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Abstract Molecular systems are uncertain: the variability of reaction parameters and the presence of un-

known interactions can weaken the predictive capacity of solid mathematical models. However, strong con-

clusions on the admissible dynamic behaviors of a model can often be achieved without detailed knowledge

of its specific parameters. Starting with Thomas’ conjectures, cycle–based criteria have been largely used

to characterize oscillatory and multistationary dynamic outcomes in systems with a sign definite Jacobian.

We build on the rich literature focused on the identification of potential oscillatory and multistationary

behaviors based on parameter–free criteria. We propose a classification for sign–definite non–autocatalytic

biochemical networks which summarizes several existing results in the literature. We call weak (strong)

candidate oscillators systems which can possibly (exclusively) transition to instability due to a complex

pair of eigenvalues, while we call weak (strong) candidate multistationary systems those which can possibly

(exclusively) transition to instability due to a real eigenvalue. For each category we provide a characterization

based on the exclusive or simultaneous presence of positive and negative cycles in the associated sign graph.

We also consider the case in which the overall system is comprised of several stable aggregate monotone

components, providing conditions in terms of positive/negative cycles in a network whose nodes are the

aggregate monotone systems.

Many canonical example circuits exhibiting oscillations or bistability fall in the categories of strong

candidate oscillators/multistationary systems. However, most realistic examples of biochemical networks

fall in the gray area of systems in which both positive and negative cycles are present: therefore, both
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oscillatory and bistable behavior are in principle possible. Natural biological systems with a large number of

components are often interconnections of monotone modules, where negative/positive cycles among modules

characterize oscillatory and bistable behaviors, in agreement with our results.

keywords Feedback loops, cycles, multistationarity, stability, oscillator, structural properties

1 Introduction

What interaction networks can generate multistationary and periodic behaviors in molecular systems? This

is a fundamental question in the area of systems and synthetic biology, as it is relevant both when analyzing

biochemical networks naturally present in an organism, and when building artificial networks to achieve

target dynamics. However, the variability and uncertainty characterizing molecular circuits pose significant

challenges to answering such question. Mathematical models facilitate and support the analysis and in-

terpretation of uncertain dynamic data, but models are often plagued by uncertainty as well whenever it

is impractical (if not impossible) to measure their parameters. Thus, from a modeling perspective, satis-

factory answers to our question may be found by identifying “structural” sources of multistationarity and

periodicity, seeking parameter–free criteria to predict the capacity of a model to exhibit specific dynamic

“phenotypes”.

Parameter–free criteria to determine local admissible dynamics of systems with a sign definite Jacobian

can be formulated by studying the graph associated with their Jacobian matrix. Concentrations of molecular

species (states of the dynamical system) are associated with nodes of the graph, and signed Jacobian entries

linking different states are associated with directed, signed edges of the graph. Checking for the presence of

positive or negative cycles in the Jacobian graph is a widely accepted method to explain multistationarity and

oscillations in molecular/chemical systems [55]. Some of the first and best known mathematical conjectures

in this area were formulated by R. Thomas [53]: given a Jacobian graph, a negative cycle is a necessary

condition for stable periodic behavior, while a positive cycle is a necessary condition for multistationarity

(see [14] for a very thorough survey). These conjectures were proved in [22] and [47], with several further

extensions and refinements [7, 27, 42, 49].

While Thomas’ cycle conditions are only necessary (the dynamic phenotype of a system always depends

on its specific parameters), they provide useful guidelines for analysis and design. In particular, design

of feedback loops underlies the successful creation of many novel artificial biochemical networks capable of

bistability [6, 20, 29, 40] or oscillations [16, 19, 28, 37, 51, 54]. In practice, however, it is extremely challenging

to generate “clean” feedback loops in any experimental system. Even in vitro artificial networks [19, 28,
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37] with a small number of components are generally affected by unknown and undesired interactions

among reactants, which can create additional parasitic feedback loops of uncertain strength. This challenge

motivates the search for structural criteria to discriminate dynamic outcomes of a network where several

potentially unknown cycles coexist.

We contribute to the research in this direction by proposing a structural classification where we contrast

weak and strong candidate oscillators and multistationary systems. Our classification depends on the exclusive

or simultaneous presence of positive and negative cycles. We consider non–autocatalytic systems having a

sign definite Jacobian, and we identify the structure of a system with the sign pattern of its Jacobian and

the corresponding directed graph. A structure can be specified into a dynamic realization by choosing a set

of specific functions (or a set of model parameters, in the special case of assigned functions depending on

uncertain parameters). Our definition of candidate dynamic behaviors is based on the admissible types of

transition to instability, which occurs when the eigenvalues of the Jacobian cross the imaginary axis, due to

a change in parameters. Multistationarity is associated with a real eigenvalue transitioning to instability,

i.e. changing sign from negative to positive as parameter values change, while oscillatory behaviors are

associated with a complex pair of eigenvalues transitioning to instability, i.e. whose real part changes sign

from negative to positive as parameter values change. It is well known that these phenomena are related

to bifurcation theory. Typically, a transition on the real axis is related to the presence of a zero–eigenvalue

bifurcation [52], while a transition with complex eigenvalues is related to a Hopf bifurcation. Formally,

however, these types of bifurcation occur under a range of additional assumptions which complicate their

mathematical analysis (see, for instance, [2, 34, 52]).

By our definition, weak (strong) candidate oscillators can possibly (exclusively) transition to instability

due to a complex pair of eigenvalues, while weak (strong) candidate multistationary systems can possibly

(exclusively) transition to instability due to a real eigenvalue. We prove that a system can be classified as

a strong candidate oscillator when all cycles in its structure are negative, as a weak candidate oscillator

if there exists at least one negative cycle in its structure. Similarly, a system can be classified as a strong

(weak) candidate multistationary system if its structure presents exclusively (at least one) positive cycles.

We extend these cycle conditions to systems composed by interconnected monotone subsystems, by mapping

their structure to a graph where each monotone subsystem is collapsed into a single node of the graph.

Our classification work builds on a rich body of literature [7, 22, 27, 42, 47, 49, 53]. Our proofs rely on

the so–called degree theory [24, 39] and on the properties of sign–definite systems [33]. Our approach can

be used to characterize systems affected by delays, which are often present in models of gene networks [31].

While an extensive analysis of networks with delays is outside of the scope of this paper, in Appendix C
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we propose cycle–based sufficient conditions to identify candidate oscillators and multistationary systems

when delays are present.

1.1 Motivating example

We begin with a simple example to introduce some mathematical notions used throughout this paper, and

to clarify the relevance of our study in the context of biomolecular systems.

We consider a standard model for transcription and translation of two genes, where proteins recipro-

cally modulate their expression forming a feedback loop. Similar models are commonly encountered in the

literature (see, for instance [16, 28]). For illustrative purposes, we use a nondimensional model:

ṙ1 = γ1 +H1(p2)− r1, ṗ1 = β1r1 − p1, (1a)

ṙ2 = γ2 +H2(p1)− r2, ṗ2 = β2r2 − p2, (1b)

where, for i = 1, 2, ri are RNA species concentrations; pi are protein concentrations; Hi(·) are Hill functions,

and all Greek letters denote reaction rates that are positive scalars. Nondimensionalization is justified and

carried out in detail in Appendix A (along with a boundedness proof).

Depending on the regulatory action of the proteins, and thus depending on the type of Hill function, the

network presents a different number of equilibria and different possible dynamic behaviors. For example,

suppose H1(p2) = α1
pn2

1+pn2
and H2(p1) = α2

pn1
1+pn1

: this is a two–gene positive feedback loop, which is often

encountered in developmental networks [1, 12]. The Jacobian of the system is:

J =



−1 0 0 ∂H1

∂p2

β1 −1 0 0

0 ∂H2

∂p1
−1 0

0 0 β2 −1


, where

∂Hi
∂pj

= αi
npn−1
j

(1 + pnj )2
, (i, j) ∈ {(1, 2), (2, 1)}. (2)

The first remarkable feature is that the Jacobian entries, evaluated at a positive equilibrium, are sign

definite, i.e. they do not change sign for arbitrary choices of the (positive) parameters αi, βi and n.

The Jacobian sign pattern is thus a “structural” property of this system, and it can be associated with

a graph: nodes correspond to the concentrations of biochemical species and are interconnected by positive

(+1) or negative (−1) arcs according to the corresponding Jacobian entries1, as shown in Figure 1 a. We

1 we consider only the sign of each Jacobian entry as the weight of the corresponding arc in the graph
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also remark that the system is non–autocatalytic, i.e. there is spontaneous degradation of each species, and

the diagonal terms of the Jacobian are negative.
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Fig. 1 a: Two–gene system with double positive feedback loop (positive cycle). Pointed arrowheads indicate positive
Jacobian interconnection entries, while hammer–arrowheads indicate negative interconnections. b: Two–gene system with
double negative feedback loop, resulting in an overall positive cycle. c: Two–gene feedback interconnection with positive
and negative regulation, resulting in an overall negative cycle. The nondimensional parameters are chosen as γ1 = γ2 = 0.2,
α1 = α2 = 3, β1 = β2 = 1 and n is varied. The right column shows the corresponding value of p2 equilibria for varying n,
and their different pattern of transition to instability. Green dots are stable equilibria, blue dots are unstable equilibria.

We can derive expressions for the equilibria of the system, which are given by the intersections of the

two equilibrium conditions (Figure 1 a, top row):

p1 = β1

(
γ1 + α1

pn2
1 + pn2

)
, p2 = β2

(
γ2 + α2

pn1
1 + pn1

)
.

For n = 1 there is an intersection with p1 and p2 positive. For n > 1, the system may admit multiple,

typically three, positive equilibria. For an assigned value of n, we consider one equilibrium and we evaluate

its stability properties by finding the eigenvalues of the Jacobian, which are the roots of its characteristic

polynomial

(s+ 1)4 −K = 0, where K = β1β2
∂H1

∂p2

∂H2

∂p1
> 0. (3)
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Note that, although n and the equilibrium values of pi are fixed, K can vary depending on αi and βi. The

roots of (3) are

s = −1 + q, −1− q, −1 + iq, −1− iq, where q = K
1
4 .

If K > 1, there is only one root having positive real part, and it is on the real axis. If K < 1, all of the roots

have negative real part. Thus, the system can only admit real exponential instability, i.e. instability arising

due to a real eigenvalue changing sign from negative to positive. Figure 1 a, top row, shows equilibrium

conditions and example trajectories in the p1 − p2 plane of the phase space for different values of n (stable

equilibria are represented as green circles, unstable equilibria as blue circles).

If H1 = α1
1

1+pn2
, H2 = α2

1
1+pn1

, network (1) specifies a two–gene double negative feedback loop, de-

picted in Figure 1 b, left. This circuit is also known as toggle switch, an example of which is the famous

synthetic biological circuit by Gardner [20]; a natural example of a toggle switch is the Cdc2–Wee1 network

considered, for instance, in [3]. We can repeat the same analysis performed for the two–gene double positive

feedback loop, and get similar results in terms of admissible transitions to instability, which can be only

real exponential, regardless of the considered equilibrium (Figure 1 b).

We now compare the previous two examples to the case when Hill functions have opposite regulatory

roles, i.e. H1 = α1
pn2

1+pn2
an H2 = α2

1
1+pn1

: the network can behave as a two–gene oscillator [28]. First, we

observe that the Jacobian is still a sign definite matrix. However, the “interconnection” terms ∂H1

∂p2
and ∂H2

∂p1
,

the derivatives of the Hill functions, now have opposite signs, due to the different slopes of such functions,

and thus generate an overall negative feedback loop (Figure 1 c). The equilibrium conditions are now

p1 = β1

(
γ1 + α1

pn2
1 + pn2

)
, p2 = β2

(
γ2 + α2

1

1 + pn1

)
,

and admit a single intersection regardless of the value of αi, βi, and n (Figure 1 c, central panels show the

equilibrium conditions for increasing values of n). The characteristic polynomial is

(s+ 1)4 −K = 0, where K = β1β2
∂H1

∂p2

∂H2

∂p1
< 0. (4)

Since now K < 0, all of the roots of (4) are complex:

s = (−1 + q) + iq, (−1− q)− iq, (−1− q) + iq, (−1 + q)− iq, where q =
(−K)

1
4

√
2

.

As a consequence, only oscillatory unstable dynamics can arise, rather than real exponential. Precisely,

unstable oscillations do arise when K < −4. As we can see by studying the original nonlinear system, for
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any given value of n there is only one equilibrium, whose stability properties can change, again, depending

on the values of αi and βi.

To summarize, the analysis of this simple two–gene system has shown that, without a precise knowledge

of the functions H1 and H2, we can reach very strong conclusions regarding the possible dynamic behaviors

of the system. Such conclusions do not depend on specific functions or parameter choices, but rather on the

positive or negative feedback interconnection, thus on the presence of a positive or a negative cycle in the

graph associated with the system. In particular, this example clearly highlights that there is a relationship

between cycles and admissible transitions to instability. A qualitatively similar study was carried out and

validated by building synthetic bacterial circuits in [6]; analysis relied on the S–systems formalism [45].

In the next sections, we propose a general framework to categorize oscillatory and multistationary

systems based on the exclusive or coexisting presence of positive and negative cycles.

2 Assumptions and definitions

We consider the dynamical system

ẋ = f(x), x ∈ Rn, (5)

where f(·) is continuously differentiable in all its components fi(·), i = 1, ..., n, and may be any function

which satisfies the following assumptions.

Assumption 1 We assume that all the solutions of system (5) are globally uniformly asymptotically bounded in

a ball S: formally, we say that for any compact set S0 ⊆ Rn including S, there exists T > 0 (depending on S0)

such that x(t) ∈ S for any x(0) ∈ S0 and any t ≥ T .

As a consequence, the system admits an equilibrium point x̄ in S ([50], see also [43, 44]).

Assumption 2 We assume that each component fi(·) is monotone (either non–increasing or non–decreasing)

with respect to each argument xi and that ∂fi/∂xj is either always positive, always negative, or always null in all

the considered domain.

Hence the Jacobian of the system is sign definite.

Assumption 3 We assume that the system is non–autocatalytic, i.e. ∂fi/∂xi < 0.

Because of the monotonicity assumption, a sign pattern matrix Σ can be immediately associated with

the sign definite Jacobian of system (5). Zero elements in the Jacobian correspond to zero elements in Σ.

We refer to Σ as the system structure. This structure is associated with a directed, n–node graph, whose
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Fig. 2 Graph corresponding to the structure at Equation 6.

arcs are positive (+1), negative (−1), or zero depending on the sign of the corresponding entries in Σ. We

provided several graph examples within the two–gene network considered in Figure 1.

Given a system structure Σ, we call a realization of such a structure any choice of functions fi(·), and

thus of the Jacobian entries J = [∂fi/∂xj ], which is compatible with Σ.

Definition 1 We say a property P is structural if it is satisfied by a system structure, independently of the

specific realization [8].

For example, the structure corresponding to the two–node double positive feedback loop is

Σ =



− 0 0 +

+ − 0 0

0 + − 0

0 0 + −


, (6)

as shown in Figure 2. The specific model we considered and its Jacobian matrix (2) are a possible realization

of this structure.

Definition 2 A cycle is an oriented, closed sequence of distinct nodes connected by distinct directed arcs

in the graph of a structure. We say the cycle is negative if the number of negative arcs is odd, otherwise we

say the cycle is positive. The number of arcs forming a cycle is called the order of the cycle.

Referring to our two–genes example network, all three cases have a single cycle. However, the double positive

feedback system and the toggle switch exhibit an overall positive cycle, while the two–node oscillator presents

an overall negative cycle.

The order of cycles in a system can be an important factor in determining its dynamic behavior. Systems

where all the negative cycles (if any) are of order two present particular challenges: we denote these systems

as critical, and discuss the validity of our results for this class of structures in Appendix B. In the remainder

of this paper, we consider non–critical systems.
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We now introduce general definitions of transition to instability. We consider the parameter–dependent

dynamical system

ẋ(t) = f(x(t), µ), x ∈ Rn, (7)

where f(·, ·) is a sufficiently smooth function, satisfying all of the previously stated assumptions, and µ is

a real–valued parameter. Recalling Assumption 1, we have that an equilibrium exists and, for convenience,

we assume that it is the origin, i.e. f(0, µ) = 0. In general, any equilibrium point is a function of parameter

µ: f(x̄µ, µ) = 0. However, a suitable change of coordinates always allows us to shift the equilibrium to the

origin, without affecting our analysis. In fact, if we define z = x − x̄µ, we have that ż(t) = f(z(t) + x̄µ, µ)

and f(z̄ + x̄µ, µ) = 0 for z̄ = 0. The Jacobian matrix is unchanged, since ∂f
∂z

∣∣∣
z=0

= ∂f
∂x

∣∣∣
x=x̄µ

.

We say that a matrix is asymptotically stable if all its eigenvalues have a negative real part, while it is

unstable if at least one of its eigenvalues has a non–negative real part.

Definition 3 Transition to Instability (TI): System (7) undergoes a transition to instability for µ = µ∗ iff

its Jacobian matrix J is an asymptotically stable matrix in a left neighborhood of µ∗, and it is an unstable

matrix in a right neighborhood2.

In the paper we limit our attention to simple TIs, in the sense that at most a single real eigenvalue or

a single complex pair of eigenvalues crosses the imaginary axis. Note that, in principle, many eigenvalues

could leave the stability region simultaneously. However, this is not likely to occur in realistic situations.

In addition, most systems have a dominant eigenvalue, i.e. an eigenvalue (or a complex pair of eigenvalues)

having real part larger than any other. The dynamic behavior of a system is substantially characterized by

its dominant eigenvalue. Here we assume that the eigenvalues generating a TI are dominant.

We now specify two types of TIs that are related to oscillatory and multistationary dynamic behaviors.

Definition 4 Oscillatory Transition to Instability (OTI): System (7) undergoes a (simple) oscillatory

transition to instability for µ = µ∗ iff, for µ = µ∗, its Jacobian matrix J has a single pair of pure imaginary

eigenvalues, while all the other eigenvalues have negative real part:

σ(x̄µ∗) = {λ1, λ2, . . . , λn}, where λ1,2 = ±iω,

with the condition Re(λk) < 0 for k > 2 and with Re(λk) > 0, for k = 1, 2, in a right neighborhood of µ∗.

2 This definition holds for systems transitioning to instability from the right to the left neighborhood of µ∗: in the above
definition, it suffices to take µ̂ = µ∗ − µ as the bifurcation parameter.
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Definition 5 Real Transition to Instability (RTI): System (7) undergoes a (simple) real (exponential)

transition to instability for µ = µ∗ iff, for µ = µ∗, the Jacobian matrix J has a single zero eigenvalue, while

all remaining eigenvalues have negative real part:

σ(x̄µ∗) = {λ1, . . . , λn}, where λ1 = 0,

with the condition Re(λk) < 0 for k > 1 and with Re(λ1) > 0 in a right neighborhood of µ∗.

Definition 6 We say that the transition to instability is simple if it is either an OTI or an RTI.

When an RTI occurs, the determinant of the Jacobian changes sign as the parameter crosses the stability

limit. Therefore, under overall boundedness assumptions, an RTI causes the appearance of new equilibrium

points. This is not the case for OTIs. OTIs are generally related to Andronov–Hopf bifurcations, while RTIs

are associated with zero–eigenvalue bifurcations [52]. However, these types of bifurcation require additional

assumptions [2, 34, 52].

3 Structural classification

We consider a system structure, defined as the sign pattern matrix Σ associated with the system Jacobian

matrix, and we examine the sign of the cycles in the corresponding directed graph. We begin by stating

general definitions for candidate oscillatory and multistationary systems. Based on these definitions, we

then propose necessary and sufficient conditions that link the presence of negative and positive cycles in a

structure to the oscillatory or multistationary nature of the system.

The definitions below refer to system (7) and its given structure Σ, independently of the considered

parameter µ. We recall that a realization is a choice of function f(·) which is compatible with the system

structure.

Definition 7 System (7) with sign pattern Σ is structurally a candidate oscillator in the weak sense iff, for

some realization of f , it admits an OTI.

Definition 8 System (7) with sign pattern Σ is structurally a candidate oscillator in the strong sense iff,

for any realization of f , every simple transition to instability (if any) is an OTI.

As a dual case, we consider candidate multistationary systems.
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Definition 9 System (7) with sign pattern Σ is structurally a candidate multistationary system in the weak

sense iff, for some realization of f , it admits a simple RTI.

Definition 10 System (7) with sign pattern Σ is structurally a candidate multistationary system in the

strong sense iff, for any realization of f , every simple transition to instability (if any) is an RTI.

For example: a weak candidate oscillator admits, for some choice of f , an unstable equilibrium point

where trajectories spiral out of the equilibrium with oscillatory dynamics. A strong candidate oscillator

structure admits transitions to instability exclusively of oscillatory nature, for any choice of f . The two–

gene oscillator system described in the previous section is a strong candidate oscillator, since, as we have

seen, unstable dynamics can arise only in association with complex conjugate eigenvalues, hence must be

oscillatory. Conversely, a weak candidate multistationary structure admits, for some choice of f , unstable

behaviors due to a real unstable eigenvalue. A strong candidate multistationary system admits solely unsta-

ble dynamics due to a real unstable eigenvalue, for any choice of f . Going back to our examples, both the

two–gene double positive feedback loop and the toggle switch are strong candidate multistationary systems,

since unstable dynamics can only arise due to a real unstable eigenvalue.

We will provide necessary and sufficient conditions characterizing candidate oscillators and multistation-

ary systems based on the sign of the cycles present in their structure Σ. Precisely, we will see that a system

is a candidate oscillator in the strong sense iff all the cycles are negative, in the weak sense iff there is at

least one negative cycle; conversely, a system is a candidate multistationary system in the strong sense iff

all the cycles are positive, in the weak sense iff there is at least one positive cycle. A table summarizing our

classification based on cycles in the system structure is in Figure 3.

Candidate oscillator Candidate multistationary system

Weak A negative cycle exists A positive cycle exists

Strong All cycles are negative All cycles are positive

Fig. 3 Table summarizing our structural cycle–based classification of candidate oscillators and multistationary systems.

Remark 1 Some of our proofs are built with the following argument. Suppose we are given a condition C on

a structure associated with a system ẋ(t) = f(x(t)), and we want to prove that the condition is necessary for

a certain property P. We reason by contradiction, supposing condition C is not satisfied by the structure.

Then, we show that there always exists a realization of the structure for which P fails.
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Fig. 4 Plot of the example νκ,ε(x)–function in equation (8), with ε = 1, κ = 2 (red) and κ = 0.5 (blue).

Before formally stating our main results, we introduce a vector field transformation by νκ,ε–functions,

where κ, ε > 0 are real parameters. This transformation will be employed throughout the proofs to find,

given a structure, a realization which satisfies a property of interest.

Definition 11 A νκ,ε–function (see for example Figure 4) is a strictly increasing, continuously differentiable,

odd function (i.e. νκ,ε(x) = −νκ,ε(−x)), such that:


νκ,ε = x for |x| ≥ ε,

dνκ,ε(0)
dx = κ.

A νκ,ε–function has a scalable derivative at the origin and is the identity function outside the ε–ball.

Example Among the infinite possible νκ,ε–functions, we consider this example for illustrative purposes:

νκ,ε(x) =

x+ arctan((κ− 1)x)
(

1−
(
x
ε

)2)2

for |x| < ε

x for |x| ≥ ε
(8)

The derivative of function (8) inside the interval [−ε, ε] is

ν′κ,ε(x) = 1 +
(κ− 1)

(
1−

(
x
ε

)2)2

1 + (κ− 1)2x2
− 4

ε2
x arctan((κ− 1)x)

(
1−

(
x

ε

)2
)
, for |x| < ε,

while ν′κ,ε(x) = 1 for |x| ≥ ε. Its derivative ν′κ,ε(x) > 0 is continuous and positive for all κ > 0, and in x = 0

it is equal to κ as desired. This example function is plotted in Figure 4.
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Transformation by νκ,ε function: Let us compose the vector field f(x) and a νκ,ε–function, introducing

a transformation:

ẋ = f(. . . , xi, . . . ) → ẋ = f(. . . , νκ,ε(xi), . . . ).

This operation:

a) does not change the equilibrium xi = 0;

b) does not change the structure of the system (does not alter the sign of the Jacobian entries);

c) changes the partial derivatives in xi = 0 as:

∂f(. . . , νκ,ε(xi), . . . )

∂xi

∣∣∣∣
xi=0

=
∂f(. . . , νκ,ε(xi), . . . )

∂νκ,ε

∂νκ,ε(xi)

∂xi

∣∣∣∣
xi=0

= κ
∂f(. . . , xi, . . . )

∂xi

∣∣∣∣
xi=0

d) ẋ = f(x) is unchanged outside the ε–ball after the transformation. In particular, boundedness properties

of the solution are not affected.

If we apply this transformation to a vector field f(x) in a neighborhood of the origin as an equilibrium

point, the elements of the Jacobian of f at x = 0 can be arbitrarily scaled.

Remark 2 We are going to use νκ,ε transformations in our proofs. Given a structure, we will exploit a νκ,ε

transformation to find a realization that satisfies the property of interest: such a special transformation

allows us to independently scale the magnitude of desired cycles in a realization. An important advantage

of νκ,ε transformations is that they preserve the boundedness of the system solution.

We now present our main results. The following proposition provides a characterization of weak candi-

date oscillators, exemplified in the literature by the amplified negative feedback oscillators and incoherent

oscillators described in [38] and by the toggle–switch/oscillator circuit in [6].

Proposition 1 A non–critical system is a candidate oscillator in the weak sense if and only if its structure has

at least one negative cycle (necessarily of order greater than two).

Proof Necessity. We want to show that, if there are no negative cycles, OTIs cannot occur.

First, we consider structures corresponding to strongly connected graphs. We say that a graph is strongly

connected if each node is connected to any other by an oriented path. In this case, as it is pointed out in [48],

p. 68, the absence of directed negative cycles is equivalent to the absence of undirected negative cycles, which

in turn guarantees monotonicity with respect to some orthant cone [46, 48]. The Jacobian of a monotone

system is a Metzler matrix (up to a change of coordinates), hence it has a real dominant eigenvalue and

any simple transition to instability is an RTI (thus the system does not admit undamped oscillations).
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If instead the graph is not strongly connected, it can be partitioned into strongly–connected components.

A node belongs to one (and only one) strongly–connected component iff it is connected to all the nodes in

that component by an oriented path, and vice versa. If we collapse each strongly–connected component in a

single hyper–node, this implies that the arcs connecting hyper–nodes (i.e. connecting two nodes belonging

to two different strongly–connected components) cannot form cycles (see, for instance, Figure 5). Therefore,

the graph composed by the M hyper–nodes corresponds to a block–triangular matrix

G =



N11 0 . . . 0

L21 N22 . . . 0

...
...

. . .
...

LM1 LM2 . . . NMM


,

where Nii is the Jacobian matrix associated with the i–th strongly–connected component (and is therefore

equivalent to a Metzler matrix), while Lij denotes the interconnection between the i–th and the j–th

strongly–connected components.

+

++
_

+

12

3

45

Fig. 5 Graph formed by the hyper–nodes associated with
strongly–connected components, corresponding to matrix (9).

G =


N11 0 0 0 0

L21 N22 0 0 0

L31 L32 N33 0 0

0 0 L43 N44 0

0 L52 0 0 N55

 (9)

Since matrix G is block–triangular, its spectrum is σG =
⋃
i σi, where σi is the spectrum of Nii. Therefore

the overall not–strongly–connected graph corresponds to a matrix having a real dominant eigenvalue. This

implies that any simple transition to instability is an RTI.

Sufficiency. The idea of the proof is simple: suppose there exists a single negative cycle. Then we apply a

νκ,ε transformation to all remaining cycles, scaling down the κ parameter until we virtually “eliminate” all

the other cycles. For instance, in the structure shown in Figure 6a we can select the cycle formed by nodes

1–2–3, and consider the new graph achieved by considering only the orange interconnections, Figure 6b.

Then for each arc, or Jacobian entry, we introduce a transformation with a νκ,ε–function, and we can

scale the interconnections so that κij > 1 for the arcs involved in the negative cycle, while small values

κij � 1 are assigned to the arcs not involved in the cycle. By reordering the nodes, we can always find a
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p1

p2p3

p1

p2p3

a b

Fig. 6 a. Example of incoherent oscillator presented in [38]. b. Emphasis on the negative cycle (orange).

realization having a Jacobian (or a principal submatrix of the Jacobian) of the form:

J̃ =



−β1 ε ε . . . γ1

γ2 −β2 ε . . . ε

ε γ3 −β3 . . . ε

ε ε . . . . . . ε

ε ε . . . γn −βn


(10)

where βi > 0 and γi 6= 0. With an abuse of notation, the entries corresponding to interconnections scaled

to arbitrarily small values are denoted as ε ≈ 0, instead of individual terms εi,j . By assumption,

∏
i

γi < 0.

Neglecting the ε–entries, which can be arbitrarily small, the realization Jacobian matrix J̃ has characteristic

polynomial

p(s) =
∏
i

(s+ βi)−
∏
i

γi,

whose coefficients are all positive. Therefore J̃ has no real non–negative eigenvalues.

Elementary root locus techniques show that some of the (necessarily complex) eigenvalues may become

unstable for large γi (while all of the eigenvalues remain stable for suitably small γi). Therefore, there is

always a realization yielding an OTI. ut

We now provide a characterization of strong candidate oscillators, exemplified by the well known repres-

silator circuit [16] and by all the negative feedback oscillator models described in [38].

Proposition 2 A non–critical system is a candidate oscillator in the strong sense if and only if its structure has

only negative cycles.

Proof Necessity Assume there is a positive cycle in the structure. We can apply the νκ,ε transformation,

scaling up the positive cycle and scaling down arbitrarily close to zero all the other cycles, achieving a real-
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ization Jacobian similar to matrix (10). Proceeding as in the sufficiency part of the proof for Proposition 1,

we conclude that the characteristic polynomial of the realization is:

p(s) =
∏
i

(s+ βi)−
∏
i

γi,

where
∏
i γi > 0, since the cycle is positive. Therefore, a realization can be destabilized by driving one real

root to cross the imaginary axis through the origin, generating an RTI. (Note the “symmetry” with respect

to the sufficiency part of the proof of Proposition 1, where the presence of a negative cycle yields
∏
i γi < 0.)

Sufficiency We use algebraic tools from [33] to prove that a structure with only negative cycles can solely

present complex unstable eigenvalues. Assume that the structure (sign pattern matrix associated with the

Jacobian) has only negative cycles. The characteristic polynomial is

p(s) = det(sI − J) =
n∑
i=0

pks
k. (11)

It is well known that the characteristic polynomial is always a monic polynomial, i.e. pn = 1. In addition

pk =
∑
i

∆
(k)
i (−1)k,

where ∆
(k)
i are the determinants of all the leading minors of order k of the Jacobian. We now invoke the

following property, from Theorem 3.1 in [33]:

Property 1 If all the diagonal entries of J are negative and if all the cycles are non–positive, then each

leading minor of order k has sign (−1)k.

This property implies that all the coefficients of the characteristic polynomial p(s) are positive, hence no

real positive roots are admitted. Therefore we conclude that if the system is destabilized, then a complex

pair of eigenvalues with non–negative real part must exist, leading to an OTI. ut

We can prove the following corollary, which is a consequence of degree theory.

Corollary 1 A strong candidate oscillator admits a single equilibrium.

Proof We assume that the system of interest is a candidate strong oscillator, therefore its structure has only

negative cycles. In view of the result proposed in [33], which we have just used in the proof of Proposition 2,

we have that the determinant of a realization matrix J(x) with only negative cycles, at any equilibrium

point x̄, satisfies:

sign[det(J(x̄))] = (−1)n,
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where n is the system dimension. Moreover, sign[det(J(x̄))] does not change as a function of x̄. Now, let

us denote the equilibria as x̄i. Degree theory also provides us with this equality, which holds for globally

bounded flows (see also Lemma 2 in [24], or reference [39]):

∑
i

sign[det(J(x̄i))] = (−1)n. (12)

Because in our case all the terms of the sum have the same sign, there must be a single equilibrium. Thus,

a strong candidate oscillator structure admits a single equilibrium. ut

Now we provide a characterization of candidate weak multistationary systems, examples of which

include amplified negative feedback oscillators and incoherent oscillators in [38], and again the toggle–

switch/oscillator circuit in [6].

Proposition 3 A non–critical system is a candidate multistationary system in the weak sense if and only if its

structure has at least one positive cycle.

Proof Necessity If there are no positive cycles, the system is a candidate oscillator in the strong sense. We

have seen that the determinant of the Jacobian is never 0, hence there cannot be 0 eigenvalues. Therefore,

no simple RTI can occur.

Sufficiency Assume that there exists a positive cycle. Then using the νκ,ε transformation, which allows

independent scaling of Jacobian entries in a realization, we can prove the existence of a realization with a

simple RTI by means of the same argument given in the necessity part of the proof of Proposition 2. ut

We finally characterize strong candidate multistationary systems. Examples of these systems include the

previously presented two–gene double positive feedback and the toggle–switch architectures in [3, 20].

Proposition 4 A non–critical system is a candidate multistationary system in the strong sense if and only if its

structure has positive cycles only.

Proof Necessity By contradiction, if not all the cycles are positive, then there exists a negative cycle. Thus,

the system is a candidate oscillator in the weak sense and we can find a realization exhibiting an OTI.

Sufficiency When all the cycles are positive, we can demonstrate, along the lines of the necessity part of the

proof of Proposition 1, that, if the system admits a simple transition to instability, it must be an RTI. ut

We conclude the section by proving the following corollary.
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Corollary 2 A strong candidate multistationary system, in which a simple RTI occurs at µ∗, admits additional

equilibria in a right (unstable) neighborhood of µ∗.

If these additional equilibria are non–singular ( i.e. if the determinant of the Jacobian is non–zero), then there

are at least two additional equilibria.

If exactly two additional non–singular equilibria appear, and the Jacobian evaluated at those points, J(x̄), has

a single dominant eigenvalue ( i.e. the system is irreducible), then these equilibria are asymptotically stable.

Proof We assume that the system is candidate multistationary in the strong sense, hence its structure has

only positive cycles. Therefore any simple transition to instability must be an RTI. This means that, for any

realization, the determinant of the Jacobian changes sign when parameter µ crosses the critical value µ∗. In

other words, for values of µ to the left of µ∗ the characteristic polynomial must have a positive constant term,

and thus sign[det(J(x̄))] = (−1)n. For values of µ to the right of µ∗, conversely, sign[det(J(x̄))] = −(−1)n.

This means that equality (12) cannot be true in a right neighborhood of µ∗, unless additional equilibrium

points appear. If the additional equilibria are non–singular, i.e. they have a sign–definite Jacobian, then

there are at least two of them.

Finally, let us assume that exactly two additional equilibria appear. Assume our original equilibrium

is x̄ = 0, unstable by assumption, and let xU , xL be additional equilibria introduced by the transition to

instability. In a right neighborhood of µ∗, consider for small ε > 0 the two regions

U = {x ≥ 0, v>x ≥ ε}, L = {x ≤ 0, v>x ≤ −ε},

where v> is the left Frobenius eigenvector of J . In view of the monotonicity of the system, the instability of

x̄ = 0 and the irreducibility of the Jacobian (hence v> > 0), both regions U and L are positively invariant.

Given our assumption of boundedness of the system solution, the solutions originated in both U and L are

bounded. Then, each set must include one of the equilibria: xU in U and xL in L.3

To conclude the proof, we invoke a known result in the context of monotone systems (see, for instance

[26], page 458 Theorem D): since the two equilibria are unique in the bounded sets U and L, they must be

stable. ut

The two–gene positive feedback system and the toggle switch are clear examples of this result.

3 Exploiting the Jacobian irreducibility assumption, it is actually possible to prove that at least two additional equilibria
arise.
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Remark 3 Delay differential equations are often adopted to model molecular systems. For example, transcrip-

tion, processing and transport of mRNA in genetic networks have been successfully modeled with explicit

delays (see for instance [31]). A thorough analysis of oscillations and multistationarity in delay differential

equations is out of the scope of this paper. However, we discuss this challenge in Appendix C and we provide

local, cycle–based sufficient conditions for OTIs and RTIs in a wide class of systems affected by delays.

3.1 Oscillations and multistationarity in aggregates of stable monotone systems

Many biochemical networks fall into the category of monotone systems [48]. Monotonicity is a property

that can be verified without exact knowledge of the system functions and parameters. Thus, criteria relying

on monotonicity can be considered robust with respect to modeling choices and parametric uncertainty.

We extend our results to “aggregate” systems that are composed of monotone subsystems, for which we

provide definitions below. Many biochemical systems have been analyzed, from a systems perspective, as the

interconnection of monotone subsystems: for example, the Cds–Wee1 network [3], the MAPK pathway [48],

and the Goldbeter oscillator [4, 21] in Drosophila. An aggregate system is the interconnection of N subsystems

defined as follows:

żi(t) = Fii(zi(t)) +
∑
j 6=i

Gij(wij(t)), i = 1, ..., N (13)

wki(t) = Hki(zi(t)), k 6= i (14)

where zi(t) is the state vector associated with subsystem i, wij are the subsystem inputs and wki is its output.

Thus, subsystem i receives inputs from subsystems j, and sends an output to subsystem k (see Figure 7).

Fii(·), Gij(·) and Hki(·) are sufficiently smooth functions. Functions Gij(wij(t)) model the influence of

subsystem j on subsystem i through the scalar real variable wij(t), output of subsystem j.

Assumption 4 We assume that functions Gij(wij), wij ∈ R, are non–decreasing.

The above assumption is not restrictive and enables a simplified analysis. “Negative” interconnection

trends among subsystems can be captured by the output functions wij = Hij(zj). For example, consider a

generic node 1, and the influence of node 2 on 1 given by w12:

ż1 = F11(z1) +G12(w12), w12 = H12(z2)

with G12 decreasing. The overall interaction depends on the monotone compound function G12 ◦H12. Thus,

we can “move” the decreasing interaction trend from G12 to H12 with a simple sign change: ŵ12 = −w12.
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Hki(zi)
wij

wki

żi = Fi(zi) +
∑

j Gij(wij)

Subsystem j Subsystem k

i

j k

A B

+

Fig. 7 A: Sketch of an aggregate monotone system, which is the interconnection of several monotone systems, defined
in equations (13)–(14). Pointed arrowheads indicate non–decreasing interconnections, and hammer–arrowheads indicate
non–increasing interconnections. B: Graph of the aggregate system where each monotone subsystem is collapsed in a single
node.

The overall result of the compound function remains unchanged:

ż1 = F11(z1) +G−12(ŵ12), ŵ12 = −H12(z2),

where G−12(ω) , G12(−ω) is now increasing.

Assumption 5 We assume that the state–to–output mapping of each subsystem is either non–decreasing or non–

increasing, i.e. zj ≥ ẑj (the inequality has to be interpreted componentwise) implies either wij = Hij(zj) ≥ ŵij =

Hij(ẑj) (non–decreasing), or wij = Hij(zj) ≤ ŵij = Hij(ẑj) (non–increasing).

If an input/output monotonicity characterization is available for each subsystem, we will show that: 1)

we can collapse each subsystem into an equivalent node, and 2) we can still classify structural oscillatory and

multistationary behaviors based on the cycles created by the interconnections among these new, equivalent

nodes.

Definition 12 The i–th subsystem is unconditionally stable iff, for constant input values w̄ij , it admits a

single equilibrium z̄i, the solution of:

0 = Fii(z̄i) +
∑
j 6=i

Gij(w̄ij), w̄ki = Hki(z̄i), (15)

and the equilibrium is globally asymptotically stable (all the eigenvalues of the i–th Jacobian have a negative

real part).

We apply the usual definition of input–to–state monotonicity.
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Definition 13 The i–th subsystem in (13)–(14), żi(t) = Fii(zi(t)) +
∑
j 6=iGij(wij(t)), having inputs wij , is

input–to–state monotone iff it has the following property:
zi(0) ≥ ẑi(0)

wij(t) ≥ ŵij(t), ∀ j
=⇒ zi(t) ≥ ẑi(t), t ≥ 0

Assumption 6 We consider aggregate systems where each subsystem satisfies Definitions 12 and 13.

We can now define an aggregate graph (Figure 7 B): each subsystem is collapsed into a node, and the

influence of subsystem i on subsystem k is represented by a directed arc whose sign depends on the trend

of the corresponding state–to–output mapping Hki(zi): positive arcs are associated with non–decreasing

mappings, negative arcs are associated with non–increasing mappings.

Proposition 5 Consider an aggregate system, formed by the interconnection of several monotone unconditionally

stable subsystems as (13)–(14), satisfying Assumptions 4, 5, and 6. We associate the aggregate system with its

aggregate graph. We assume that each monotone component is strongly connected and that the network is non–

critical in the aggregate graph. Then:

1. The aggregate system is structurally a candidate oscillator in the strong sense iff all the cycles in the aggregate

graph are negative.

2. The aggregate system is a candidate multistationary system in the strong sense iff all the cycles in the aggregate

graph are positive.

Remark 4 Note that positive cycles are in general present in the subsystems, which are monotone by assump-

tion. Nevertheless, if all the cycles in the aggregate graph are negative, the aggregate system is not a weak

multistationary system in view of the subsystems unconditional stability assumption.

The MAPK pathway is an excellent example of monotone aggregate system, where each stage of the

phosphorylation cascade can be regarded as a monotone module [5]. It is well known that, depending on

the active feedback loops, this network can generate bistable or oscillatory behaviors [5, 18, 41].
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3.1.1 Proof of Proposition 5

Before demonstrating Proposition 5, we recall our assumptions and state a preliminary lemma. Each sub-

system composing a monotone aggregate is described by the following equations:

żi(t) = Fii(zi(t)) +
∑
j 6=i

Gij(wij(t)), (16)

wki(t) = Hki(zi(t)), (17)

where zi(t) is the state vector, wij are the inputs and wki is the output of the i–th subsystem. We assume

that each subsystem is unconditionally stable and input–to–state monotone, and that Assumptions 4 and 5

hold. Unconditional stability implies that, for constant input values w̄ij , each subsystem admits a single

equilibrium z̄i defined implicitly by:

0 = Fii(z̄i) +
∑
j 6=i

Gij(w̄ij), w̄ki = Hki(z̄i). (18)

The equilibrium z̄i is globally stable and all the eigenvalues of the Jacobian Ji have a negative real part.

Given the steady state condition (18), we define:

Aii =
∂Fii
∂zi

∣∣∣∣
z̄i

, Bij =
∂Gij
∂wij

∣∣∣∣
w̄ij

, Cki =
∂Hki
∂zi

∣∣∣∣
z̄i

.

We recall that the system can be associated with an aggregate graph, where subsystems are collapsed

into nodes, interconnected through directed arcs whose sign depends on the trend (non–decreasing or non–

increasing) of function Hki(zi): thus, the arc sign depends on the sign of Cki.

Lemma 1 The i–th steady state input–to–output mapping, or steady–state characteristic, is monotone. The input–

to–output mapping between each pair wij , wki is implicitly defined by equality (18), and we find

∂wki
∂wij

= −CkiA−1
ii Bij ,

which is a positive or negative scalar depending on the sign of the elements of Cki.

Proof As a consequence of our monotonicity and unconditional stability assumptions (Assumption 6), Aii

is a Metzler matrix, and it is asymptotically stable. Therefore, all elements of its inverse A−1
ii are negative.

By construction, Bij has non–negative elements (Assumption 4) and Cki has all non–negative elements or

all non–positive elements depending on the type of interaction (Assumption 5). Thus, the sign of ∂wki/∂wij

only depends on the sign of Cki, which concludes our proof. ut
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Proof of Proposition 5

1. Aggregates of monotone systems that are structural candidate oscillators.

Sufficiency To prove sufficiency, it is enough to show that the Jacobian of the system cannot have real non–

negative eigenvalues. This is equivalent to saying that only oscillatory destabilization is possible. Assume A

is the Jacobian matrix of the aggregate system (i.e. of the overall interconnection of monotone subsystems).

We will show that:

det[λI −A] 6= 0, ∀λ ∈ R, λ ≥ 0.

We develop our proof ab absurdo. Assume that A admits a real non–negative eigenvalue λ ≥ 0. Denote

the i–th linearized subsystem as:

ζ̇i(t) = Aiiζi(t) +
∑
j 6=i

Bijωij(t) (19)

ωki(t) = Ckiζi(t) (20)

Therefore, any eigenvalue λ must satisfy the equation

λζi = Aiiζi +
∑
j 6=i

Bijωij . (21)

We find

ζi = −[Aii − λI]−1
∑
j 6=i

Bij ωij ,

where all the elements of [Aii − λI]−1 are negative. (This is a consequence of monotonicity: Aii is a stable

Metzler matrix; [Aii−λI] is still a stable Metzler matrix, because λ ≥ 0; thus all the elements of [Aii−λI]−1

are negative.)

Then, we can write:

ωki =
∑
j 6=i
−Cki[Aii − λI]−1Bij ωij =

∑
j 6=i

πikj ωij (22)

where πikj , −Cki[Aii − λI]
−1Bij are scalars. Equations (22) are linear in ωij , and we can rewrite them in

a compact form

ω = Πω, (23)

where ω is a vector including all the interconnection variables ωij . Variables ωij can be considered “arc–

variables”, because they define the interconnections in the aggregate system. Therefore, the sign of the

aggregate graph arc from node i to node k depends on the sign of πikj = −Cki[Aii − λI]−1Bij . Thus, matrix

Π appearing in equation (23) is characterized by the same cycles defined by the Jacobian A of the aggregate
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system. Let ΣΠ be the sign matrix corresponding to Π:

ΣΠ = sign[Π].

Every cycle in the aggregate graph corresponds to a cycle in matrix ΣΠ . For example, the sign matrix

ΣΠ associated with the aggregate graph in Figure 8 is a 5× 5 matrix (since there are 5 “arcs”). If we order

the arc variables in vector ω =

[
ω21 ω32 ω43 ω14 ω24

]
, we find matrix ΣΠ in expression 24.

+

+

+

_ _

z1 z2

z3z4

Fig. 8 Aggregate graph, corresponding to the sign ma-
trix (24).

ΣΠ =


0 0 0 − 0
+ 0 0 0 −
0 + 0 0 0
0 0 − 0 0
0 0 − 0 0

 (24)

Since any cycle of the graph corresponds to a cycle of ΣΠ (as evidenced in the above example), if

all the cycles in the aggregate graph are negative, then also all the cycles in matrix ΣΠ are negative. As

a consequence, the determinant of matrix [Π − I] is positive. Now we go back to relation (23), which is

equivalent to [Π− I]ω = 0: this relation implies det[Π− I] = 0. However, we encounter a contradiction: if all

the cycles are negative, we have that det[Π − I] > 0, thus [Π − I]ω = 0 cannot be true for ω 6= 0. Therefore,

we conclude that the system does not admit non–negative eigenvalues λ ≥ 0.

Necessity The presence of a positive cycle in the aggregate graph implies that we have the positive feedback

of monotone subsystems. We can modify the arcs connecting the aggregate nodes by means of νε,κ–function

transformations, without compromising stability of the subsystems. Proceeding as in the sufficiency part

of the proof for Proposition 1, we can arbitrarily increase the gain of the considered positive cycle and

virtually exclude all the arcs not involved in the cycle, leading to instability of the equilibrium due to a real

eigenvalue.

2. Aggregates of monotone systems that are structural candidate multistationary systems.

Necessity and sufficiency can be proved essentially as done for aggregates of monotone systems that are

structural candidate oscillators. Thus, we omit these demonstrations.
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4 Discussion and Conclusions

We described a general, cycle–based classification of multistationary and oscillatory behaviors in dynamical

systems with sign–definite Jacobian. This classification builds on the well known Thomas’ conjectures, and

distinguishes between strong and weak candidate oscillators and multistationary systems depending on the

presence of exclusively negative or exclusively positive, or coexisting positive and negative cycles. We provide

a complete characterization, where necessary and sufficient conditions rely on the ability of locally scaling

the entries of the Jacobian. We say that this characterization is robust with respect to model uncertainty,

because it only depends on the sign–definite Jacobian of the model, rather than on the chosen functions or

parameters.

Parameter–free criteria to identify the possible dynamic phenotype of a system are particularly important

in the context of molecular systems. Many biochemical network models are sign definite, and can thus be

appropriately classified according to our framework. We have mentioned a few notable examples, which

include the famous Elowitz repressilator and a variety of toggle switches [6, 16, 38]. Realistic, detailed

models for molecular and biochemical networks are most likely to fall into the category of weak candidate

oscillator or multistationary systems. However, due to the complexity of the cellular environment, such

models may not enjoy the sign definiteness property and thus be outside of the scope of this work.

Other formalisms have been developed in the past to achieve structural conclusions on the behavior

of biochemical systems. The chemical reaction network theory provides many structural results. The zero

deficiency theorem [17], for instance, rules out the presence of oscillations and multistationary behavior

regardless of specific kinetic rates. In the broad context of chemical reaction networks, cycle conditions

associated with the presence of Hopf or saddle–node/pitchfork instability have been formulated for systems

governed by mass–action kinetics using species–reaction graphs [9, 10, 30, 35] and algebraic geometry [13, 14].

While chemical reaction networks are undoubtedly a very important class of models, phenomenological

models are often preferred in biology when pathways are not known with sufficient mechanistic detail. Thus,

we argue that Jacobian graphical or algebraic conditions may have more general applicability than species–

reaction graph conditions [11], which apply for mass–action kinetics, but cannot account for Michaelis–

Menten or Hill type kinetics, or for qualitative relationships. On the contrary, criteria based on the Jacobian

matrix enable a qualitative analysis also when a detailed stoichiometry of the interactions is unknown [36].

Another class of very powerful robust analysis methods is given by the theory of monotone systems [46,

48], which enables the simplification of large, complex systems into interconnections of gray–box, in-

put/output monotone subnetworks [3]. Indeed, monotonicity and existence of steady–state characteristics

are properties that facilitate the detection of multistationary behaviors in systems of arbitrary size [5].

25



Monotonicity, accompanied by small–gain conditions, is used to provide necessary conditions for oscillations

in [4]. Because a monotone system within a large network can be collapsed into an element with a sign–

definite input/output mapping, we have easily extended our classification to interconnections of monotone

subsystems.

Among the limitations of this work, we point out that our results hold for systems in which interactions

between nodes are independent. Models built using mass action kinetics, for example, do not fall under this

category. For instance, take the reaction A
g−−−⇀ B. The corresponding concentration dynamics of A will

include a term −g(A), representing the consumption of A, and the same term will appear, with opposite

sign, in the concentration dynamics of B. This situation introduces constraints in the magnitude of the

Jacobian entries, which we have not taken into account. A more detailed discussion on this point is reported

in Appendix D.

We also remark that we considered only networks that are non–critical, i.e. such that the order of

any cycle in the system structure is larger than two. If this assumption does not hold true, then our

characterization of candidate oscillators is not fully valid, as discussed in Appendix B.

We believe that our classification is useful for the design of artificial in vitro biochemical networks.

Recently, in vitro reaction environments have gained significant attention because of their reduced and con-

trollable complexity. In particular, synthetic multistationary and oscillatory networks composed of nucleic

acids and proteins have been built with systematic design methods [19, 28, 29, 37]. These networks promise

to be programmable components in larger, integrated systems for nanomanufacturing, pattern formation,

and artificial biomaterials. Although created with a bottom–up approach, designing reaction by reaction,

these synthetic in vitro networks still suffer from parametric uncertainty and undesired dynamics [19], es-

pecially due to the variability in purity and activity of key components. We foresee that by following and

enforcing cycle sign conditions suggested in this paper, it will be possible to increase the tunability and

robustness of these artificial networks.
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49. Soulé, C. (2004). Graphic requirements for multistationarity. ComPlexUs 1(3):123–133

50. Srzednicki, R. (1985). On rest points of dynamical systems. Fundamenta Mathematicae 126(1):69–81

51. Stricker, J., Cookson, S., Bennett, M.R., Mather, W.H., Tsimring, L.S., Hasty, J. (2008). A fast, robust

and tunable synthetic gene oscillator. Nature 456(7221):516–519

29



52. Strogatz, S.H. (1994). Nonlinear Dynamics and Chaos. Perseus Book Publishing, Reading, Mas-

sachusetts

53. Thomas, R. (1981). On the relation between the logical structure of systems and their ability to generate

multiple steady states or sustained oscillations. In: Dora, J., Demongeot, J., Lacolle, B. (eds) Numerical

Methods in the Study of Critical Phenomena, Springer Series in Synergetics, vol 9, Springer Berlin

Heidelberg, pp 180–193

54. Tigges, M., Marquez-Lago, T.T., Stelling, J., Fussenegger, M. (2009). A tunable synthetic mammalian

oscillator. Nature 457(7227):309–312

55. Tsai, T.Y.C., Choi, Y.S., Ma, W., Pomerening, J.R., Tang, C., Ferrell, J.E.J. (2008). Robust, tunable

biological oscillations from interlinked positive and negative feedback loops. Science 321(5885):126–129

56. Wang, R., Li, C., Chen, L., Aihara, K. (2008). Modeling and analyzing biological oscillations in molecular

networks. Proceedings of the IEEE 96(8):1361–1385

Appendices

A Nondimensionalization and boundedness of the two–gene network

We will carry out the nondimensionalization procedure for the toggle switch network, leaving the derivation for the other

cases to the reader. We follow nondimensionalization steps similar to those proposed in [16] and [19, 28]. Consider the simple

(dimensional) model:

τ Ṙ1 = c1 + a1
1

Kn
M1

+Pn2
−R1, Ṗ1 = kpR1 − kdP1, (25a)

τ Ṙ2 = c2 + a2
1

Kn
M2

+Pn1
−R2, Ṗ2 = kpR2 − kdP2. (25b)

Here ci is the “leak” transcription of RNA. For simplicity, we assume that the translation and degradation rates for the

proteins are the same. Constant τ is the mRNA half–life in the system. Constants KMi represent the number of proteins

necessary to half–maximally repress Ri. Finally, assume the translation efficiency of each RNA species is given by p̄i, which

corresponds to the average number of proteins produced by a single RNA molecule.

We define the nondimensional variables: ri = Ri/p̄i, pi = Pi/KMj , (i, j) ∈ {(1, 2), (2, 1)}. We rescale time as t̃ = t/τ , and

also define the nondimensional parameters:

γi =
ci

p̄i
, αi =

ai

p̄iKn
Mi

, βi =
kp p̄i

kdKMj
, T =

1

τkd
.

The resulting nondimensional equations are:
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ṙ1 = γ1 + α1
1

1+pn2
− r1, T ṗ1 = β1r1 − p1, (26a)

ṙ2 = γ2 + α2
1

1+pn1
− r2, T ṗ2 = β2r2 − p2, (26b)

Finally, if we assume T ≈ 1, we get a system in the same form as equations (1).

We also report a brief evidence of the global boundedness of the two–gene system trajectories. The system expressed

by equations (1) can be rewritten as


ṙ1

ṗ1

ṙ2

ṗ2

 =


−1 0 0 0

β1 −1 0 0

0 0 −1 0

0 0 β2 −1




r1

p1

r2

p2

 +


γ1 +H1(p2)

0

γ2 +H2(p1)

0

 = M̃


r1

p1

r2

p2

 + H̃(p1, p2).

M̃ is a stable matrix and H̃(p1, p2) is a bounded quantity, because γi are constants and Hi(pj) are Hill functions. Hence,

the system trajectories are globally bounded.

B Critical systems

Here we discuss our results in the context of critical systems. Starting from system (7) and all the related assumptions, we

provide the following definition:

Definition 14 System (7) is critical iff all the negative cycles of its structure (if any) are of order two.

We now examine the validity of our characterization for critical systems.

Validity of Proposition 1: For critical networks, the sufficiency part of Proposition 1 does not hold: the existence of

negative cycles of order two does not assure that the system can oscillate. For example, consider the following system:

ẋ1 = −b1x1 +H12(x2), (27)

ẋ2 = −b2x2 +H21(x1),

where b1 and b2 are positive constants, and Hij are positive, bounded, and monotone functions. To ensure the existence

of a negative cycle, we assume that (for example) H12 is non–increasing, while H21 is non–decreasing. (We can take Hij

as Hill functions.) For any choice of bi and Hij , the system has a single, asymptotically stable equilibrium point. However,

oscillations are possible if we take b1 = b2 = 0, i.e. if we remove our assumption that negative self–loops must exist at each

node.

The necessity part of Proposition 1 still holds, because if there are no negative cycles the system cannot have equilibria

with oscillatory instability.

Validity of Proposition 2: In the presence of negative cycles only, instability must be oscillatory. Thus, Proposition 2

still holds. However, some critical systems cannot be destabilized at all, as just shown in example (27).
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It is legitimate to ask whether a critical system with only negative cycles (all of order two) is necessarily stable. This

would extend Proposition 1 as follows:

Conjecture: A system is a candidate oscillator in the weak sense if and only if it has at least a negative cycle of order greater

than two.

While the “if” part of this conjecture is true, unfortunately the the “‘only if” part is false. This can be seen by

counterexample. We modify example (27) by introducing a new variable x3 and a positive cycle:

ẋ1 = −b1x1 +H12(x2)

ẋ2 = −b2x2 +H21(x1) + µx3

ẋ3 = −b3x3 + νx2.

The system Jacobian is:

J =


−b1 −δ 0

γ −b2 µ

0 ν −b3


This matrix may well have unstable complex eigenvalues. Let us assume b1 = b2 = 0. The characteristic polynomial is:

s3 + b3s
2 + (γδ − µν)s+ γδb3

Building the Routh–Hurwitz table for this polynomial, one can check that for µ, ν > 0 two roots are complex with positive

real parts. For b1, b2 > 0 small enough, the property is preserved.

A property relevant to our discussion on critical cases is the following known result (see for instance [15], Chapter 6.5):

Proposition 6 If all the self–loops are negative, and all the other cycles are negative and of order two, then any equilibrium

of the system is stable.

C Systems affected by delays

Many molecular systems have been successfully modeled using delayed differential equations. A notable example is given

by gene networks, where the transport of RNA and proteins across cellular membranes are well captured by explicit

delays [25, 31]. Delay differential equations are infinite dimensional systems and a formal, exhaustive treatment of this case

would require a more sophisticated setup. However, we can show that local, cycle–based sufficient conditions for OTIs and

RTIs can be stated in a wide class of systems with delays. Consider the delay differential equation model

ẋ(t) = f(x(t), x(t− τ1), x(t− τ2), . . . , x(t− τM )). (28)

Under standard differentiability assumptions, the corresponding linearized system around an equilibrium point is

ξ̇(t) = A0ξ(t) +

M∑
k=1

Akξ(t− τk). (29)
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For simplicity assume that there are no delayed self–loops, i.e. that the matrices Ak have zero diagonal entries for k ≥ 1.

It is well known that the stability of the system above can be established by inspecting the roots of this equation:

det

[
A0 +

M∑
k=1

Ake
−τks − sI

]
= 0. (30)

Stability is ensured if the roots have negative real parts. We now consider the following auxiliary system, in which all delays

are (fictitiously) set to 0:

ζ̇(t) =

[
A0 +

M∑
k=1

Ak

]
ζ(t) = Āζ(t). (31)

Matrix Ā is the same Jacobian we would obtain by setting the delays τi = 0 in system (28):

ẋ(t) = f(x(t), x(t), x(t), . . . , x(t)).

Note that equilibria are delay–independent, so the delay–free system above has the same equilibria as the delayed system (28).

As previously done in this paper, we can associate graphs with systems (29) and (31), where nodes correspond to species

concentrations and signed, directed arcs correspond to the dynamic interactions among species (delayed or not), defined

by matrices Ak, k = 0, ...,M . Delays do not change the sign of the cycles. Therefore any positive/negative cycle of (29)

corresponds to a positive/negative cycle of (31).

Proposition 7 Assume that system (29) has only negative cycles. Then, the system admits solely OTIs.

Proof Ab absurdo, assume that the system admits a real exponential transition to instability, and thus one root of equa-

tion (30) crosses the imaginary axis with value s = 0. This is equivalent to writing equation (30) as

det

[
A0 +

M∑
k=1

Ak

]
= 0.

If this is true, then also the auxiliary system (31) must admit a zero eigenvalue. But this is impossible if the system has

only negative cycles, according to Proposition 2. ut

Proposition 8 Assume that system (29) has only positive cycles. Then, the system admits solely RTIs.

Proof To prove this proposition, we need two observations:

a) In the absence of negative cycles (with the exception of self–loops), system (29) is a linear positive system with delay.

Therefore, matrix Ā in system (31) is a Metzler matrix.

b) We invoke a well known property of positive linear systems with delay (with no delayed self–loops). System (30) is

stable if and only if its delay–free, auxiliary counterpart (31) is stable [23, 32] (see also [56], Theorem 6.5).

If all its cycles are positive, the auxiliary system (31) can transition to instability only by means of a pole in s = 0.

Again ab absurdo let us assume that the delay system (30) admits instability with a pair of dominant imaginary eigenvalues

and no real eigenvalue crossing the origin. Then, the auxiliary system (31) would also be unstable. However, the dominant

eigenvalue of the Metzler matrix Ā is real, therefore the auxiliary system (31) would transition to instability with a pole at
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s = 0. But this would also imply that equation (30) is satisfied with s = 0, which is a contradiction. Hence, we conclude that

if all its cycles are positive, a transition to instability with a pair of imaginary eigenvalues is impossible for system (29). ut

As a comment to the above proposition, we stress that equilibria are delay–independent, therefore if the auxiliary

subsystem presents multiple equilibria, so does the delayed system.

We conclude this appendix by noting that Proposition 6 is not valid in the presence of delays. Indeed, the presence of

a delay in a “second order negative cycle” may compromise stability, as it is well known in control theory.

D Structural cross–constraints among functions

We have not considered models presenting cross–linked dynamic terms in several equations. Cross–linked terms appear

typically in models built using the mass action kinetics formalism. For instance, consider the reactions

X0
1−−−⇀ X, X

gX−−−⇀ Y, Y
gY−−−⇀ Z, pX + Z

gXZ−−−⇀ ∅,

where ∅ indicates elimination of a species from the system (degradation or out–flow). Indicating the concentration of a

species with the corresponding small letter, the differential equation model is:

ẋ = x0 − gX(x)− pgXZ(x, z) (32)

ẏ = gX(x)− gY (y) (33)

ż = gY (y)− gXZ(x, z). (34)

Here, all the reaction rates are increasing functions. Identical dynamic terms appear in the three equations, so the Jacobian

has dependent entries:

J =


−(α+ pµ) 0 −pν

α −β 0

−µ β −ν

 ,
where, for a fixed equilibrium, all Greek letters represent positive constants. This structure presents both negative and

positive cycles, but it may only undergo oscillatory transitions to instability. Thus, it is a candidate oscillator in the strong

sense. This fact can be seen by writing the characteristic polynomial:

p(s) = (s+ α)(s+ β)(s+ ν) + µp(s+ β)s+ pναβ,

where all coefficients are positive, and thus there cannot be real positive roots.

This would seem in contradiction with the presence of the positive cycle 1 → 3 → 1. However, our results are not

invalidated because we do not consider cross–constraints among entries in the Jacobian, such as the fact that J22 = −J32.

Clearly, if we could change all entries independently (without changing sign), this system could present a real exponential

transition to instability.

For systems with cross–constrained dynamics, we believe that algorithmic/numerical methods are the best approach to

discriminate admissible transitions to instability.
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