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Outline of the talk

» an introduction to interval temporal logics
» the logic AA of temporal neighborhood

» decidability (NEXPTIME-completeness) of the satisfiability
problem for AA over the reals

> an optimal tableau system for AA over the reals

» conclusions



Interval temporal logics: areas of interest

» Philosophy and ontology of time

» Linguistics (quoting Kamp and Reyle, “truth, as it pertains to
language in the way we use it, relates sentences not to instants
but to temporal intervals”)

» Artificial intelligence: temporal knowledge representation,
systems for time planning and maintenance, theory of events

» Computer science: specification and design of hardware
components, concurrent real-time processes, temporal
databases, bioinformatics
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Truth of formulae is defined over | —b ,
intervals (not points).




The distinctive features of interval temporal logics

: Y
I
Truth of formulae is defined over | —b ,
intervals (not points). ' ' -
e
—)

Interval temporal logics are very expressive (compared to point-based
temporal logics):



The distinctive features of interval temporal logics

: Y
I
Truth of formulae is defined over | —b ,
intervals (not points). ' ' -
e
—)

Interval temporal logics are very expressive (compared to point-based
temporal logics):

- formulas of interval logics express properties of pairs of time points
rather than of single time points, and are evaluated as sets of such pairs
(binary relations)



The distinctive features of interval temporal logics

: Y
I
Truth of formulae is defined over | —b ,
intervals (not points). ' ' -
e
—)

Interval temporal logics are very expressive (compared to point-based
temporal logics):

- formulas of interval logics express properties of pairs of time points
rather than of single time points, and are evaluated as sets of such pairs
(binary relations)

- there is no reduction of satisfiability/validity in interval logics to those
in monadic second-order logic (Rabin's theorem is not applicable)



Binary ordering relations over intervals

The thirteen binary ordering relations between two intervals on a
linear order (those below and their inverses) form the set of Allen’s
interval relations:

current interval:
equals:

ends :

during:

begins:

|

|

|

overlaps: — |
meets: S— |
|

|

before:



HS: the modal logic of Allen’s interval relations

Allen’s interval relations give rise to corresponding unary modalities
over frames where intervals are primitive entities:

Halpern and Shoham's modal logic of time intervals HS, interpreted
over interval structures (not to be confused with Allen’s Interval
Algebra)

D J.Y. Halpern and Y. Shoham, A Propositional Modal Logic of Time
Intervals, Journal of the ACM, 38:279-292, 1991



HS: the modal logic of Allen’s interval relations

Allen’s interval relations give rise to corresponding unary modalities
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Halpern and Shoham's modal logic of time intervals HS, interpreted
over interval structures (not to be confused with Allen’s Interval
Algebra)

B J.Y. Halpern and Y. Shoham, A Propositional Modal Logic of Time
Intervals, Journal of the ACM, 38:279-292, 1991

The satisfiability/validity problem for HS is highly undecidable over
all standard classes of linear orders.
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Research agenda:
» search for maximal decidable HS fragments;

» search for minimal undecidable HS fragments.

The large majority of HS fragments turns out be undecidable, but
some meaningful exceptions exist.

(Un)decidability of HS fragments depends on two factors:
> the set of interval modalities;

» the class of interval structures (linear orders) over which the
logic is interpreted.
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A well-behaved fragment: the logic AA
Formulas of the logic AA of Allen’s relations meets and met by are re-
cursively defined by the following grammar:

p:=pl-@leVel(A)g| (A)p ([A] =—(A)=; same for [A])

: (Ao Ao

— —

\ J

We cannot abstract way from any of the endpoints of intervals:

» contradictory formulas may hold over intervals with the same right
endpoint and a different left endpoint

(<A>[A}p A (AYA]—p is satisfiable:

(A) [Alp

(A) [Al=p

[For any d > ds, p holds over [dy, d] and —p holds over [d3, d]. J




Expressive completeness of AA with respect to FO?[<]

Expressive completeness of AA with respect to the two-variable
fragment of first-order logic for binary relational structures over
various linearly-ordered domains FO?[<]

[ M. Otto, Two Variable First-order Logic Over Ordered Domains, Journal
of Symbolic Logic, 66(2):685-702, 2001



Expressive completeness of AA with respect to FO?[<]

Expressive completeness of AA with respect to the two-variable
fragment of first-order logic for binary relational structures over
various linearly-ordered domains FO?[<]

[ M. Otto, Two Variable First-order Logic Over Ordered Domains, Journal
of Symbolic Logic, 66(2):685-702, 2001

Remark. The two-variable property is a sufficient condition for
decidability, but it is not a necessary one (for instance, the logic D
of the subinterval relation is decidable over dense linear orders, but
it does not satisfy the two-variable property - three variables are

needed)



Decidability of AA

As a by-product, decidability (in fact, NEXPTIME-completeness) of
AA over all linear orders, well-orders, finite linear orders, and the
linear order on the natural numbers

@ D. Bresolin, V. Goranko, A. Montanari, and G. Sciavicco, Propositional
Interval Neighborhood Logics: Expressiveness, Decidability, and
Undecidable Extensions, Annals of Pure and Applied Logic,
161(3):289-304, 2009
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AA over all linear orders, well-orders, finite linear orders, and the
linear order on the natural numbers

@ D. Bresolin, V. Goranko, A. Montanari, and G. Sciavicco, Propositional
Interval Neighborhood Logics: Expressiveness, Decidability, and
Undecidable Extensions, Annals of Pure and Applied Logic,
161(3):289-304, 2009

This is not the end of the story ..

» It is far from being trivial to extract a decision procedure from
Otto's proof

» some meaningful cases are not dealt with by Otto's proof
(dense linear orders, weakly discrete linear orders, ..)
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Tableau-based decision procedures have been developed for:

» the future fragment of AA (it features the future modality (A)
only) over the natural numbers;

» full AA over the integers (it can be tailored to natural
numbers and the class of finite linear orders) and the rationals;

» full AA over the classes of all, dense, and weakly-discrete
linear orders.
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Tableau-based decision procedures for AA

Tableau-based decision procedures have been developed for:
» the future fragment of AA (it features the future modality (A)
only) over the natural numbers;
» full AA over the integers (it can be tailored to natural
numbers and the class of finite linear orders) and the rationals;

» full AA over the classes of all, dense, and weakly-discrete
linear orders.

In this paper, we provide the only missing piece: a tableau-based
decision procedure for AA over the reals.

AA is expressive enough to “separate” Q and R (this is not the
case with A), but, unfortunately, there is no way to reduce the
satisfiability problem for AA over R to that over Q.
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Proposition 1. For any AA-formula ¢, if @ is satisfiable over R,
then it is also satisfiable over QQ.

Idea: given an R-model M for ¢, a Q-model M’ for it can be
obtained by defining a suitable (strictly monotonic) mapping from
Q to R that mimicks the original valuation V over R by a valuation
V'’ over Q.

Key observation: it is always possible to replace every d € R\ Q by
a suitable d’ € Q without affecting the truth value of an AA
(sub)formula.

Proposition 2. There exist AA-formulas which are satisfiable over
Q, but not over R.
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Main Result

Theorem The satisfiability problem for PNL over R is decidable.

The proof of the theorem consists of two fundamental lemmas.

Lemma 1. Let ¢ be a PNL formula and L = (I(R), £) be a
fulfilling Labelled Interval Structure (LIS) that satisfies it. Then,
there exists an R-pseudo-model Lg = ((I(D), £), Fins, Fsup) for @

with [D| < (w) 21l +1) + 2 |- 2310+
Lemma 2. Let @ be a PNL formula and Lr = ((I(D), £),

Finf, Fsup) be an R-pseudo-model for it. Then, there exists a
fulfilling LIS L over R that satisfies .



Labelled Interval Structures and R-pseudo-models

Some fundamental notions:

@-labeled interval structures (LIS): candidate models for @ that
guarantee the truth of formulas devoid of temporal operators (local
formulas) and satisfy universal temporal conditions imposed by [A]

and [A] operators

Fulfilling LIS: a LIS that guarantees the satisfaction of existential
temporal conditions imposed by (A) and (A) operators

R-pseudo-model: a finite LIS (not necessarily a fulfilling one) that
satisfies suitable structural conditions



Proof of Lemma 2

The proof is organized in two phases:
1) Building a fulfilling LIS L’ over Q
2) Turning L’ into a fulfilling LIS L over R

The first phase produces a candidate fulfilling LIS over QQ as the

‘limit" of the repeated application of the following three steps:

1.1) Step 1 forces the ‘limit’ LIS to be fulfilling

1.2) Step 2 forces infinite bounded chains of requests in the ‘limit’
LIS to accumulate only on rational numbers

1.3) Step 3 forces the ‘limit’ LIS to be dense by simply adding a
point in between any pair of consecutive points



A Tableau System for AA over R

A tableau for an AA formula @ is a special decorated tree T that
features both expansion nodes and accumulation nodes.
Such a tree is built by applying the following expansion rules:

» (A)-rule and A-rule;

» Fill-in rule;

» Dense rule;

» Inf-rule and Sup-rule;

» Inf-chain rule and Sup-chain rule.

A suitable blocking condition is given

Theorem. Let @ be a AA formula. If T is a final tableau for ¢
that features one blocked branch, then ¢ is satisfiable over R and,
conversely, if @ is satisfiable over R, then there exists a final
tableau for ¢ with at least one blocked branch.



Conclusions

We proved the decidability (NEXPTIME-completeness) of the
satisfiability problem for AA over the reals, and we developed an
optimal tableau system for AA over the reals

Remark. Unsatisfiability of formulae like 6 over R can be
interpreted as a plus of R-models: structural properties of R
exclude pathological models like the above-described Q-model
satisfying 6, and thus R-models can be viewed as the most
appropriate models for practical applications where density is an
essential ingredient of the temporal domain

Future work is concerned with the implementation of the
tableau-based decision procedure



