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Abstract. The aim of this work is to characterize constructive real num-
bers through a minimal axiomatization. We introduce, discuss and justify
16 constructive axioms. Then we address their expressivity considering
the alternative axiomatizations.

1 Overview of the work

This work tries to understand (again) constructive real numbers. Our main con-
tribution is a new system of axioms, synthesized with the aim of being min-
imal, i.e. of assuming the least number of primitive notions and properties. Such
a system is consistent with respect to reference models we have in mind —
(equivalence classes of) Cauchy sequences [TvD88] and co-inductive streams of
digits [CDG00] — and will be compared to other proposals of the literature
[Bri99, GN01]. In particular we will prove that our axiomatization has a suffi-
cient deductive power.

We have formalized and used our axioms inside the Logical Framework Coq
[BB+01]. However, the axioms can be stated and worked with in a general con-
structive logical setting, because we do not need all the richness of the Calculus
of Constructions [CH88], the logic beneath Coq. In particular we do not require
the use of dependent inductive types and universes. On the contrary, we should
have available a logical system that accommodates second-order quantification
(in order to axiomatize the existence of limit) and the Axiom of Choice (for
defining the “reciprocal” function on reals different from zero).

We define constructive real numbers through sixteen axioms organized in
four groups: arithmetic operations, ordering, Archimedes’ postulate and com-
pleteness. Our axiomatization uses only three basic concepts: addition (+), mul-
tiplication (×) and strict order (<).

In most of the constructive approaches to analysis [Bis67, Bee85, Wei00], real
numbers are defined as a quotient of a set of representations (e.g. equivalence
classes of Cauchy sequences, digit expansions, etc.). Hence, also in an axiomatic
approach, it is necessary to see the reals as a set provided with an equivalence
relation. In our proposal, this equivalence relation (∼) is not a primitive notion,
but it is derived together with its fundamental properties through the strict
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order relation. We define the equivalence by (x ∼ y) , ¬ [(x < y) ∨ (y < x)].
Similarly, it is not necessary to assume as basic the apartness relation (#) —
which is a semi-decidable version of the inequality (6=) — as it is definable in
terms of the order relation.

The paper has the following structure. Section 2 introduces the constructive
axioms, which are then explained and motivated. In Section 3 we start deducing
some elementary consequences of the axioms. The following Section is devoted
to a digression concerning possible models for the constructive real numbers. We
conclude by articulating a detailed comparison between our axiomatization and
other similar works in the literature.

Acknowledgments. The authors are grateful to Herman Geuvers, Furio
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2 Constructive axioms

We introduce constructive real numbers as the mathematical entities satisfying
four groups of axioms. The basic notions are the following:

– a representation set R, with two elements 0R (zero) and 1R (one);
– a binary relation < (strict order) over R;
– two binary operations + (addition) and × (multiplication) over R.

We do not assume the negation (−) and reciprocal (−1) as primitive functions.
The main reason for this choice is that the reciprocal function cannot be defined
in Coq: in fact, in Coq, each function has to be totally defined; and, in a con-
structive setting, each function has to be continuous (w.r.t. the Euclidean to-
pology). On the contrary, it is impossible to make continuous by extension the
reciprocal function.

In order to state the axioms, it is convenient to define two relations and two
functions:

– a binary relation ∼ (equivalence) over R tells that two names represent the
same number. It expresses the redundancy of the representation;

– two recursively defined functions inj, exp : N → R (inj(n) = n, exp(n) = 2n)
are used in the Archimedean and completeness axioms;

– a ternary relation near ⊆ R×R×N (near(x, y, n) ⇔ |x−y| ≤ 2−n) expresses
the Euclidean metric.

Our axiomatization is parametric with respect to a set N of the natural
numbers, that we suppose to be given. In our formalization in Coq, N is taken
as the set of the inductive natural numbers. In a different context, N could be
defined as a set satisfying the Peano’s arithmetic axioms. Finally, we claim that
constructive real numbers are captured by the following axioms.



Definition 1. (Axioms for constructive real numbers)

Consts : R, {0R, 1R} ∈ R < ⊆ R×R + : R×R → R × : R×R → R

Defs : ∼ ⊆ R×R (x ∼ y) , ¬ ((x < y) ∨ (y < x))
inj : N → R inj(0) , 0R, inj(n + 1) , inj(n) + 1R

exp : N → R exp(0) , 1R, exp(n + 1) , exp(n)× (1R + 1R)
near ⊆ R×R× N near(x, y, n) , ∀ε ∈ R. (1R < ε× exp(n)) →

(x < y + ε) ∧ (y < x + ε)

Add : +-associativity ∀x, y, z ∈ R. (x + (y + z)) ∼ ((x + y) + z)
+-unit ∀x ∈ R. (x + 0R) ∼ x
negation ∀x ∈ R. ∃y ∈ R. (x + y) ∼ 0R

+-commutativity ∀x, y ∈ R. (x + y) ∼ (y + x)

Mult : ×-associativity ∀x, y, z ∈ R. (x× (y × z)) ∼ ((x× y)× z)
×-unit ∀x ∈ R. (x× 1R) ∼ x
reciprocal ∀x ∈ R. (0R < x) → ∃y ∈ R. (x× y) ∼ 1R

×-commutativity ∀x, y ∈ R. (x× y) ∼ (y × x)
distribuitivity ∀x, y, z ∈ R. (x× (y + z)) ∼ (x× y) + (x× z)

Order : non triviality 0R < 1R

< -asymmetry ∀x, y ∈ R. (x < y) → ¬(y < x)
< -co-transitivity ∀x, y, z ∈ R. (x < y) → (x < z) ∨ (z < y)
+-reflects- < ∀x, y, z ∈ R. (x + z < y + z) → (x < y)
×-reflects- < ∀x, y ∈ R. (x× z < y × z) →

(x < y) ∨ ((y < x) ∧ (z < 0))

Archimedean ∀x ∈ R. ∃n ∈ N. x < inj(n)

completeness ∀f : N → R. ∃x ∈ R.
(∀n ∈ N. near(f(n), f(n + 1), n + 1)) →
(∀m ∈ N. near(f(m), x,m))

Arithmetic operations. As the reader can see, the properties required for
the arithmetic operations are just the same characterizing a classical abelian
field; in [Bri99] this same set of properties is named “Heyting field”. Note that
it is sufficient to assume the existence of the reciprocal only for positive reals.

As we have already remarked, we do not assume the “negation” and the
“reciprocal” functions: instead we assume the existence, for each real x, of its
negation and, if 0 < x, of its reciprocal elements. In this way we have to postulate
the Axiom of Choice for extracting effectively from a number x its negation and
its reciprocal.

The necessity of the Axiom of Choice can be seen as a weakness of our axio-
matization. However, there is no simple way to avoid it: in fact, without Choice,



the reciprocal function cannot be defined inside Coq (whereas the negation func-
tion and the limit functional are definable).

An alternative axiomatization that does not require the Axiom of Choice
could be obtained as follows. One postulates the existence of the negation and
limit functions and, instead of a single inversion function, the existence of a series
of approximations of the inversion function, inv : (N × R) → R, satisfying the
axiom:

∀n ∈ N. ∀x ∈ R. (1R < x× exp(n)) → (x× inv(n, x) ∼ 1R)

that is, the function λx. inv(n, x) behaves as the reciprocal function for all the
real numbers bigger than 2−n. Given a suitable representation for the reals, the
function inv is Coq-definable, and allows the evaluation of the reciprocal of
any real number x for which it is possible to find a natural number n such that
2n < x. We did not pursue this alternative axiomatization for simplicity reasons.

Order relation. Concerning the ordering, we make the following remarks.
First, the classical trichotomy of total order (x < y)∨(x = y)∨(y < x) is not

a constructive property: its substitute in the constructive setting is the property
(x < y) → (x < z) ∨ (z < y), which we name “co-transitivity”.

Secondly, we have thought that it is cleaner to define only the relation of or-
der: in fact, in constructive mathematics [TvD88, Bri99], the order is universally
considered the most fundamental relation for the real numbers. The alternative
would have been to start from the apartness relation — the constructive non
equality — then to assume axioms for it, and further to introduce the order
itself with its proper axioms. But this increases the length of the presentation
of the constructive reals, and moreover introduces some redundancy, thus not
permitting to carry out our declared purpose of being minimal.

The equivalence and the apartness relations are defined using the basic strict
order, therefore their properties are derived from the axioms. We define the
equivalence (∼) and the apartness (#) in the following way:

(x ∼ y) , ¬ [(x < y) ∨ (y < x)] (x# y) , (x < y) ∨ (y < x)

There is still more, because we have been careful in the design of the relation-
ship between the order and the operations. We are able to deduce all the basic
properties relating the equivalence and the operations from the two reflection
axioms:

(x + z < y + z) → (x < y)
(x× z < y × z) → (x < y) ∨ [(y < x) ∧ (z < 0)]

The fact that the equivalence is preserved by the basic notions (addition, multi-
plication and order) is an immediate consequence of these two axioms and the
<-co-transitivity one. Notice that, on the contrary, the preservation of the equi-
valence does not follow from the more usual preservation axioms [Bri99, GN01]:

(x < y) → (x + z < y + z)
(0 < x) ∧ (0 < y) → (0 < x× y)



This particular phenomenon relies on the fact that the reflection of the order is
more powerful than its preservation, as will be argued in Section 3.

Archimedean property. The Archimedean axiom links real numbers to
natural numbers, stating that the reals are standard with respect to the naturals.
This axiom does not exclude the existence of non-standard reals, but in this
case also the naturals must be non-standard. That is, it is possible to conceive
non-standard models for our axioms: these models would contain infinitary and
infinitesimal real numbers as well as infinitary naturals.

Completeness. Finally, the completeness property for the field of the real
numbers is postulated asking the existence of the limit of any Cauchy sequence
〈sn〉n∈N with an exponential convergency rate:

∀n ∈ N. |sn − sn+1| ≤ 2−(n+1)

Many others choices for capturing the completeness are possible, and our axiom
could appear weak at a first glance. Anyway, in order to evaluate constructively
the limit of a Cauchy sequence S, it is necessary to know its convergency rate:
from this convergency rate it is possible to extract (constructively) a subsequence
of S having an exponential convergency rate. It follows that starting from our
axiom we are able to derive the completeness properties that are found in the
literature [Bri99, GN01]. Our choice has been motivated by simplicity reasons.

The minimality of our axiomatization could be useful both for theoretical
reasons — the mathematical curiosity about an essential characterization of the
constructive reals is addressed — and practical ones — a simple test for possible
models is provided. However, rather than pursuing a minimal set of axioms at
all costs, we have chosen to axiomatize the different notions (order, addition,
multiplication, etc.) separately, for the sake of the clarity of the axiomatization.

3 Axioms at work

In this Section we point out the elementary mathematical theory arising from
the axioms. Such results can be used for deducing more complex properties of
the constructive real numbers.

We begin with some consequences concerning the order; successively we will
address the addition, the multiplication and other defined notions. Notice that
all the logic steps used in the following proofs are constructive. These proofs
have been also carried out formally in the proof assistant Coq: this and further
work is documented in [CDG01].

Proposition 1. (Order)
The following properties of the order and derived notions follow from the axioms:

1. irreflexivity: ∀x. ¬(x < x)
2. transitivity: ∀x, y, z. (x < y) ∧ (y < z) → (x < z)
3. preservation by equivalence: ∀x, y, z, w. (x < y) ∧ (x ∼ z) ∧ (y ∼ w) → (z < w)
4. co-transitivity of apartness: ∀x, y, z. (x# y) → (x# z) ∨ (z # y)
5. apartness preservation: ∀x, y, z, w. (x# y) ∧ (x ∼ z) ∧ (y ∼ w) → (z # w)



Proof. The proofs are quite easy, so we just sketch some of them. Point (2)
is proved applying the <-co-transitivity to (x < y); point (3) using twice the
<-co-transitivity ; point (5) by a double application of (4). ut

We state now the main fact concerning the addition, i.e. it preserves the
equivalence. Moreover we deduce also the preservation of order, which is assumed
as an axiom in the alternative axiomatizations [Bri99, GN01].

Proposition 2. (Addition)
The following properties of the addition follow from the axioms:

1. strong extensionality : ∀x, y, z, w. (x + y) # (z + w) → (x# z) ∨ (y # w)
2. equivalence preservation : ∀x, y, z, w. (x ∼ y) ∧ (z ∼ w) → (x + z) ∼ (y + w)
3. order preservation : ∀x, y, z. (x < y) → (x + z < y + z)
4. equivalence reflection : ∀x, y, z. (x + z) ∼ (y + z) → (x ∼ y)

Proof. (1) The goal follows immediately from the two judgments (x+ y) # (z +
y) → (x# z) (left extensionality) and (x + y) # (x + z) → (y # z) (right exten-
sionality). Left extensionality can be written (x+ y < z + y)∨ (z + y < x+ y) →
(x < z) ∨ (z < x) and proved by cases using the +-reflects-< axiom. Right ex-
tensionality can be reduced to left extensionality by co-transitivity of apartness,
apartness preservation and the +-commutativity axiom.

(3) Using negation, point (2), +-unit and +associativity we can derive x ∼
((x+z)+(−z)). By Proposition 1.3 it is then possible to deduce (x+z)+(−z) <
(y + z) + (−z), and from this the thesis via +-reflects-<.

Point (2) follows from (1); point (4) from (3). ut

We consider similar results for the multiplication: we prove it preserves the
equivalence and deduce additional consequences.

Proposition 3. (Multiplication)
The following properties of the multiplication follow from the axioms:

1. strong extensionality : ∀x, y, z, w. (x× y)# (z × w) → (x# z) ∨ (y # w)
2. equivalence preservation : ∀x, y, z, w. (x ∼ y) ∧ (z ∼ w) → (x× z) ∼ (y × w)
3. positivity reflection : ∀x, y, z. ((x× z) < (y × z)) ∧ (0 < z) → (x < y)
4. zero annuls multiplication: ∀x. (x× 0 ∼ 0)
5. reciprocal preserves positivity: ∀x. (0 < x) → (0 < x−1)
6. positivity preservation : ∀x, y. (0 < x) ∧ (0 < y) → (0 < x× y)

Proof. The proofs of points (1) and (2) use the same arguments of the corres-
ponding proofs for the addition. Point (3) follows through axiom ×-reflects-<.

(4) From (0 + 0) ∼ 0 we derive ((x× 0) + (x× 0)) ∼ (0 + (x× 0)), and then
the thesis through the Proposition 2.4.

(5) From the hypothesis (0 < x) and axiom (0 < 1) we obtain 0 < (x−1×x);
then we have (0× x) < (x−1 × x), from which we conclude by point (3).

(6) Using the hypotheses we derive x ∼ ((x×y)×y−1), from which we deduce
(0× y−1) < ((x× y)× y−1); the thesis follows by points (5) and (3). ut



It is easy to prove that the +-reflects-< axiom is equivalent to the equivalence
preservation plus order preservation of Proposition 2. In [Bri99] and [GN01]
these two properties are taken as axioms: we prefer our choice for minimality
reasons. A similar consideration applies to multiplication.

We also remark that two possible candidates for the +-reflects-< axiom,
namely (x×z < y×z)∧(0 < z) → (x < y) and (x×z < y×z) → (x < y)∨(z < 0),
are too weak.

We list now other typical and useful properties of the constructive real num-
bers. They involve also the auxiliary notion of non-strict order (≤), which is
formalized as follows:

(x ≤ y) , ¬ (y < x)

Proposition 4. (Other properties)
The following judgments can be derived from the axioms and their corollaries:

Order : (x ≤ y) ∧ (y ≤ x) → (x ∼ y)
(x ≤ y) ∧ (y ≤ z) → (x ≤ z)
((z < x) → (z < y)) → (x ≤ y)

Addition : (0 < x) → (−x < 0)
(0 < x + y) → ((0 < x) ∨ (0 < y))
(x ≤ y) ↔ (x + z ≤ y + z)

Multiplication : (x× (−y)) ∼ −(x× y)
(x < y) ∧ (0 < z) → (x× z < y × z)
(x < y) ∧ (z < 0) → (y × z < x× z)
(0 < x× y) → (x# 0) ∧ (y # 0)

4 Consistency and completeness

The usual way for defining real numbers is the use of (equivalence classes of)
Cauchy sequences of rational numbers [Bee85, BB85, TvD88], but there exist
other constructions that can be easily proved equivalent to this one. An example
is the approach that introduces the reals as infinite sequences of digits [PEE97,
Wei00, CDG00]: in this case the equivalence follows from the fact that it is
possible to transform effectively a representation of a number through a Cauchy
sequence in a representation of the same number through an infinite stream of
digits, and vice-versa.

In the distillation of our set of axioms we have used as reference the definition
of the real numbers via Cauchy sequences of rationals. This construction has been
used as a model for testing the consistency of the axioms: in order to accept a
judgment as an axiom we have first informally verified that it is satisfied by the
Cauchy model. We are now developing a formal proof in Coq [CDG01] that our



axioms are satisfied by a construction of the real numbers through “streams of
digits”.

A similar result is presented in [GN01]: the constructive reals are built as
Cauchy sequences of rational numbers, and a different axiomatization is intro-
duced. That work gives also a proof that the axiomatization is categorical —
i.e. any two models are isomorphic. Since in the next Section we will show that
our axiomatization is equivalent to that one [GN01], we can deduce that our
axiomatization is complete; and we can claim that it is also categorical.

5 Comparison to the related literature

In this Section we compare our axioms to the other approaches of the liter-
ature [TvD88, Bri99, GPWZ00, GN01]. In particular, we will prove that our
axiomatization has the same deductive power of the alternative ones.

The work of Troelstra and van Dalen [TvD88] is a contribution which gives
a constructive treatment of the theory of the real numbers in the context of a
constructive approach to mathematics. Although the authors do not address the
quest for an axiomatization of the constructive reals, their approach focuses on
aspects strictly related to the present work. They build the constructive reals as
equivalence classes of fundamental (Cauchy) sequences of rationals; then they
introduce the primitive strict order relation (<) and the arithmetic functions
(+, ·). The basic properties of these notions are the same we have proved in
Section 3, or follow simply from those results.

We will mainly refer our work to other two contributions.

5.1 FTA

The FTA approach [GPWZ00] is similar to ours in regard to the tool used for
the formalization, i.e. the proof assistant Coq. There, constructive real numbers
are just seen as a parameter contextually to a more extensive project concern-
ing the mechanical certification of a theorem of constructive mathematics. In
fact, the main aim is just to dispose of a collection of properties for describing
the reals which is sufficiently powerful for proving the Fundamental Theorem
of Algebra. The axiomatization is separately presented and focused in [GN01]:
this work first introduces the algebraic structure of constructive setoids via an
apartness relation; successively, step by step, it gains the notion of constructive
real number. We are proving the equivalence between our axiomatization and
this one.

The FTA approach uses 28 axioms. The essential differences with respect
to ours are the introduction of the apartness relation as primitive and the as-
sumption of strongly extensionality for the arithmetic functions of addition and
multiplication.

The structure. Constructive reals are introduced by the tuple:

〈R, 0, 1,+, ∗,−,−1 ,=, <, # 〉



Field. The following axioms are assumed in order to have the structure of con-
structive setoids:

ap irr : ∀x. ¬(x# x)
ap sym : ∀x, y. (x# y) → (y # x)
ap cot : ∀x, y. (x# y) → ∀z.(x# z) ∨ (z # y)
ap tight : ∀x, y. ¬(x# y) ↔ (x = y)

The above properties can easily be derived from our axioms: ap irr (irre-
flexivity) follows from the irreflexivity of the order ¬(x < x); ap cot (co-
transitivity) is a consequence of the <-co-transitivity axiom. Instead ap sym
(symmetry) and ap tight (tightness) are deduced just from the definitions.
Some of the properties which lead to a constructive field coincide with ours:

add assoc : ∀x, y, z. (x + (y + z)) = ((x + y) + z)
add unit : ∀x. (x + 0) = x
add commut : ∀x, y. (x + y) = (y + x)
minus proof : ∀x. x + (−x) = 0
mult assoc : ∀x, y, z. (x ∗ (y ∗ z)) = ((x ∗ y) ∗ z)
mult unit : ∀x. (x ∗ 1) = x
mult commut : ∀x, y. (x ∗ y) = (y ∗ x)
dist : ∀x, y, z. (x ∗ (y + z)) = ((x ∗ y) + (x ∗ z))
rcpcl proof : ∀x. (x# 0) → (x ∗ (x−1)) = 1

Moreover, FTA uses the extra axioms:

add strext : ∀x, y, z, u. (x + y) # (z + u) → (x# z) ∨ (y # u)
minus strext : ∀x, y. ((−x) # (−y)) → (x# y)
mult strext : ∀x, y, z, u. (x ∗ y) # (z ∗ u) → (x# z) ∨ (y # u)
non triv : 1 # 0
rcpcl ap zero : ∀x. (x# 0) → (x−1 # 0)
rcpcl strext : ∀x, y. (x−1) # (y−1) → (x# y)

We have proved add strext and mult strext (strong extensionality of ad-
dition and multiplication) in Propositions 2.1 and 3.1. We establish here
rcpcl strext (strong extensionality of the “reciprocal” function); simpler
arguments suffice for proving the property minus strext.
First we show rcpcl ap zero, i.e. the reciprocal respects the apartness with
respect to zero. Starting from x# 0 and the non triviality 1 # 0 — which
follows from our axiom 0 < 1 — we have both (x ∗ (x−1)) = 1 by the ×-unit
axiom and (x∗0) = 0 by Proposition 3.4. Next we have (x∗x−1) # (x∗0) by
the Proposition 1.5, and then we conclude through the strong extensionality
of the multiplication.
The main proof of rcpcl strext works as follows. Since x−1 = x−1∗(y∗y−1)
and y−1 = y−1 ∗ (x∗x−1), by Proposition 1.5 and ×-associativity we deduce
(x−1 ∗ y) ∗ y−1 # (x−1 ∗ x) ∗ y−1. Using the strong extensionality of the
multiplication, we have first (x−1 ∗ y) # (x−1 ∗ x) and further y # x, thus
concluding via ap sym.



Ordered field. The only axiom shared with ours is the asymmetry:

less asym : ∀x, y. (x < y) → ¬(y < x)

The extra axioms are the following:

less strext : ∀x, y, z, u. (x < y) → (z < u) ∨ (x# z) ∨ (y # u)
less trans : ∀x, y, z. (x < y) ∧ (y < z) → (x < z)
less irr : ∀x. ¬(x < x)
add resp less : ∀x, y, z. (x < y) → (x + z < y + z)
times resp pos : ∀x, y. (0 < x) ∧ (0 < y) → (0 < x ∗ y)
less conf ap : ∀x, y, z. (x# y) ↔ (x < y) ∨ (y < x).

The properties less irr (irreflexivity) and less trans (transitivity) have
been derived in Proposition 1.2; less strext (strong extensionality of order)
follows from <-co-transitivity ; less conf ap just coincides with our defin-
ition of apartness. Finally the add resp less and times resp pos axioms
have been derived in the Propositions 2.3 and 3.6.

Archimedes. This axiom coincide with ours:

arch proof : ∀x. ∃n ∈ N. (x < (nreal n))

Limit. The axiom of completeness asks that every Cauchy sequence has a limit:

lim proof : ∀s : N → R, cauchy. ∀ε > 0. ∃n ∈ N.
(∀m ∈ N. (n ≤ m) → | (s m)− lim s | < ε)

It is not difficult to prove that this axiom is at least as strong as the one we
have used in our axiomatization. We can deduce the FTA axiom from ours
as follows: in order to calculate the limit of a generic Cauchy sequence S we
need to be able to extract a subsequence of S converging with an exponential
convergency rate. This subsequence can be obtained easily once we know the
convergency rate of S, which in turn can be extracted, using the Axiom of
Choice, from the proposition stating that S satisfies the Cauchy condition.

Theorem 1. (Equivalence between axiomatizations)
We conclude that our axiomatization and the FTA one are equivalent.

5.2 Bridges

Bridges [Bri99] uses the framework of Bishop’s constructive mathematics for
presenting a constructive axiomatization of the real line. His main motivation
coincides partially with the ours: the curiosity about the properties that suffice to
characterize the real numbers and to develop the real analysis. The way chosen
is to capture the idea that a real could be approximated by arbitrarily close
rational numbers.

The constructive axiomatization given by Bridges collects 20 axioms. The
axioms are quite similar to ours apart the completeness one: we discuss briefly
the main differences.



The equivalence relation = is defined by (x = y) , (x ≥ y)∧ (y ≥ x), where
(x ≥ y) , (∀z. (y > z) → (x > z)). By Propositions 4.4 and 4.5, we have that
∀z. (y > z) → (x > z) if and only if ¬(x < y). The same could be proved using
the axioms of Bridges. And so, Bridges’ approach is equivalent to ours up to the
use of the more involved definition of the equivalence relation “=”.

The axioms concerning the field structure coincide with ours. Bridges assumes
as additional implicit axioms the “extensionality” of relations and operations,
i.e. they preserve the equivalence. As already remarked, in our approach these
are just derived properties.

As far as the axioms for the order are concerned, the main difference is that
Bridges requires that the operations “preserve” the order, whereas we require
that the operations “reflect” the order.

The completeness axiom chosen by Bridges is quite different from ours. In
[Bri99] the completeness of the real line is postulated through a “least-upper-
bound principle”, which requires that every “strongly bounded” set of reals has
a least upper bound; from such a principle, it is then derived that every Cauchy
sequence has limit. In [BR99] and [GPWZ00] it is proved that the existence of the
l.u.b. of “strongly bounded” sets can be deduced from the existence of the limit
for Cauchy sequences. Hence Bridges’ approach to completeness is equivalent to
ours. We have preferred to state the completeness in terms of Cauchy sequences,
because it is simpler.

6 Conclusion

In this work we have focused on the only two existing axiomatizations of the
constructive real numbers and we have proposed a third one.

All the three axiomatizations have the same deductive power. As far as we
know, Bridges [Bri99] and the FTA group [GPWZ00] have proposed their axioms
independently; we too have stated our axioms without being aware of the work
by Bridges.

We claim that our axiomatization has the advantage of being simpler and of
using a minimal set of notions. In particular, we give a more direct treatment of
the equivalence “∼” and the non-strict order “≤” relations than Bridges. Also
our completeness axiom is simpler than the corresponding one in any of the other
proposals, and in general the whole axiomatization is more compact.

A possible direction for future work is to consider an axiomatization which
does not require the Axiom of Choice. In this perspective, it would be interesting
to consider also an axiomatization of the constructive reals obtained by Dedekind
cuts: in fact, Cauchy sequences and Dedekind cuts are equivalent constructions
for the reals only if the Axiom of Choice is available [TvD88]. Results in this
sense would help to characterize the fundamental differences between the two
constructions.
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