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Interval temporal logi
sTruth of formulae is de�ned overintervals (not points). ψ

¬ψ

¬ψ

¬ψInterval temporal logi
s are very expressive (
ompared to point-basedtemporal logi
s).In parti
ular, formulas of interval logi
s express properties of pairs oftime points rather than of single time points, and are evaluated as setsof su
h pairs, i.e., as binary relations.Thus, in general there is no redu
tion of the satis�ability/validity in in-terval logi
s to monadi
 se
ond-order logi
, and therefore Rabin's theo-rem is not appli
able here.



Binary Ordering Relations over intervalsThe thirteen binary ordering relations between two intervals on alinear order (those below and their inverses) form the set of Allen'sinterval relations:
urrent interval:equals:ends :during:begins:overlaps:meets:before:
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 of Allen's interval relationsAllen's interval relations give rise to 
orresponding unary modalitiesover frames where intervals are primitive entities:Halpern and Shoham's modal logi
 of time intervals HS (LICS1986), interpreted over interval stru
turesThe satis�ability/validity problem for HS is highly unde
idable overall standard 
lasses of linear orders. What about its fragments?More than four thousands fragments of HS (over the 
lass of alllinear orders) 
an be identi�ed by 
hoosing a di�erent subset of theset of basi
 modal operators. However, 1347 genuinely di�erentones exist only.D. Della Moni
a, V. Goranko, A. Montanari, and G. S
iavi

o,Expressiveness of the Interval Logi
s of Allen's Relations on the Class ofall Linear Orders: Complete Classi�
ation, IJCAI 2011



De
idability of HS fragments: main parameters
De
idability of HS fragments depends on two fa
tors:

◮ the set of interval modalities;
◮ the linear order over whi
h the logi
 is interpreted.
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A real 
hara
ter: the logi
 DThe logi
 D of the subinterval relation (Allen's relation during) isquite interesting from the point of view of (un)de
idability.The satis�ability problem for D, interpreted over the 
lass of denselinear orders, is PSPACE-
omplete.I. Shapirovsky, On PSPACE-de
idability in Transitive Modal Logi
,Advan
es in Modal Logi
, 2005It is unde
idable, when D is interpreted over the 
lasses of �niteand dis
rete linear orders.J. Mar
inkowski and J. Mi
haliszyn, The Ultimate Unde
idability Resultfor the Halpern-Shoham Logi
, LICS 2011It is unknown, when D is interpreted over the 
lass of all linearorders.



A well-behaved fragment: the logi
 AA
Formulas of the logi
 are re
ursively de�ned by the following grammar:
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A well-behaved fragment: the logi
 AAFormulas of the logi
 are re
ursively de�ned by the following grammar:
ϕ ::= p | ¬ϕ | ϕ∨ϕ | 〈A〉ϕ | 〈A〉ϕ ([A] = ¬〈A〉¬ as usual; same for [A])

〈A〉ϕ

ϕWe 
annot abstra
t way from any of the endpoints of intervals:
◮ Example: 
ontradi
tory formulas 
an hold over intervals with thesame right endpoint and a di�erent left endpoint.

〈A〉[A]p∧ 〈A〉[A]¬p is satis�able:
d0 d1 d2 d3

. . .

〈A〉 [A]p
. . .

〈A〉 [A]¬p

. . .For any d > d3, p holds over [d2,d] and ¬p holds over [d3,d].



What do we already know about AA?De
idability (in fa
t, NEXPTIME-
ompleteness) of the futurefragment of AA (the future modality 〈A〉 only) over the naturalnumbers.D. Bresolin and A. Montanari, A Tableau-based De
ision Pro
edure forRight Propositional Neighborhood Logi
, TABLEAUX 2005 (extended andrevised version in Journal of Automated Reasoning, 2007)Later extended to full AA over the integers (it 
an be tailored tonatural numbers and �nite linear orders).D. Bresolin, A. Montanari, and P. Sala, An Optimal Tableau-basedDe
ision Algorithm for Propositional Neighborhood Logi
, STACS 2007
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Expressive 
ompleteness of AA with respe
t to FO2[<]Expressive 
ompleteness of AA (plus the modal 
onstant π forpoint-intervals) with respe
t to the two-variable fragment of�rst-order logi
 for binary relational stru
tures over variouslinearly-ordered domains FO2[<] (M. Otto, Journal of Symboli
Logi
, 2001).As a by-produ
t, de
idability (in fa
t, NEXPTIME-
ompleteness) of
AA over all linear orderings and all well orders.D. Bresolin, V. Goranko, A. Montanari, and G. S
iavi

o, PropositionalInterval Neighborhood Logi
s: Expressiveness, De
idability, andUnde
idable Extensions, Annals of Pure and Applied Logi
, 2009

◮ It is far from being trivial to extra
t a de
ision pro
edure fromOtto's proof.
◮ Some meaningful 
ases are missing (dense linear orders, weaklydis
rete linear orders).



AA expressiveness - the formula ImmediateSuccIt 
an be shown that AA is expressive enough to distinguishbetween satis�ability over the 
lass of all linear orders and the 
lassof dense (resp., dis
rete) ones.Let ImmediateSucc be the AA formula
〈A〉〈A〉p∧ [A][A][A]¬p

ImmediateSucc is satis�able over the 
lass of all (resp., dis
rete) linear orders,but it is not satis�able over dense linear orders.
d0

...
d1 d2

...
d3

d

〈A〉〈A〉p 〈A〉p p

[A][A][A]¬p ¬p[A][A]¬p [A]¬p



AA expressiveness - the formula NoImmediateSuccLet NoImmediateSucc be the AA formula
〈A〉⊤∧ [A](p∧ [A]p∧ [A]¬p)∧ 〈A〉〈A〉[A]([A]p∨ 〈A〉〈A〉¬p)

NoImmediateSucc is satis�able over the 
lass of all (resp., dense) linear orders,but it is not satis�able over dis
rete linear orders.
d0 d1

...
d−1

...
d−2

...
d2

...
d3dd ′

...

¬p, 〈A〉⊤,

[A](p∧ [A]p∧ [A]¬p)

⊤
p, [A]p

[A]¬p

p
¬p

¬p

〈A〉〈A〉[A]([A]p∨

〈A〉〈A〉¬p)
〈A〉[A]([A]p∨

〈A〉〈A〉¬p)
[A]([A]p∨

〈A〉〈A〉¬p)

[A]p

〈A〉¬p¬p

〈A〉¬p



De
idability of AA over the 
lass of all linear ordersHow to 
he
k an AA formula ϕ for satis�ability?Outline of the proof:
◮ FROM existen
e of an interval model for ϕ
◮ TO existen
e of a (possibly in�nite) ϕ-labeled intervalstru
ture (STANDARD)
◮ TO existen
e of a �nite pseudo-model for ϕ (DIFFICULT)
◮ TO existen
e of a tableau for ϕ with a blo
ked bran
h (EASY)



Basi
 ma
hinery
losure of ϕ: the set CL(ϕ) of all subformulae of ϕ and of theirnegationstemporal formulae of ϕ: the set TF(ϕ) ⊆ CL(ϕ) of subformulae ofthe forms 〈A〉ψ, [A]ψ, 〈A〉ψ, and [A]ψmaximal set of requests for ϕ: a subset of TF(ϕ) su
h that forevery 〈A〉ψ ∈ TF(ϕ), 〈A〉ψ ∈ S i� ¬〈A〉ψ 6∈ S (the same for
〈A〉ψ)
ϕ-atom: a set A ⊆ CL(ϕ) su
h that (i) for every ψ ∈ CL(ϕ),
ψ ∈ A i� ¬ψ 6∈ A, and (ii) for every ψ1 ∨ψ2 ∈ CL(ϕ),
ψ1 ∨ψ2 ∈ A i� ψ1 ∈ A or ψ2 ∈ A.We denote by Aϕ the set of all ϕ-atoms.



Interval models and ϕ-labeled interval stru
turesLet D be a set of points, D = 〈D,<〉 be a linear order on it, and
I(D) be the set of all intervals over DInterval model: a pair M = 〈D,V〉, where D = 〈D,<〉 and
V : I(D) 7→ 2AP

ϕ-labeled interval stru
ture (ϕ-LIS): a pair L = 〈D,L〉, where
L : I(D) 7→ Aϕ is su
h that, for every pair [di,dj], [dj,dk] ∈ I(D)and every [A]ψ ∈ CL(ϕ), if [A]ψ ∈ L([di,dj]), then
ψ ∈ L([dj,dk]) (the same for [A]ψ)
ϕ-LIS represent 
andidate models (they satisfy lo
al 
onditions anduniversal temporal 
onditions). We must guarantee that existentialtemporal 
onditions are satis�ed as well: ful�lling ϕ-LISTheorem. ϕ is satis�able i� there exists a ful�lling ϕ-LIS
L = 〈D,L〉 with ϕ ∈ L([di,dj]) for some [di,dj] ∈ I(D)



How to make the notion of ful�lling ϕ-LIS e�e
tive?Given a ϕ-LIS L and d ∈ D, we de�ne the sets of future and pastrequests for d (REQL

f(d) and REQL

p(d), respe
tively)
dd ′

〈A〉p

[A]q

Future requests for d
〈A〉p

[A]qPast requests for d ′We say that a future request 〈A〉ψ is ful�lled for d in L if thereexists d ∈ D su
h that ψ ∈ L([d,d]) (the same for past requests).We say that d is ful�lled in L if all its future and past requests(REQL(d)) are ful�lled.



The key notion of interval tupleLet ϕ be an AA formula, A be a ϕ-atom, and S1,S2 ⊆ TF(ϕ) betwo maximal sets of requests. We say that the triplet 〈S1,A,S2〉 isan interval-tuple if(i) for every [A]ψ ∈ S1, ψ ∈ A;(ii) for every 〈A〉ψ ∈ TF(ϕ), 〈A〉ψ ∈ A i�
〈A〉ψ ∈ S2;(iii) for every ψ ∈ A su
h that 〈A〉ψ ∈ TF(ϕ),
〈A〉ψ ∈ S1.The same for past operators.

dd ′

S2S1 A

Let L be a ϕ-LIS for ϕ and d,d ′ ∈ D. It 
an be easily shown that
〈REQL(d),L([d,d ′]), REQL(d ′)〉 is an interval-tuple



From ful�lling ϕ-LISs to pseudo-modelsLet L be a ϕ-LIS and 〈R,A,R ′〉 be an interval-tuple. If there exists
[d,d ′] su
h that L([d,d ′]) = A, REQL(d) = R, and
REQL(d ′) = R ′, we say that 〈R,A,R ′〉 o

urs in L (at [d,d ′]).Moreover, if 〈R,A,R ′〉 o

urs in L at [d,d ′] and both d and d ′ areful�lled in L, we say that 〈R,A,R ′〉 is ful�lled in L (via [d,d ′]).Given a �nite ϕ-LIS L for ϕ, we say that L is a pseudo-model for
ϕ if every interval-tuple 〈R,A,R ′〉 that o

urs in L is ful�lled.Being L is a pseudo-model for ϕ does not guarantee L to beful�lling, sin
e L 
an feature multiple o

urren
es of the sameinterval-tuple, asso
iated with di�erent intervals.However, it is possible to prove that any pseudo-model 
an beturned into a ful�lling LIS (for ϕ).



De
idabilityLemma 1. Given a pseudo-model L for ϕ, there exists a ful�llingLIS L
′ that satis�es ϕ.Lemma 2. Given a formula ϕ and a ful�lling LIS L that satis�es it,there exists a pseudo-model L ′ for ϕ, with |D ′| 6 2 · |ϕ| · 23·|ϕ|+1.Theorem. The satis�ability problem for AA over the 
lass of alllinear orders is de
idable.The de
idability proof for AA over all linear orders 
an be tailoredto the 
ases of dense linear orders and (weakly) dis
rete linearorders.

◮ dense: we for
e ea
h point in a pseudo-model for ϕ to satisfy a 
overing
ondition whi
h guarantees us that we 
an always insert a point in between anypair of 
onse
utive points, thus produ
ing a dense model for ϕ
◮ dis
rete: we for
e ea
h point in a pseudo-model for ϕ to satisfy a safety
ondition whi
h guarantees us that all points added during the 
onstru
tion ofthe ful�lling LIS get their (de�nitive) immediate su

essor and immediateprede
essor in at most one step



How does the proof of Lemma 1 work?Basi
 idea: we show how to obtain a ful�lling LIS L
′ starting fromthe pseudo-model L as the limit of a possibly in�nite sequen
e ofpseudo-models L0(= L),L1,L2, . . . by �xing defe
ts of points in the
urrent pseudo-model (that is, existential temporal formulae whoserequests are not ful�lled) in a prin
ipled way.Points that must be 
he
ked for ful�llment are managed by a queue(this guarantees us that all defe
ts are sooner or later �xed).Initially, the queue 
onsists of all and only the points d ∈ D su
hthat d is not ful�lled in the given pseudo-model L.



A tableau system for AA over all linear ordersBasi
 notions.A tableau for ϕ: a spe
ial de
orated tree T.We asso
iate a �nite linear order DB = 〈DB,<〉 and a requestfun
tion ReqB : DB 7→ REQϕ with every bran
h B of T.Every node n in B is labeled with a pair 〈[di,dj],An〉 su
h thatthe triple 〈ReqB(di),An, ReqB(dj)〉 is an interval-tuple.The initial tableau for ϕ 
onsists of a single node (a single bran
h
B) labeled with a pair 〈[d0,d1],A〉, where DB = {d0 < d1} and
ϕ ∈ A.



Ful�lling 
onditionsGiven a point d ∈ DB and a formula 〈A〉ψ ∈ REQB(d), we saythat 〈A〉ψ is ful�lled in B for d if there exists a node n ′ ∈ B su
hthat n ′ is labeled with 〈[d,d ′],An ′〉 and ψ ∈ An ′ (same for thepast).Given a point d ∈ DB, we say that d is ful�lled in B if every 〈A〉ψ(resp., 〈A〉ψ) in ReqB(d) is ful�lled in B for d.Let T be a tableau and B be a bran
h of T, with DB = {d0 < . . . <

dk}.We denote by B ·n the expansion of B with an immediate su

essornode n and by B · n1| . . . |nh the expansion of B with h immediatesu

essor nodes n1, . . . ,nh.



Expansion rulesTo expand B, we apply one of the following expansion rules:
〈A〉-rule: there exist dj ∈ DB and 〈A〉ψ ∈ REQB(dj) su
h that 〈A〉ψ isnot ful�lled in B for dj.

◮ There is not an interval-tuple 〈ReqB(dj), A, S〉, with ψ ∈ A. We
lose B.
◮ Let 〈ReqB(dj),A, S〉 be su
h an interval-tuple. We take a newpoint d and we expand B with h = k − j+ 1 immediate su

essornodes n1, . . . ,nh su
h that, for every 1 6 l 6 h, DB·nl

= DB∪
{dj+l−1 < d < dj+l}, nl = 〈[dj,d],A〉, with REQB·nl

(d) = S, and
REQB·nl

(d ′) = REQB(d
′) for every d ′ ∈ DB.

〈A〉-rule: symmetri
 to the 〈A〉-rule.Fill-in rule:
◮ There exist di,dj, with di < dj, su
h that no node in B isde
orated with [di,dj], but there exists an interval-tuple

〈REQB(di),A, REQB(dj)〉. We expand B with a node
n = 〈[di,dj],A〉.

◮ Su
h an interval-tuple does not exist. We 
lose B.



The notion of blo
ked bran
hA node n = 〈[di,dj],A〉 in a bran
h B is a
tive if for everyprede
essor n ′ = 〈[d,d ′],A ′〉 of n in B, the interval-tuples
〈ReqB(di),A,ReqB(dj)〉 and 〈ReqB(d),A

′,ReqB(d
′)〉 aredi�erent.A point d ∈ DB is a
tive if there exists an a
tive node n in B su
hthat n = 〈[d,d ′],A〉 or n = 〈[d ′,d],A〉, for some d ′ ∈ DB andsome atom A.Let B be a non-
losed bran
h. B is 
omplete if for every

di,dj ∈ DB, with di < dj, there exists a node n in B labeled with
n = 〈[di,dj],A〉, for some atom A.If B is 
omplete, then the pair 〈DB,LB〉 su
h that, for every
[di,dj] ∈ I(DB), LB([di,dj]) = A if and only if there exists a node
n in B labeled with 〈[di,dj],A〉, is a LIS.Let B be a non-
losed bran
h. B is blo
ked if B is 
omplete and,for every a
tive point d ∈ B, d is ful�lled in B.



Expansion strategyWe start from an initial tableau for ϕ and we apply the expansionrules to all the non-blo
ked and non-
losed bran
hes B.The expansion strategy is the following one:1. Apply the Fill-in rule until it generates no new nodes in B.2. If there exist an a
tive point d ∈ DB and a formula
〈A〉ψ ∈ ReqB(d) su
h that 〈A〉ψ is not ful�lled in B for d, thenapply the 〈A〉-rule on d. Go ba
k to step 1.3. If there exist an a
tive point d ∈ DB and a formula
〈A〉ψ ∈ ReqB(d) su
h that 〈A〉ψ is not ful�lled in B for d, thenapply the 〈A〉-rule on d. Go ba
k to step 1.A tableau T for ϕ is �nal if and only if every bran
h B of T is
losed or blo
ked.



Termination, soundness, and 
ompletenessTermination.Let T be a �nal tableau for ϕ and B be a bran
h of T. We havethat |B| 6 (2 · |ϕ| · 23·|ϕ|+1) · (2 · |ϕ| · 23·|ϕ|+1 − 1)/2.Soundness.Let T be a �nal tableau for ϕ. If T features one blo
ked bran
h,then ϕ is satis�able over all linear orders.Completeness.Let ϕ be an AA formula whi
h is satis�able over the 
lass of alllinear orders. Then there exists a �nal tableau for it with at leastone blo
ked bran
h.The tableau system 
an be tailored to the dense and dis
rete 
ases.



Con
lusions: AA is (nearly) maximal w.r.to de
idability

PSPACE-
ompleteNEXPTIME-
ompleteEXPSPACE-
ompleteNONPRIMITIVE RECURSIVE-hardUNDECIDABLE
AA

all \ finite

BBDDLL

dense

AABB

finite

AABB

all \ finite

D

dis, fin

D

dis, fin

O

all

O

all

BE

all

BE

all

ABBL

all \ finite



Future work
◮ Implementation: a naïve implementation of the tableau systemis easy, but 
omputationally unfeasible
◮ The 
ase of real numbers: there are AA formulae whi
h aresatis�able over dense linear orders (in fa
t, rational numbers),but not over real numbers.Open problem: is the satis�ability problem for AA over thereal numbers de
idable?



The formula NoRealLet NoReal be the AA formula
p∧ 〈A〉〈A〉q∧ [G]((p→ 〈A〉p)∧ (q→ 〈A〉q)∧

(p→ [A]([A]p∧ [A][A]p))∧ (q→ [A]([A]q∧ [A][A]q))∧

¬(p∧q)∧ (¬p∧¬q→ 〈A〉p∧ 〈A〉q)),where [G] is the universal operator de�ned as follows:
[G]ψ=ψ∧ [A][A][A]ψ∧ [A][A][A]ψ∧ [A][A][A]ψ∧ [A][A][A]ψ

NoReal is satis�able over the 
lass of dense linear orders, but it is not satis�ableover the real numbers
p∧ 〈A〉〈A〉q

. . .
p, 〈A〉p

〈A〉p∧ 〈A〉q,¬p,¬q

p p p
. . .

√
2 qqq
. . .

q, 〈A〉q
. . .


