engeler's model in the format (_# 2.1 12y it is natural to
gencralize the role of the Boolcan Algebra 2 in the construction of Definiton 3 to an
arbitrary boolean algebra B. What we obtain is then an entirely new class of combinatory
structures. This kind of construction is very closcly related to that which would arise if we
carried out the construction ol {_#, ) in a Boolcan-valued universe of Set Theory: i.e. using
boolcan sets instcad of ordinary sets. We cannot [ollow up this here. We give just
appropriate gencralizations of Delinitions 3,4 and Proposition 2 to the case of an arbitrary
complete boolcan algebra.

Definition 5. Let B be a complete boolean algebra and A, an arbitrary sets of constants
1) the combinatory structure (_#p, °) is delined as lollows:
let Jg: IN - Set be inductively defined by
I = A, and Jg(n+1) =IO ([Ip(n)2B] x Ip(n))
now put Jp = Uy Jp(n) and let_#p = [Jp— B], application over #p is defined by

CegD= Y 0 ) x  [] ek = gk)
re lJg-=B] ke dom(r)
where [,ge £ and je Jp.
2) Let Sgy be the type assignment sysiem consisting of the following rules and:

(axiom) _—
{x: 1) x

(abstraction) p —E l{—(’;ui(ll)\/lb(l{’“;)(:',ki:;i ;—i)M -] provided Vj B((x,j)) =0

o BHM:({ju:br,... kb)) Bik Niji ... B Niji
P 1 " R
(dpp toation) 13+Z lSiSk(bixBi) - MN:.i
. Bl- M:j
(weakening) ————
SRS T M

where je Jp and beB;
3) let Spy be the subsystem obtained from Sp by omitting (weakening);
4) The interpretation functions || IBi: Env —(A - _£p) (ie { 1,2}), are defined by :

IMoJBiG) = Y, ( ] Bk = p®)). A
BLBiM:j kedom(B)

Proposition 3
i) The combinatory structures ((_#3, °), ([ 1% (i {1,2}) are combinalory algebras;
ii) If B is not wivial then ({_#p. <), Il 1) (ie {1,2}) are not lambda algebra

Proof. i) Omitted, since it is a special case ol the proof of Proposition 5 below.

ii) Let B= Axyz.x(yz) denote the usual composition combinator, one has immediately that
A Ayz.Bx(Byz) = Ayz.B(Bxy)z) i.c. compostion of functions is associative. A tedious
computation shows that [ Axyz.Bx(Byz) J|i # [ Axyz.B(Bxy)z)]i - A

It is interesting to notice that the role played by J in the above Proposition is again akin
1o an "intersection type” to whom a "boolean weight" has been attached. The corresponding
Lypc assignment system is then built so as to take into account also this non-standard
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"weight'. Boolean cocllicicnts appear in the hypotheses and conscquently, the structural
rule olcontraction is replaced by a sort olboolean contraction.. This "boolean set”
construction however, docs not cven give rise Lo a calegory. We conjecture that in order to
turn the structures {((_#p, ), [ 11 (ie {1,2,}) into A-algebras we need to define a suitable
quotient,

So far we have only considered examples where sets, be these ordinary or boolean,
were used in defining types, i.c. clements of J. Yel more examples of combinatory
structures can be obtained by "repeating” Plotkin-Engcler's construction using muitiscts in
the definition of types. Surprisingly cnough this construction amounts to the construction
carried out by Ore [12]. This in turn was introduced as a simplified version of the notion
due to Girard of gquantitative domain [8]. Loosely speaking Girard's construction
corresponds to Plotkin-Engeler's construction using arbitrary set-valued functions in place
ol multisets. Here we will analyze in detail only the multiset case.

Ore's notion ol domain can be put into our [ramework by replacing the boolean algebra
B in Definition S with IN, the set of natural numbers. Of course, the boolean operations
which appear in the definiton of application and interpretation, which in turn generalized the
simple sct theoretic concepts of Plotkin-Engeler's algebra, have to be replaced here with
arithmetic operation on natural number, i.c. disjunction with addition, conjunction with
multiplication and logical implication with cxponcntiation. It comes almost as a surprise that
under this twist of perspective, Girard-Ore's construction can be naturally related to
Plotkin-Engeler's. Notice the close similarity between the following definition and
Definition 5.

Definition 6. Lcl A, an arbitrary scts of atoms, the combinatory structure (N, °) is
defined as follows: let Jn:IN — Sct be inductively delined by

IN(O) = Ay and In(n+1) = INO)U(INM)D IN] X In(n))

putJN=UnIN(n) and let FN = [JN— (NU(oe))] , application over _#N is defined by

Cogiip= 2 x [l = gk

re [JNB_;INJ ke doin(r)
where {,ge_#N. je JN, arithmetic operations are extended to NuU{ee} in the obvious way
and = is the usual operation ol cxponcaliation. A

The above detinition can be casily modificd to encompass the case of a notion of domain
intermediate between that of Girard's quantitative domain and Ore's domain. This notion of
domain is obtained using the sct Card of cardinals in place ol the set (INU{=}). In order
to avoid the use of proper classes we can always think of Card as the set of cardinals

smalcr than a given inaccessible cardinal. The structure (Y, ) is then obtained taking #§

0 be [JN — Card |, the deflinition of application remaining unchanged. As remarked in the
introduction, prescntations in [12],[8] and]11] rely heavily on the notion of analytic

function. In fact both in { j,f, o) and ( £ N, o) we can interpret the formula defining the

application as the cvaluation ol an analytic lunction. Sce Appendix A for a brief illustration
ol this alternative viewpoint.

Going back to the structure in Definition 6, the interpretation of a A-term M with respect
10 (_# N.o) can be given again following the familiar pattern using a type assignment
system. Again, in fact, elements of J can play the role of generalized "intersection types”.
The coetlicients being now integers. In this case however it is slightly more complex. In
order to deline the interpretation function it is necessary to introduce an equivalence relation
on proofs of Lyping judgements to take care of multiplicitics.
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Definition 7. ) )
1) The typc assignment system N consists of Lhe following rules:

(axiom) —
L) X
' B+ (it iRy M
abstr: ed Vi B((x,i) =0
(abstraction) =g Ml ikl
B M:({jint,....jkink) i)
(application) By - Niji 1<isk 1<t<n;
application -
B+ ZBi;ti'MNZJ
157k
1<ti<nj

Here a basis B can bc seen as a finite multiset of hypothesis of the form x:j, accordingly
arithmetic operations arc extended to bases in the natural way.

2) The equivalence relation = on proofs of lyping judgements is the [inest equivalence
relation satisfying the [ollowing two conditions: o

a) =1is a congrucnce relation on the structure of the proof, i.e.:

A]...Ai...A“ - A] ...Ali...An

A=A A
b) For every permutation ¢ ol the set {1,...,k}
B M:({j1nt.....jk:nk}j) BE M:({ji:n1.... jk:nk} i)
m;li - N:ji  I1<igk 1<gng Bc(i);(g(l) - Nijoy 1<igk 1<ijga
B+ D Biy; - MN;j Be D Bin - MN;j
I<igk 1<i<k
1<ti<n; 1<ti<nj

3) The interpretation of a A-term M in the applicative structure (_£N, o) is defined by:

[MoINpG) = Y pBx Y1 = ¥ L
p Ae[[B-M:j1} B Ae([B-M:jl}

where we use the abbreviation gP tor H (Bk) = g(k)) ; [A] denotes the equivalence
ke dom(B)

class modulo = ol A and {[G}} denotes the set of equivalence classes of proofs having the

judgement G as conclusion. A

The definition of the cquivalence = between prool's can be motivated as [ollows. When
we apply the rule (application) we must [ix an order on the domain ol the function
{G1:n1)...(k:nx) }. This order is completely arbitrary. The condition b) in Definition 7.2.
sets two prools to be equivalent if they differ just up Lo the order chosen on the domain of
the function {(j:ny)...(ik:nk) )}

We arc now ready to establish the propertics of {_#N, o).

Proposition 4. The combinatory structure { {_#N, o),I[ I™¥) is a lambda algebra but not
a lambda modecl.

Proof. The proof that {{_#N, «),Il 1N} is a combinalory algebra is given in Appendix B.
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For lack of space we omit the routine prool that it is a A-algebra, sec[12]. The following
counterexample shows that the E-rule Lails in ((_# N, o), IN): let p(x)=(({j1:1},j):=) and
p(y)=(({j1:2}j):=), now Va.[[xzllppuay=llyzlppasa) but [Az.xzllp=l[Az.yz]jp. A

4 The General Case

After having gone through various diflercnt cxamples in the previous section, we are now
ready to introduce the gencral notion of applicative exponential structure. This notion
subsumes all the concrete notions ol application presented up to now. It denotes a general
kind of structure where function application can be adequately defined via a
type-assignment system, I arises [rom the abstract characterizations of the structure of the
cocfficicnts which arc applied cither to the "types” or to the "points” of the domains in the
previous examples. It turng out infact, that two different kinds of coefficients are actually
involved in the construction; a lact this, which was never apparent in the previous
cxamples.

Definition 8. A preexponenrml structure consists of a lnph, (AE,> ) where:
1) A=(A, +A, xA . 0a, LA ) is an mlxml.uy commultative scmmng, i.e. an algebraic
structure where +4 is an infinitary commutative, associative opcration over A, with identity
04, and x4 is an associative, commutative binary operation over A which distributes over
+A, with identity 1A,
2) E = E, +g. xpz, O, L) is a commutative semiring, i.c. +1is a bmdly associative and
commulative operation over E with identity Op, and xg is an associative, commulative
binary opcration over E which distributes over +g, with identity 1,
3) there is a binary operation =:ExA—A satis{ying the following axioms:

a) (e1+ €2) =a = (c] =a)xa(c2 =a)

b) e = (a1xpa2) = (e =a1) xale =ag)

¢) (e] =(er=a))= ¢i xE ez =a

dOg=a=1pn and Ip=a=a A

As will become clear in the following preexponential structures will be the abstract
coelficients of our genral notion ol applicative structure, Elements of E will be the
"weights” of the "types” while clements of A will be the coclTicients of the points.

Condition 3) above shows that the [unction = satisfics essentially the properties of an
exponential function. In the proof of Proposition 4 an esscntial property ol exponentiation
over natural numbers is crucial: Newton's binomial cxpansion. The corresponding identity
over booleans, necessary [or proving Proposition 3, on the other hand is trivial. The notion
ol exponential structure below, s the appropriate abstract setting for carrying out the
analoguc of the "binomial expansion™ over a preexponcntial structure, where elements of E
play the role of exponents (whence the name) and clements of A play the role of bases.
Subscripts are omiticd.

Definition 9. Let { A, E, = ) be a preexponential structure .
1) An element ¢ of E is called unitary il e = E_ie ja= Z_ie 1 (e => a;) holds for all Zje J
aj. The set of unitary elements of E is denoted with Ugs.
2) Given eeE, a function fe N2y Up\{0} is a unitary dewmpo.sltmn ofe ife= Zjedom(f)
f(j). Given ecE the set of all ummly decompositions of ¢ is denoted with U(e)
3) An exponential structure is a prcexponential structure (A, E, = ) together with a
function
H:E — ([N Ugpuw{0}]) which satisfics the [ollowing two axioms:

Ax 1) For cach eeE therc is a unitary decomposition of E;

Ax2) The function H chooses a unitary decomposition for cach element of E A

This is the least intuitive delinition among the ones given so far. But its complexity is
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rewarding. We can now salcly usc cxponential structures as possible coetficients in the
machinery that we put o work in the previous scction for defining concrete combinatory
algebras.

Definition 10. Given an exponential structure (A, E, =, H) and an arbitrary set of
constants C,, an applicative exponential structure, a.e.s. for short, over (AE,=,H)is
the ¢.s ((jl'; , 9%l 1) defined as follows:

define inductively Jg: IN-Set by Ji(0)=C, and

JE(+1) = JEO)A(UEM)SE] X JEn);

put Ji = Uy Jiz(n) and j’l'; = [JE — Al and,for f, ge j;; and jeJg, let application over
Fhbedefincd by (Fo ()= 2 [(rj)) x g7 .

re[J2IN]
The interpretation function [ [|:Env —(A — jg) is defined via the type assighment system

$A by: [MIp() = Y pbx Y1 = % Y ob

B Ae ([ M:j)) B Ae([B-M:jl)
for je Jgand MeA.

The system Sé consists of the following three rules:

4,

{axiom) ——————  provided j € JE
{(x, D) 1} = xij

B+ {(xj):er - (x.jk)ek} - M:j

nhatenel] rovided Vi B((x,j)) =0
(abstraction) B Ax.M:({j1:c1, . -nikiek )i) provided Vj B((xJ
B M:({irct...jkiek} i)
L Biw. - N:ji  1<igk e dom(H(c;))
(application) 1

B+ D H(e)(u)XBiy; - MN:j
1<i<k
tie dom(H(c;))

The equivalence relation on proofs uscd in the definition of [f ]| is that of Delinition 7 and

the abbreviations gf, pB are those of Delinition 7. A

The lollowing Proposition is the main result of the paper.

Proposition 5. Applicative exponcntial structures are combinatory algebras.

Proof. The proof is very similar to the one given in Appendix B. A
One can easily check that all the constructions in Section 3, {all under the above general

definition. The only non-trivial issuc is the choice of the function H in the definition of the

exponential structure. Whenever E is instantiated by IN there is only one choice possible.

Whenever E is a boolean algebra the choice is immaterial. Moreover in the latter case the

summation over equivalence classes of prools, in the delinition ol the interpretation
lunction, is irrelevant,
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5 Applications and Directions for Future Works

The gencral notion of applicative cxponential structure suggests other notions of function
application and hencc other interesting constructions of concrete combinatory algebras.
Here are few cxamples.

1) Lamarche [11] discusses at Iength the case of an a.c.s. {{ jﬁ, N[ 1) where Ais a
¢

complete Heyting algebra. This is a slight variation of Orce’s construction. In this case we
have 1o define the exponential (=>) INxA—A by:

. ax.xa ifnz2]
n=a-=1 iln=20

2) Using the sct of positive rational numbers QF, or the sct of positive real numbers R+,
we can lorm the exponential algebras (Qtuf{ee}, N, =, U)and (R*u{~}, N, =, U)
where IN is the sct of natural numbers, addition and multiplication are the standard ones and
= is the usual exponential, the function U decomposes cach natural number n in a sum of

I's. In the corresponding A-algebras ((jQI:U(“), oI 1) and ((j“,:u‘”’, o) 1) the

poinis can be intcepreted as formal power series, i.c. the description of analytic functions
either on positive rational or on positive real numbers. More examples of this kind can be
defined by restricting the range of the relevant operators Lo suitable intervals.

3) Given any complete Heyting algebra G and indicating with Ing the set of invertible
clements in G, Ing = {aeG 137, a+d=1, ax@=0}, (G, Ing, =) is an exponentia! algebra.
In this case the [unction 1 dccomposes every clement @ of Ing in the a sum containing the

single clement a. Combinatory algebras (( jg‘c. o)l 1) generated as in Definition 10 by
this kind of exponential algebras generalize the boolean c.s. of Delinition 6.

4) Let G be a finike Heyting algebra then (G, G, =, H) is an exponential algebra for an
appropriate choice of H, which always cxists. The c.s. {(_# g,o),[[]l) generated as in
Definition 10 is yet another example of a combinatory algebra.

The ideas outlined in this paper need to be investigated turther. First of all one can try to
strengthen the conditions in the definition ol a.e.s. so as to obtain always lambda algebras.
In another direction onc can try to deline a coherence predicate on the elements of J so as to
be able to subsume notions ol domain which involve stable functions. Finally one should
explore the relation between the notions of domain arising in this setting, which for
instance, are not necessarily w-algebraic, and those which arc normally used in connection
with Scott Domains. An abstract notion ol implication between elements of J can be
possibly introduced, which could be used to inroduce a gencral notion of filter.

The structures introduced in this paper can turn oul to be quite useful from the point of
view of programming language semantics. For cxample, one can easily get a plethora of
diffcrent denotational semantics lor a simple [unctional language featuring a
non-detrministic or operator. For any particular applicative exponential structure based on
the exponential structure (A, E, =), one can give a denotation to the non-deterministic or
in terms ol the operators +4 and xa. One can Lake it o be, for instance, an operation
[for]:[J»A]2—]J—A] delined by applying pointwisc on J a suitable weighted average.
The intuition behind this is that the meaning of or is that of cvaluating either the left hand
with a suitable weight or the right hand with another weight. According to the particular
choice made one gets different lavours of non-determinstic operators. Some of these are
interesting in themsclves and can illuminate our intuition of non-determinism. For example,
applicative cxponential structures based on boolean sets, where weights are thought of as
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sets ol [avorable cvents, yicld a kind of non-determinsm which is scttled once and forall
belore the computation is started; the resulting coctlicicnt being the set ol favorable events
for a given result of a computation. Scmantics bascd on multiscts are more directly related
to the frequency with which a given result is obtained following different computations, see
[8,12]. Semantics basced on rcal valued scts are [inally closer to real probabilities.
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Appendix A

Using the notation introduced in Section 3, we outling, in the 7 points below, the alternative
viewpoint under which applicative cxponential structure can be considered. This viewpoint
tocuses on the notion of formal power scrics and analytic function as a justification for the

definition of application in {_#, <) and (_£N, ).

nJ

N is taken to be a set of variablcs. ( In the following Ji will be denoted simply by J.)

2) any re[JSIN] is viewed as a monomial in the variables J:
i.e. r corresponds to the monomial [ kf(K)

ke dom(r)
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3) anclement ge £N = [J— (INU{oe})] is vicwed as a vector consisting ol J components;

the valuc H (r(k) = g(k)) is then the result of the evaluation of the monomial r with
ke doin(r)
respect to the vector g;

4) afunction h:(J2IN)—>(INU{ee}) assigns a coctlicient lo cvery monomial and therefore
determines a formal power serics in the variables J : i.e.

Yone x  J]r®,

re [JNSIN] ke dom(r)

5) a function h' : J=([J= IN] - (INuU{ee}) associates a formal power series to each
variable in J and is therefore a vector valued formal power series. These functions are
usually called analytic;

6) the lollowing isomorphisms hold:

FAN=J = (NUfee}) = JOY(( 2 IN) X J )= (NU{ee}) =

= (JO=>(NU{== )X SIN)X J )>(INU({eo})) =

= (HO)—=(INU{e=]))x(J =((J 2 N)-(INU{e}))

therclore an element e £y is a vector ol J components and containes the representation
of a vector valued formal power scrics;

7)fe g is the vector obtained applying the analytic functions described by f to the vector g.

Appendix B

Proof ol Proposition 4.

First we need a lemma.

Lemma. The sct {[BF MN : jl} can be decomposed in disjoint singletons in the following
way:

{[A'AI:I...Ak;nk]}
{[B+MN:j}) = U W W B - MN:j
o={(i:ng)... (koK) i} A'e {[B-M:j1)
Br:t--Biini Appdpat
ﬁk:l---'ﬁk;nk Ak;l---'Ak;nk

B=B"+Bi:1+..+Pi:nk Apne [[Bin-N:jil)

Proof (lemma). The above formula just cnumerates all possible cquivalence classes of
proofs of judgments B - MN:j. Itis not difficult to sce that the formula is correct observing
that:

1) in all the proots of § - MN:j the last rule applicd is the application rule.

2) in the formula we consider just onc of the possible orderings of the domain of the
function o={(j:ny)...(x:nk)}. A

Proof (Proposition)
i) We must prove [ x llp =px), by dcfinition we have:
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[xTp@) = 3, Y pP

B ae{[Bhx:il)
the only proofs of judgments of the form: Bl x:j arc given by an application of the
(axiom)-rule {(x.):11 F xij Lso  IxDp() = pl D 1} = (p(x,i)! = p(x)(j).
ii ) We must prove [ MN ]lp(i) = (I[Mllpol[Nle)(i); cxpanding the term on the left of this
cquality we have:
IMNTp() = Z 2 pf = (by the previous lemma)

B Ae([pl-MN:j])

2 XX > 0P =

B a={Grm)...Gxng)} B Ae {[B-M:j]}
BraBuat A1 ApngeBk; L Akink
Aj:pe {[Bx;h Nl

Bk;l-:-ﬁk:nk
B=B'+B1.1+..+Bk:nk

= Z z Z pﬁ'+|}1,|+...+ﬂk,nk

a={Grnp)...Grng)) p Ae ([BHM:])
Bra--BrmnteBrii-Brk  Apz--Aran

Ak; 1 ...Ak;nk
Aine {[Bin FNGil)

Expanding the term on the right we obtain:

(IMIpINIp)() = Y IMIpeX AN o XANTpGO) =

o={G:np)...Gkng))

= 2 P J( pB Y
o= (). (ki) ( B Ae{[B-M:esidl)) | BAe {[BLN:GI)]]).

. (Z Z pﬁ )nk =
B Ae {IBF N:(G)l}

- z Z Z pB'xpBl;lx--uxpﬁk,nk

o={(png).. Greng)) p Ne {{B-Miil)
Br.i..Brog-Bri.-Brag Ap;1. Ay

Ag:t-Agang
Appe [[Bin-Nijil)

and this expression is equal to what we oblained before expanding the other term.

iii ) We must prove that ([ Ax.MJlpea)(j) =[Mllpasx)(i); by definition we have the following
cqualitics,

A AxMIpea)i) = Y, (If AxMlp(es))a® =
o
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= ( p B JX a(l =
ol B Ae (B AxM:(o,j)]}
=Z[Z Z ph )x a% = (using distributivity)
al B Ae{[p+xak M:j]|xe[5}
pBxar
o B Ae {[B+x:cxl—M:j]lxeB}

=zz Z p[a/x]ﬁ‘“{’““} -
o B Ae([PruakM:jllxep)

_-_E z pla/x|F = [Mllprvx1(i)  ( by definition).
B" Ae ({P'-M:jl)

iv ) We must prove that Vil Ax.M Jlp() = [[ Ay.(Ix/yIM)]Ip(j) provided y& FV(M). By
definition :
1L Ax.Mlip() =3, ek =
B Ae{[Bk Ax.M:j}}

il y9¢ FV(M) then there is a bijection between proofs of - Ax.M:j and proofs of
B ay.([x/yIM):;j and these correspondence preserves the equivalence relation on proofs,
thus

PLEERY YopB = L Ax((x/yYIM) JpG)
B Ae([B-AxMil) B Ae([B-Ay.(x/yIM)jl}

v) We must prove that Vi M Jlp() = [ Ax.M Jlg(i) provided p(x) = E(x) for xe FV(M)
By dcfinition [ M Ip(j) = ) pB x y 1

B Ae {[B-M:il)
it is easy to show by induction that in B~ M:j the domain of B contains only the free
variables of M. Morcover pP is equal to B if p and & are equal on the domain of p. A



