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Abstract

This is an exposition of some of the main features of the theory of
elliptic curves and modular forms.

1 Elliptic Curves

1.1 What they are.

References: [3], [6], [8], [9], [11].

Definition 1.1. Let K be a field. An elliptic curve over K is a pair
(E,O) where E is a nonsingular projective algebraic curve defined over K
and O ∈ E(K) is a K - rational point such that there is a morphism

E ×E −→ E

of algebraic varieties defined over K making E into a group with O as the
identity element of the group law.

It turns out:

1. That E is a projective variety forces the group law to be commutative.

2. E necessarily has genus 1. Conversely any nonsingular (smooth) pro-
jective curve E of genus 1 with a K - rational point O becomes a
commutative algebraic group with O as origin in a unique way.

Note that the existence of a rational point is essential (if K is algebraically
closed there will always be rational points, but not in general). Another way
of saying this is that an elliptic curve is an abelian variety of dimension one.

It is a theorem that every elliptic curve is isomorphic with a cubic in the
projective plane P2, F (X, Y, Z) = 0, in such a way that O becomes an
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inflection point (one of the 9 inflection points). Nonsingularity is expressed
by saying that the equations

∂F/∂X = ∂F/∂Y = ∂F/∂Z = 0

have only the solution (0, 0, 0) in the algebraic closure K (This is the con-
dition for char (K) 6= 3. In characteristic three one must add the condition
F (X, Y, Z) = 0). In this model of an elliptic curve the group law takes on
an especially simple form:

P + Q + R = O ⇔ P, Q, R are collinear.

We can always find a generalized Weierstrass model in the shape:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

In fact, if char(K) 6= 2, 3 one can always find a model of E as a plane cubic
of the form

y2 = 4x3 −Ax−B, A, B ∈ K.

The nonsingularity is equivalent to the nonvanishing of the discriminant

∆ = A3 − 27B2 6= 0.

The origin has become the unique point at infinity on this curve. Namely
setting x = X/Z, y = Y/Z we get a homogeneous cubic

F (X, Y, Z) = Y 2Z − (4X3 −AXZ2 −BZ3) = 0

and O = (0, 1, 0). One can give explicit formulas for the group law as follows:
First notice that the the lines through O are precisely the vertical lines in the
(x, y) - plane. Therefore the group law gives P +(−P )+O = O ⇔ P,−P,O
are collinear ⇔ P,−P lie on the same vertical line. This shows that

(x(−P ), y(−P )) = (x(P ), −y(P )).

To add two points, let (x1, y1) = (x(P1), y(P1)), (x2, y2) = (x(P2), y(P2)).
The straight line connecting P1 and P2 meets E in a third point, which is
P3 = −(P1+P2) according to the definition of the group law. Therefore, by
what we have seen

(x(P1 + P2), y(P1 + P2)) = (x(P3), −y(P3)).
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We find the coordinates (x3, y3) = (x(P3), y(P3)). The line connecting P1

and P2 is

y = m(x− x1) + y1, m =
y2 − y1
x2 − x1

Putting this into the equation y2 − (4x3 − Ax − B) = 0 we get a cubic
polynomial f(x) = 0 whose roots are the x - coordinates of the intersection
of this line with E. Explicitly

f(x) = −4x3 +m2x2 + (A− 2m2x1 + 2my1)x+ (B − 2mx1y1 +m2x21 + y21)

We have f(x) = −4(x− x1)(x− x2)(x− x3); therefore expanding and com-
paring the quadratic terms we obtain x1 + x2 + x3 = m2/4. Thus

x(P1 + P2) =
(y1 − y2)

2 − 4(x1 + x2)(x1 − x2)
2

4(x1 − x2)2

=
−2B −A(x1 + x2) + 4x1x2(x1 + x2)− 2y1y2

4(x1 − x2)2

y(P1 + P2) = −
(

y2 − y1
x2 − x1

)

(x(P1 + P2)− x1)− y1

These formulas are valid only if x1 6= x2. If x1 = x2, then y1 = ±y2. If
y1 = −y2 then these points are opposite one another: P1 + P2 = O. If
y1 = y2 6= 0 ie., P1 = P2, then repeat the above calculation but instead of
the line connecting P1 and P2, take the tangent line at P1 = P2, whose slope
is found as in elementary calculus:

m =
12x21 −A

2y1

For example, the point P = (2, 5) is on the curve E : y2 = x3 + 17. One
computes

P = (2, 5)

2P = (−64/25, 59/125)

3P = (5023/3249,−842480/185193)

4P = (38194304/87025,−236046706033/25672375)

5P = (279124379042/111229587121, 212464088270704525/37096290830311831)

One see that the “size” of the point grows quite rapidly. Size is measured
by an invariant called the height of a point. The point P is of infinite
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order on this curve. The rank the finitely generated abelian group E(Q)
is 1 (see the discussion of elliptic curves over number fields in section 1.4.
One computes that ∆E = −2433172, and jE = 0. This means that one can
reduce E modulo the prime p and obtain an elliptic curve over the finite
field Fp for all p 6= 2, 3, 17 (the curve becomes singular at these primes). See
the discussion of elliptic curves over finite fields in section 1.6.

Here is another example: E : y2+y = x3−x2. One computes: ∆E = −11,
and jE = −212/11. The point P = (1, 0) is on the curve, and one finds:

P = (1, 0)

2P = (0, 0)

3P = (0,−1)

4P = (1,−1)

5P = ∞.

Therefore this is an element of order 5 in the group. One can show E(Q) =
Z/5.

Today there are software packages that will compute many things about
elliptic curves and modular forms. Some of the computations in this paper
were done in a Sage worksheet, using pari/gp and Magma. We also used
Mathematica.

Although elliptic curves can be put into the standard form, it is not
always the case that they arise this way. For example, an equation of the
form y2 = P (x), where P (x) is a quartic polynomial can define an elliptic
curve if the roots of P (x) are distinct. This curve will have singular points
on the line at infinity in the projective plane so that the elliptic curve is
the nonsingular model of this curve. Also, one must have at least one K -
rational point on this. Another way to construct elliptic curves is to take
the transversal intersection of two quadric surfaces in projective 3 - space
P3.

Example: We can put the Fermat curve x3 + y3 = 1 into Weierstrass
form by the substitution

u = 9(1 + x)/(1 − x), v = 3y/(1 − x)

which leads to an equation u2 = 4v3 − 27.

1.2 History

A brief digression on the history of this. The group law on a cubic seems
a mysterious thing the first time one encounters it, but in fact it arose
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in a natural way in attempting to generalize the addition formula for the
trigonometric functions. The circle Z : x2 + y2 = 1, which is a curve of
genus 0, carries a natural group structure gotten from the parametrization
x = cos(z), y = sin(z). Let (x1, y1) = (cos(z1), sin(z1)) and (x2, y2) =
(cos(z2), sin(z2)). Then if

(x3, y3) = (cos(z1 + z2), sin(z1 + z2))

we get from the addition laws for the sine and cosine:

x3 = x1x2 − y1y2

y3 = x1y2 + y1x2

The group law is that of the parameter z under addition, and by the peri-
odicity of the trigonometric functions, the z may be taken modulo 2π. This
parametrization gives an isomorphism of complex points

C/2πZ ≃ Z(C) ≃ C×

The group law can be expressed in the form

∫ y1

0

dx√
1− x2

+

∫ y2

0

dx√
1− x2

=

∫ x1y2+y1x2

0

dx√
1− x2

for the integral defining the arcsin function. It was in this form that Euler,
expanding on earlier special cases treated by Fagnano, found the group law
on curves of genus 1 in the form

∫ (x1,y1)

0

dx
√

P (x)
+

∫ (x2,y2)

0

dx
√

P (x)
=

∫ (x3,y3)

0

dx
√

P (x)

where P (x) is a cubic or quartic polynomial, and

(x3, y3) = (R(x1, y1, x2, y2), S(x1, y1, x2, y2))

for rational functions, ie., quotients of polynomials, R, S. Such integrals
became known as elliptic integrals (because these arise when you compute
the arclength of an ellipse). The differential form

ω =
dx

√

P (x)

is the essentially unique everywhere holomorphic differential 1 - form on the
curve. It is also the essentially unique differential form invariant under the
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translations of the group. Later, Abel and Jacobi defined the analogues ϕ(z)
of the trig functions by setting

z =

∫ ϕ(z)

0

dx
√

P (x)

and these satisfy addition laws analogous to those of the trig functions.
Moreover they have a periodicity property, like the trig functions. Here it is
necessary to regard ϕ(z) as a function of a complex variable z. Then there
are two independent periods:

ϕ(z +mω1 + nω2) = ϕ(z)

for all m,n ∈ Z, where ω1, ω2 are complex numbers linearly independent
over R, in other words spanning a lattice in C. These functions are called
elliptic functions. They are meromorphic in z.

These periods have the following interpretation. The manifold of com-
plex points E(C) is a topological surface (“Riemann surface”) which looks
like the surface of a doughnut. This is one way of seeing that E has genus
1: each closed connected surface is homeomorphic to a 2 - sphere with g
handles attached, the integer g being the genus. The homology group is free
of rank 2:

H1(E(C), Z) = Z2 = Zα1 ⊕ Zα2

with some chosen generators α1, α2. The periods are

ω1 =

∫

α1

ω, ω2 =

∫

α2

ω

The integrals that Euler used to define the group law on a curve of genus 1
are ambiguous in that the paths joining 0 and (x1, y1) etc. have not been
specified, but any two choices differ by an element of the homology group,
and therefore the equations defining the addition law should be understood
as congruences modulo the lattice of periods.

Example: The curve E : y2 + y = x3 − x2 of discriminant −11 we
considered before. In a suitable basis, the period matrix is

(6.3460465213977671..., (3.1730232606988...) − (1.4588166169384952...)i).

The ratio of these two numbers is

τ = (1.65101556391170559....) + (0.7590643816862466676927...)i

which is a point in the upper half planeH. The elliptic curve E is isomorphic
over C to the elliptic curve C/Lτ where Lτ ⊂ C is the lattice Z+ Zτ . See
section 1.5.
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1.3 Modular families

There is an important difference between the trigonometric and the elliptic
case. There is essentially only one class of trigonometric functions, reflecting
the fact that there is only one curve of genus 0 (projective, smooth, over
an algebraically closed field) namely the projective line P1. The curves of
genus 1 depend on one free parameter. In other words, there are nontrivial
families of curves of genus 1. For example, Legendre’s family

Eλ : y2 = x(x− 1)(x− λ)

Jacobi’s family
Eκ : y2 = 1− 2κx2 + x4

Hesse’s family
Eµ : X3 + Y 3 + Z3 − 3µXY Z = 0

The intersection of quadrics Eθ:

X2
1 +X2

3 − 2θX2X4 = 0

X2
2 +X2

4 − 2θX1X3 = 0

Bianchi’s family, Eζ defined as the intersection of the 5 quadrics in P4:

Q0(X) = X2
0 + ζX2X3 − (1/ζ)X1X4 = 0

Q1(X) = X2
1 + ζX3X4 − (1/ζ)X2X0 = 0

Q2(X) = X2
2 + ζX4X0 − (1/ζ)X3X1 = 0

Q3(X) = X2
3 + ζX0X1 − (1/ζ)X4X2 = 0

Q4(X) = X2
4 + ζX1X2 − (1/ζ)X0X3 = 0

In all these examples one has an elliptic curve except at the finitely many
values of the respective parameter where the corresponding curve acquires
a singular point. The parameters, λ, κ, µ, θ, ζ, are called moduli, or more
exactly, algebraic moduli. When the base field is that of the complex num-
bers, it was discovered that these are all expressible as functions of a complex
variable τ , with Im(τ) > 0, eg., λ = λ(τ), etc. This τ is called the transcen-
dental modulus. The expressions can be given in the form f(τ)/g(τ), for
analytic functions f(τ), g(τ) with special transformation properties, called
modular forms.

The study of elliptic curves has very different features over different types
of ground fields K. We will mention some of the highlights in the special
cases where K is
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1. A number field.

2. The complex numbers C.

3. A finite field Fq.

4. A p - adic field.

1.4 Number fields

This is the most difficult one to study. Elliptic curves over Q were studied
in antiquity. Diophantos includes several examples of finding rational points
on elliptic curves. These were later examined by Fermat, who discovered the
method of infinite descent for establishing the existence or nonexistence of
rational points. An excellent reference for this is Weil’s [11]. This method of
infinite descent became an important part of the theorem proved by Mordell
in 1922 and generalized by Weil a few years after:

Theorem 1.1. Let E be an elliptic curve over a number field K. Then the

group of rational points E(K) is a finitely generated abelian group.

This means E(K) ≃ Zr ⊕ F for an integer r ≥ 0 called the rank of E
over K, and a finite abelian group F . There are many open questions here.
The rank is not an effectively computable integer; in many cases one can
find the group of rational points (indeed Fermat did this in some cases), but
there is no known general procedure for finding all the points. Let K = Q;
one does not know if the rank of an elliptic curve over Q can be arbitrarily
large (the largest known rank is 19). There are deep conjectures (Birch and
Swinnerton - Dyer) that connect the rank of E with an invariant called the
L - function of E.

Example: The curve E : y2 + y = x3 − 7x + 6. ∆E = 5077. One
can show that E(Q) = Z3. In fact, a set of generators of this group are
the points (1, 0), (2, 0), (0, 2). For instance we can add: (1, 0) + (2, 0) =
(−3,−1). One way to show that a point has infinite order is to compute
its canonical height. For instance, height(1, 0) = 0.668205165651.., which
is nonzero. That these 3 points are independent in the Mordell-Weil group
can be verified by computing the determinant of the height matrix, which
is also nonzero: 0.41714355875838396981....

1.5 Complex numbers

Every elliptic curve over the complex numbers is isomorphic as an abelian
group to EL = C/L where L ⊂ C is a lattice, ie., a free abelian group of
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rank 2 whose generators are linearly independent over R. In particular, as
a group, E(C) = S1 × S1, a product of circles.

Without loss of generality we can take the lattices generated by 1 and
τ , with Im(τ) > 0,

Lτ = Z⊕ Zτ, Eτ = C/Lτ .

Moreover, one proves that Eτ is isomorphic to Eτ ′ if and only if

τ ′ =
aτ + b

cτ + d
, where

(

a b
c d

)

is a matrix of integers with determinant ad− bc = 1.
The construction is due to Weierstrass. One forms the meromorphic Lτ

- periodic function

℘(z; τ) =
1

z2
+
∑

ω∈Lτ

ω 6=0

[

1

(z − ω)2
− 1

ω2

]

This satisfies a differential equation (prime denotes derivative with respect
to z)

℘′(z; τ)2 = 4℘(z; τ)3 − g2(τ)℘(z; τ) − g3(τ)

where g2(τ) = 60G4(τ), g3(τ) = 140G6(τ) with the Eisenstein series defined
whenever k ≥ 3 as

Gk(τ) =
∑

(m,n)6=(0,0)

1

(mτ + n)k

With τ fixed, the map z → (℘(z; τ), ℘′(z; τ)) establishes an isomorphism
of C/Lτ with the elliptic curve whose equation is y2 = 4x3 − Ax− B with
A = g2(τ), B = g3(τ).

The Eisenstein series define modular forms. These will be discussed
further in section 2.

1.6 Finite fields

Here the natural question to ask is for the number of rational points #E(Fq).
Recall that a finite field has a unique extension field of degree n, Fqn . We
consider the generating series of the function n 7→ #E(Fqn). Actually it is
preferable to consider the zeta function:

Z(E/Fq, t) = exp

(

∞
∑

n=1

#E(Fqn)t
n/n

)
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One reason is that this is a rational function of the variable t.

Theorem 1.2. For an elliptic curve E over a finite field Fq,

Z(E/Fq, t) =
1− aqt+ qt2

(1− t)(1− qt)

The roots of the polynomial 1− aqt+ qt2 have absolute value q−1/2.

They were introduced by E. Artin in around 1920 in his Ph.D. thesis.
The assertion about the roots in the above theorem is called the Riemann
hypothesis, because it is an analogue of the conjecture made by Riemann
about the classical zeta function. The zeta function for algebraic curves
over finite fields were shown by F. K. Schmidt in the 1930’s to be rational
functions. Also in the 1930’s H. Hasse proved the Riemann hypothesis for
curves of genus 1, i.e., elliptic curves.

André Weil then proved the Riemann hypothesis for the zeta functions
of arbitrary curves in 1940 (while in prison!). Later in the late 1940’s he
made a list of conjectures about the zeta functions of algebraic varieties
of any dimension. These became known as the Weil Conjectues, and were
the object of intense efforts in the next 25 years to prove them. The zeta
function of an algebraic variety over a finite field is always a rational func-
tion, a theorem of first proved by Dwork using p-adic analysis, and then
by Grothendieck using the theory of l-adic cohomology developed by him
and his collaborators. The crowning triumph was Deligne’s proof in 1973 of
the analog of the Riemann hypothesis for the zeta function of an algebraic
variety over a finite field.

For an elliptic curve, the zeta function is determined by knowledge of
one number aq, defined by 1 + q − aq = #E(Fq). For example the elliptic
curve E defined by y2+ y = x3−x2 has 10 rational points over F13, namely

∞, (0, 0), (0, 12), (1, 0), (1, 12), (2, 5), (2, 7), (8, 2), (8, 10), (10, 6)

Therefore

Z(E/F13, t) =
1− 4t+ 13t2

(1− t)(1− 13t)

1.7 p - adic fields

Here we are referring to the finite extensions of the field of p - adic numbers
Qp. Elliptic curves over these fields were first studied by Weil and his
student Lutz in the 1930’s. Since these fields are less generally familiar, we
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will only mention a congruence property of the expansion coefficients of the
invariant differential ω. To change notation slightly, define the elliptic curve
by an equation y2 = x3 + ax + b, and the differential by ω = dx/2y. Let
u = −x/y. Then u is a local parameter on E in a neighborhood of O so
we can expand quantities of interest in power series in u. One is the group
law itself. If u1 and u2 are the parameters of two points P1 and P2 then the
parameter of P1 + P2 is given by

F (u1, u2) = u1 + u2 − 2au1u2 − 4a(u31u
2
2 + u21u

3
2)

− 16b(u31u
4
2 + u41u

3
2)− 9b(u51u

2
2 + u21u

5
2) + . . .

This is called the formal group of E. The coefficients are polynomials in a, b
with integer coefficients.

Another is the differential

ω = du(1 + 2au4 + 3bu6 + 6a2u8 + 20abu10 + . . .)

=
∞
∑

n=1

c(n)un−1du

Formally integrating this series gives

f(u) =
∞
∑

n=1

c(n)un/n

This is called the logarithm of the formal group because

F (u, v) = f−1(f(u) + f(v))

where f−1(u) is the inverse power series defined by f−1(f(u)) = u. The
following theorem was noted independently by a number of people (Atkin
and Swinnerton - Dyer, Cartier, Honda)

Theorem 1.3. Let E be an elliptic curve defined over the rational field Q

and suppose that p is a prime of good reduction for E and that 1− apt+ pt2

is the numerator of its zeta function as an elliptic curve over Fp. If the c(n)
are the expansion coefficients of the differential of the first kind as above, we

have the congruences:

1. c(p) ≡ ap mod p.

2. c(np) ≡ c(n)c(p) mod p if GCD (n, p) = 1.

3. c(np)− ap c(n) + p c(n/p) ≡ 0 mod ps for n ≡ 0 mod ps−1, s ≥ 1.
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See [2]. Actually one ought to assume that the equation for E is a
so - called minimal one at p, but this will be so with a finite number of
expectional p. Assume that c(p) 6= 0 mod p; inductively it follows that
c(ps) 6= 0 mod p for all s. The Cartier - Honda congruences then show that
the sequence of rational numbers

c(ps+1)

c(ps)

is p - adically convergent to the reciprocal α of the root of 1− apt+ pt2 = 0
which is a p - adic unit (the other reciprocal root is p/α, which has p - adic
value one).

There is a beautiful application of these ideas to congruence properties
of special polynomials, discovered by Honda. In the Jacobi quartic family,
consider the differential

ω =
dx√

1− 2κx2 + x4
=

∞
∑

n=0

Pn(κ)x
2ndx

The polynomials Pn(κ) are the Legendre polynomials that arise in the theory
of spherical harmonics. The above congruences imply the following set of
congruences discovered by Schur: Fix a prime p. If n = a0 + a1p + a2p

2 +
. . .+ adp

d is the p - adic expansion of a given positive integer n, 0 ≤ ai < p.
Then

Pn(κ) ≡ Pa0(κ)Pa1(κ
p) . . . Pad(κ

pd) mod p

See [13]

2 Modular forms

2.1 What they are.

Reference: [4], [7].
Consider the upper half - plane of complex numbers:

H = {τ ∈ C | Im(τ) > 0}.

The group

SL(2, R) =

{(

a b
c d

)

∈ Mat(2, R) | ad− bc = 1

}
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operates on H by the rule

(

a b
c d

)

· τ =
aτ + b

cτ + d

This is the full group of holomorphic automorphisms of H. The upper half
plane also carries a non Euclidean geometry of constant negative curvature
(the Lobatchevsian plane) whose geodesics are the circular arcs orthogonal
to the real axis, and this group of transformations preserves this geometry,
a fact first noted by Poincaré.

Let Γ be a subgroup of finite index in SL(2, Z). We get a Riemann
surface by taking the quotient Y (Γ) = Γ\H. This is an open subset of a
compact Riemann surface X(Γ) = Γ\H∗, and the complement X(Γ)−Y (Γ)
is a finite set of points called cusps. As is well-known, X(Γ) is topologically
a sphere with g handles attached. The number g is called the genus.

For instance if Γ = SL(2,Z), the genus is 0 and there is one cusp, so
X(Γ) is topologically a 2-sphere. Since there is one cusp, Y (Γ) = C. These
Riemann surfaces can be seen from the fundamental domain of the group
and the gluing of the edges.

An interesting example of this is the group Γ0(11). We obtain in this way
a Riemann surface of genus 1 with 2 cusps. This is the Riemann surface
of an algebraic curve, in fact it is the elliptic curve y2 + y = x3 − x2 we
have considered before (at least up to isogeny). Pictures of the fundamental
domains appear in the next pages.
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0 1

Figure 1: Fundamental domain for Γ0(11) showing translates of fundamental
regions for SL2(Z).

Definition 2.1. Let Γ be a subgroup of finite index in SL(2, Z). A modular
form of weight k for Γ is a complex - valued function f(τ) defined in H such
that

1. f(τ) is holomorphic.

2.

f

(

aτ + b

cτ + d

)

= (cτ + d)kf(τ) for all

(

a b
c d

)

∈ Γ.

3. f(τ) is holomorphic at all the cusps of Γ.

The third condition is a technical one; we can explain it in the important
special case of the subgroup

Γ0(N) =

{(

a b
c d

)

∈ SL(2, Z) | c ≡ 0 mod N

}

Since the translation τ → τ + 1 belongs to this group, the transformation
property of modular forms shows that f(τ) is periodic, and therefore admits
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Figure 2: Fundamental domain for Γ0(11) showing the gluing data for the
edges.

a Fourier expansion

f(τ) =
∑

a(n)qn, q = e2πiτ

We say that f(τ) is mermorphic at the cusp i∞ if this expansion has only
a finite number of negative exponents; that it is holomorphic if it has only
nonnegative exponents; and that it is a cusp form if it is holomorphic and
the constant term is zero: a(0) = 0. In general a subgroup such as Γ0(N)
has a finite number of cusps, and there are corresponding q - expansions at
each cusp. We impose these conditions at each cusp.

Examples of modular forms (for Γ = SL(2, Z)) are the Eisenstein series
previously defined. A suitable constant multiple of Gk(τ) has an expansion
of the shape

1 +Ck

∞
∑

n=1

σk−1(n)q
n, σs(n) =

∑

0<d|n

ds

where the constant Ck ∈ Q is related to the Bernoulli numbers. These
have weight k. In general, the expansion coefficients of modular forms are
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arithmetical functions with interesting properties. In this example we have
for instance

σs(mn) = σs(m)σs(n) whenever GCD(m,n) = 1

An example of a cusp form (weight 12) is ∆ defined by

∆(τ) = g2(τ)
3 − 27g3(τ)

2

This has the expansion

(2π)−12∆(τ) = η(τ)24 = q
∞
∏

n=1

(1− qn)24 =
∞
∑

n=1

τ(n)qn

for an arithmetical function n → τ(n) introduced and studied by Ramanu-
jan. This τ(n) is not to be confused with the τ in the upper half plane. He
conjectured the following properties:

1. τ(mn) = τ(m)τ(n) whenever GCD (m,n) = 1.

2. τ(ps)τ(p) = τ(ps+1) + p11τ(ps−1) for a prime p, s ≥ 1.

3. τ(m) = O(m11/2)

The first two of these were proved by Mordell, but it was only after the Hecke
operators were introduced that these formulas were really understood. Note
that the first two conditions have as consequence that Ramanujan’s τ(n) is
entirely determined by a function on the prime numbers p → τ(p). Indeed
this may be formally expressed as an equality of Dirichlet series

L(∆, s) :=

∞
∑

n=1

τ(n)/ns =
∏

p

(

1− τ(p)ps + p11−2s
)−1

This is known to possess an analytic continuation to an entire function
of the complex variable s, which has a functional equation: the function
(2π)−sΓ(s)L(∆, s) is invariant under the substitution s → 12 − s. These
properties are analogous to those of the Riemann zeta function

ζ(s) :=
∞
∑

n=1

1/ns =
∏

p

(

1− p−s
)−1
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The analytic properties of the Dirichlet series associated to modular forms
lie at the heart of modern researches in the arithmetic of automorphic forms.
For any cusp form f(τ) for Γ0(N) one can introduce a Dirichlet series

L(f, s) =

∞
∑

n=1

a(n)/ns

where the coefficients are the q - expansion coefficients of f(τ). It possesses
an “Euler product” expansion over all the primes as in the example of ∆ if
and only if it is an eigenfunction for all the Hecke operators.

As for the third condition conjectured by Ramanujan, it was proved by
Deligne when he established the Riemann hypothesis for the congruence zeta
functions of algebraic varieties alluded to above. More precisely, it had been
previously established by several mathematicians, notably by Ihara, Kuga
and Deligne, that Ramanujan’s third conjecture would be a corollary of the
Weil conjectures.

An example of a meromorphic modular form of weight 0 is J defined as

J(τ) = 1728 g2(τ)
3/∆(τ)

whose expansion has integer coefficients, and begins

q−1 + 744 + 196884q + 21493760q2 + . . .

This function has the important property that the elliptic curves defined by
lattices Lτ1 and Lτ2 are isomorphic if and only if J(τ1) = J(τ2).

2.2 Wiles’ theorem

As we have seen, elliptic curves and modular forms are related to each other.
This fact was already clear in the 19 th century - the moduli of elliptic curves
are expressible in terms of modular forms of the parameter τ in the upper
half plane. However, in the 1950’s a new sort of relation between elliptic
curves and modular forms was perceived, first by Taniyama, then more
precisely by Shimura and Weil.

Let E be an elliptic curve defined over Q, say by an equation y2 =
4x3 − Ax − B with rational integers A,B. For every prime p not dividing
the discriminant ∆ = A3−27B2, we get an elliptic curve over the finite field
Fp with this equation. We therefore have its zeta function, the numerator of
which is of the shape 1− apt+ pt2, with ap defined by counting the number
of solutions to the congruence y2 ≡ 4x3 −Ax−B mod p,

1− ap + p = #E(Fp)
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Note that #E(Fp) is actually one more than the number of solutions to
the congruence, since E has one point at infinity in the projective plane.
Following Hasse, we put these polynomials together by replacing t by p−s

for a complex variable s and forming the product

L(E, s) =
∏

p

(

1− app
−s + p1−2s

)−1

One ought to put in factors corresponding to the finitely many primes for
which our curve E becomes singular, namely the prime divisors of the dis-
criminant. This can be done, but it is technical to explain. Assume that it
has been done. Then Wiles’ big theorem, conjectured by Taniyama, Shimura
and Weil, is

Theorem 2.1. For every elliptic curve E defined over the field of rationals

Q there exists f(τ), a cusp form of weight 2 for a subgroup Γ0(N), such that

L(f, s) = L(E, s)

See [12], [10].
Wiles and Taylor only proved this for so-called semistable elliptic curves,
which was sufficient to prove Fermat’s last theorem. The general case was
done in [1]. The integer N is computed from the elliptic curve as the conduc-
tor of E. This is an integer related to the discriminant, but whose definition
is too technical to explain here.

In down - to - earth terms Wiles’ theorem says the following: Take an
elliptic curve E say defined by an equation of the form g(x, y) = 0 with for
a polynomial with integer coefficients g, and for any prime p not dividing its
discriminant, count up the number #E(Fp) of solutions to the congruence
g(x, y) ≡ 0 mod p including the point(s) at infinity. Write it in the form
#E(Fp) = 1 + p − ap(E). Then the integer ap(E) is the p th Fourier

coefficient of a cusp form of weight 2.
Example. The curve y2 + y = x3 − x2 discussed before. This has con-

ductor 11. The corresponding modular form is

η(τ)2η(11τ)2 = q
∞
∏

n=1

(1− qn)2(1− q11n)2

= q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7

− 2q9 − 2q10 + q11 − 2q12 + 4q13 − q15 + . . .
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We found before that there were 10 points on this curve over the field with
13 elements. This is predicted by the above expansion because the 13 th
coefficient is 4: 10 = 1 + 13− 4. This works for every prime except 11.

Example. The curve y2 + xy − y = x3. This has conductor 14. The
corresponding modular form is

η(τ)η(2τ)η(7τ)η(14τ) = q
∞
∏

n=1

(1− qn)(1− q2n)(1− q7n)(1 − q14n)

= q − q2 − 2q3 + q4 + 2q6 + q7 − q8

+ q9 − 2q12 − 4q13 − q14 + q16 + . . .

We find that there are 18 points on this curve over the field with 13 elements:

∞, (0, 0), (0, 1), (1, 1), (1, 12), (5, 3), (5, 6), (7, 9), (7, 11)
(8, 2), (8, 4), (9, 7), (9, 11), (10, 6), (10, 11), (11, 6), (11, 10), (12, 1)

This is predicted by the above expansion because the 13 th coefficient is
−4: 18 = 1 + 13− (−4). This works for all primes except 2 and 7.
Example. The curve x3+y3 = 1 . This has conductor 27. The corresponding
modular form is

η(3τ)2η(9τ)2 = q

∞
∏

n=1

(1− q3n)2(1− q9n)2

= q − 2q4 − q7 + 5q13 + 4q16 − 7q19 − 5q25

+ 2q28 − 4q31 + 11q37 + 8q43 − 6q49 + . . .

This has 3 points on the line at infinity for p ≡ 1 mod 3, and one point on
the line at infinity if p ≡ 2 mod 3. One has that #E(Fp) = p + 1 if p ≡ 2
mod 3, and #E(Fp) = p+1− a for p ≡ 1 mod 3, where a is determined by
the following recipe due to Gauss: for any prime congruent to 1 mod 3 we
can write 4p = a2+27b2 in integers in a unique way up to the signs of a and
b. We choose a so as to satisfy the congruence a ≡ 2 mod 3, and this fixes
the sign. Of course, this a is also the p th coefficient of the above series (note
that the p th coefficient of the series is 0 if p ≡ 2 mod 3). This alternate
method of writing the number of solutions of the congruence is a reflection
of the fact that the elliptic curve x3+y3 = 1 has “complex multiplications”.
For instance 4 · 13 = (±5)2 + 27(±1)2, so we choose a = 5 to satisfy the
congruence mod 3. Then we are predicted to have p+1−a = 13+1−5 = 9
points on this curve over F13. In addition to the 3 points at infinity, we have
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(0, 1), (0, 3), (0, 9), (1, 0), (3, 0), (9, 0)

This works for all primes except 3.

Example. The curve y2 = 4x3 + 68. This has conductor (2 · 3 · 17)2 =
10404. The corresponding modular form is

f(τ) = q − 5q7 − 7q13 − 7q19 − 5q25 − 11q31 − 11q37

− 13x43 + 18x49 + 13x61 + 5x67 + 10x73 + 4x79 + . . .

We find that there are 13 points on this curve over the field with 7 elements:

∞, (1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 6)
(4, 3), (4, 4), (5, 1), (5, 6), (6, 1), (6, 6)

This agrees with the coefficient of q7 in f , namely, 13 = 7 + 1− (−5).

The expansion coefficients of these modular forms are arithmetical func-
tions that satisfy identities similar to those of the Ramanujan τ function:

1. a(mn) = a(m)a(n) whenever GCD (m,n) = 1.

2. a(ps)a(p) = a(ps+1) + p a(ps−1) for a prime p, s ≥ 1.

3. a(m) = O(m1/2)

These hold only for coefficients a(m) with m prime to N .
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