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Interval temporal logics are very expressive (compared to point-based
temporal logics).

In particular, formulas of interval logics express properties of pairs of
time points rather than of single time points, and are evaluated as sets
of such pairs, i.e., as binary relations.

Thus, in general there is no reduction of the satisfiability /validity in in-
terval logics to monadic second-order logic, and therefore Rabin's theo-
rem is not applicable here.



Binary Ordering Relations over intervals

The thirteen binary ordering relations between two intervals on a
linear order (those below and their inverses) form the set of Allen’s
interval relations:

current interval:
equals:

ends :
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begins:
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HS: the modal logic of Allen’s interval relations

Allen’s interval relations give rise to corresponding unary modalities
over frames where intervals are primitive entities:

Halpern and Shoham’s modal logic of time intervals HS (LICS
1986), interpreted over interval structures
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HS: the modal logic of Allen’s interval relations

Allen’s interval relations give rise to corresponding unary modalities
over frames where intervals are primitive entities:

Halpern and Shoham’s modal logic of time intervals HS (LICS
1986), interpreted over interval structures

The satisfiability/validity problem for HS is highly undecidable over
all standard classes of linear orders. What about its fragments?

More than four thousands fragments of HS (over the class of all
linear orders) can be identified by choosing a different subset of the
set of basic modal operators. However, 1347 genuinely different
ones exist only.

D D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco,
Expressiveness of the Interval Logics of Allen’s Relations on the Class of
all Linear Orders: Complete Classification, |JCAl 2011



Decidability of HS fragments: main parameters

Decidability of HS fragments depends on two factors:
» the set of interval modalities;

» the linear order over which the logic is interpreted.
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A real character: the logic D

The logic D of the subinterval relation (Allen's relation during) is
quite interesting from the point of view of (un)decidability.

The satisfiability problem for D, interpreted over the class of dense
linear orders, is PSPACE-complete.

@ I. Shapirovsky, On PSPACE-decidability in Transitive Modal Logic,
Advances in Modal Logic, 2005

It is undecidable, when D is interpreted over the classes of finite
and discrete linear orders.

D J. Marcinkowski and J. Michaliszyn, The Ultimate Undecidability Result
for the Halpern-Shoham Logic, LICS 2011

It is unknown, when D is interpreted over the class of all linear
orders.



A well-behaved fragment: the logic AA
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A well-behaved fragment: the logic AA

e N

Formulas of the logic are recursively defined by the following grammar:

e:=p|—p|oVe | (Ae | (A)e ([A] = —(A)— as usual; same for [A])

\ J

We cannot abstract way from any of the endpoints of intervals:

» Example: contradictory formulas can hold over intervals with the
same right endpoint and a different left endpoint.

(<A>[A}p A (AYA]—p is satisfiable:

(A) [Alp

(A) [A]-p

[For any d > ds, p holds over [d,, d] and —p holds over [ds, d]. J




What do we already know about AA?

Decidability (in fact, NEXPTIME-completeness) of the future
fragment of AA (the future modality (A) only) over the natural
numbers.

@ D. Bresolin and A. Montanari, A Tableau-based Decision Procedure for
Right Propositional Neighborhood Logic, TABLEAUX 2005 (extended and
revised version in Journal of Automated Reasoning, 2007)

Later extended to full AA over the integers (it can be tailored to
natural numbers and finite linear orders).

D D. Bresolin, A. Montanari, and P. Sala, An Optimal Tableau-based
Decision Algorithm for Propositional Neighborhood Logic, STACS 2007



Expressive completeness of AA with respect to FO?[<]

Expressive completeness of AA (plus the modal constant 7t for
point-intervals) with respect to the two-variable fragment of
first-order logic for binary relational structures over various
linearly-ordered domains FO2[<] (M. Otto, Journal of Symbolic
Logic, 2001).
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Expressive completeness of AA with respect to FO?[<]
Expressive completeness of AA (plus the modal constant 7t for
point-intervals) with respect to the two-variable fragment of
first-order logic for binary relational structures over various
linearly-ordered domains FO2[<] (M. Otto, Journal of Symbolic
Logic, 2001).

As a by-product, decidability (in fact, NEXPTIME-completeness) of
AA over all linear orderings and all well orders.

@ D. Bresolin, V. Goranko, A. Montanari, and G. Sciavicco, Propositional
Interval Neighborhood Logics: Expressiveness, Decidability, and
Undecidable Extensions, Annals of Pure and Applied Logic, 2009

» It is far from being trivial to extract a decision procedure from
Otto’s proof.

» Some meaningful cases are missing (dense linear orders, weakly
discrete linear orders).



AA expressiveness - the formula ImmediateSucc

It can be shown that AA is expressive enough to distinguish
between satisfiability over the class of all linear orders and the class
of dense (resp., discrete) ones.

Let ImmediateSucc be the AA formula
(A)(A)p A [ANANA]-p

ImmediateSucc is satisfiable over the class of all (resp., discrete) linear orders,
but it is not satisfiable over dense linear orders.
(AYA)p (A)p P

do ds d» ds

o

[AJIA][A]=p [AJ[A]=p [Al—=p P



AA expressiveness - the formula NoImmediateSucc

Let NolmmediateSucc be the AA formula

(A)T ATAI(p A TATp A TAI=p) A (A (AVAT([Alp V (A) (A)—p)

NoImmediateSucc is satisfiable over the class of all (resp., dense) linear orders,
but it is not satisfiable over discrete linear orders.

. (A)—p .
P (A)—p :
. T |
' (AY(AYAT([ATpV (A)AI([AlpYV  [Al([AlpV
. (A)(A)=p) I<X> (A)=p) . AN (A —p)
d, d dlo d’ d dll dlz d|3
o - o e o o o o e
| T : —p. (AT :
'T' p. [Alp : [Al(p A [Alp A [A]l=p) :
1 _‘p |
[Al=p ' '

—-p



Decidability of AA over the class of all linear orders

How to check an AA formula ¢ for satisfiability?
Outline of the proof:
» FROM existence of an interval model for ¢

» TO existence of a (possibly infinite) @-labeled interval
structure (STANDARD)

» TO existence of a finite pseudo-model for @ (DIFFICULT)

» TO existence of a tableau for ¢ with a blocked branch (EASY)



Basic machinery

closure of @: the set CL(¢) of all subformulae of ¢ and of their
negations

temporal formulae of @: the set TF(¢) C CL(¢) of subformulae of
the forms (A)), [AJU, (A, and [Alp

maximal set of requests for @: a subset of TF(¢@) such that for
every (A)) € TF(@), (A)p € S iff =(A)p & S (the same for
(A))

@-atom: a set A C CL(¢) such that (i) for every 1} € CL(¢),
P e Aiff & A, and (ii) for every {1 V o € CL(9),
PV e Aiffp; € Aorr €A,

We denote by A, the set of all @-atoms.



Interval models and ¢-labeled interval structures

Let D be a set of points, D = (D, <) be a linear order on it, and
I(ID) be the set of all intervals over D

Interval model: a pair M = (D, V), where D = (D, <) and
V:I(D) — 2AP

@-labeled interval structure (@-LIS): a pair L = (D, £), where
L :I(D) — Ay is such that, for every pair [d, d;], [d;, di] € I(ID)
and every [A]) € CL(o), if [Ap € £([d;, d;]), then

P € £([d;, di]) (the same for [AJ)

@-LIS represent candidate models (they satisfy local conditions and
universal temporal conditions). We must guarantee that existential
temporal conditions are satisfied as well: fulfilling @-LIS

Theorem. @ is satisfiable iff there exists a fulfilling ¢-LIS
L = (D, L) with @ € £([di, d;]) for some [d;, d;] € I(D)



How to make the notion of fulfilling @-LIS effective?

Given a @-LIS L and d € D, we define the sets of future and past
requests for d (REQ{:(d) and REQg(d), respectively)

Future requests for d

(A)p
[Alq
| |
1 1
N @ d
[ ) _ [ ]
[Alq

Past requests for d’

We say that a future request (A) is fulfilled for d in L if there
exists d € D such that \ € £([d, d]) (the same for past requests).

We say that d is fulfilled in L if all its future and past requests
(REQY(A)) are fulfilled.



The key notion of interval tuple

Let @ be an AA formula, A be a @-atom, and S1,S> C TF(¢) be
two maximal sets of requests. We say that the triplet (S1, A, S2) is
an interval-tuple if

(i) for every [AlY € S1, P € A;
(i) for every (A)h € TF(¢), (A)p € A iff

(A € Sy;
(iii) for every 1 € A such that (A)}p € TF(¢@),
<A>ll) € $S;.
The same for past operators.
Sy A S,
1 |
1 1
da’ d

Let L be a @-LIS for @ and d,d’ € D. It can be easily shown that
(REQY(d), £([d, d’]), REQY(d")) is an interval-tuple



From fulfilling @-LISs to pseudo-models

Let L be a @-LIS and (R, A, R’) be an interval-tuple. If there exists
[d, d’] such that £([d, d’]) = A, REQ¥(d) =R, and

REQY(d’) = R’, we say that (R, A, R’) occurs in L (at [d, d’]).
Moreover, if (R, A, R’) occurs in L at [d, d’] and both d and d’ are
fulfilled in L, we say that (R, A, R’) is fulfilled in L (via [d, d']).

Given a finite @-LIS L for ¢, we say that L is a pseudo-model for
@ if every interval-tuple (R, A, R’) that occurs in L is fulfilled.

Being L is a pseudo-model for ¢ does not guarantee L to be
fulfilling, since L can feature multiple occurrences of the same
interval-tuple, associated with different intervals.

However, it is possible to prove that any pseudo-model can be
turned into a fulfilling LIS (for o).



Decidability

Lemma 1. Given a pseudo-model L for ¢, there exists a fulfilling
LIS L’ that satisfies .

Lemma 2. Given a formula ¢ and a fulfilling LIS L that satisfies it,
there exists a pseudo-model L’ for ¢, with [D’| < 2 - |¢]| - 23/1@+1,

Theorem. The satisfiability problem for AA over the class of all
linear orders is decidable.

The decidability proof for AA over all linear orders can be tailored
to the cases of dense linear orders and (weakly) discrete linear
orders.

P dense: we force each point in a pseudo-model for ¢ to satisfy a covering
condition which guarantees us that we can always insert a point in between any
pair of consecutive points, thus producing a dense model for ¢

P discrete: we force each point in a pseudo-model for @ to satisfy a safety
condition which guarantees us that all points added during the construction of
the fulfilling LIS get their (definitive) immediate successor and immediate
predecessor in at most one step



How does the proof of Lemma 1 work?

Basic idea: we show how to obtain a fulfilling LIS L’ starting from
the pseudo-model L as the limit of a possibly infinite sequence of
pseudo-models Lo(= L), L1, Ly, . .. by fixing defects of points in the
current pseudo-model (that is, existential temporal formulae whose
requests are not fulfilled) in a principled way.

Points that must be checked for fulfillment are managed by a queue
(this guarantees us that all defects are sooner or later fixed).

Initially, the queue consists of all and only the points d € D such
that d is not fulfilled in the given pseudo-model L.



A tableau system for AA over all linear orders

Basic notions.
A tableau for @: a special decorated tree 7.

We associate a finite linear order Dg = (D, <) and a request
function Reqg : D +— REQ, with every branch B of T.

Every node 1 in B is labeled with a pair ([d;, dj], An) such that
the triple (Regg (di), An, Regg(dj)) is an interval-tuple.

The initial tableau for @ consists of a single node (a single branch
B) labeled with a pair ([dg, d1], A), where Dg ={dop < di} and
@ € A.



Fulfilling conditions

Given a point d € Dp and a formula (A)1} € REQg(d), we say
that (A) is fulfilled in B for d if there exists a node n’ € B such
that n’ is labeled with ([d, d’], An/) and P € A,/ (same for the
past).

Given a point d € Dg, we say that d is fulfilled in B if every (A){

(resp., (A)U) in Regg(d) is fulfilled in B for d.

Let T be a tableau and B be a branch of 7, with Dg ={dg < ... <
di}.

We denote by B - 1 the expansion of B with an immediate successor
node n and by B - nq|... ny the expansion of B with h immediate
successor nodes My, ..., Np.



Expansion rules
To expand B, we apply one of the following expansion rules:

(A)-rule: there exist d; € Dg and (A) € REQg(d;) such that (A) is
not fulfilled in B for d;.

> There is not an interval-tuple (Regg(dj), A,S), with p € A. We
close B.

> Let (Regg(dj), A, S) be such an interval-tuple. We take a new
point d and we expand B with h = k —j + 1 immediate successor
nodes 1y, ..., N such that, for every 1 <1< h, Dg.p, = DU
{dj+l—1 <d< dj+1}, n, = <[dj, d],A>, with REQB.nL(d) =S, and
REQp.n,(d’) = REQg(d’) for every d’ € Dg.

(A)-rule: symmetric to the (A)-rule.
Fill-in rule:

> There exist dj, dj, with d; < dj, such that no node in B is
decorated with [di, dj], but there exists an interval-tuple
(REQg(di), A, REQg(dj)). We expand B with a node
n= <[di, dj], A>

» Such an interval-tuple does not exist. We close B.



The notion of blocked branch

A node n = ([dy, d;], A) in a branch B is active if for every
predecessor n’ = ([d, d’], A’) of n in B, the interval-tuples
(Regg(di), A, Regg(d;)) and (Regg(d), A’, Regg(d’)) are
different.

A point d € Dy is active if there exists an active node . in B such
that n = ([d, d’], A) or n = ([d’, d], A), for some d’ € Dy and
some atom A.

Let B be a non-closed branch. B is complete if for every

di, d; € Dg, with d; < dj, there exists a node . in B labeled with
n = ([di, dj], A), for some atom A.

If B is complete, then the pair (Dg, L) such that, for every

[di, d;] € I(Dg), Lg([d;, d;]) = A if and only if there exists a node
n in B labeled with ([d;, d;], A), is a LIS.

Let B be a non-closed branch. B is blocked if B is complete and,
for every active point d € B, d is fulfilled in B.



Expansion strategy

We start from an initial tableau for ¢ and we apply the expansion
rules to all the non-blocked and non-closed branches B.

The expansion strategy is the following one:
1. Apply the Fill-in rule until it generates no new nodes in B.

2. If there exist an active point d € Dg and a formula
(A) € Regg(d) such that (A)Y is not fulfilled in B for d, then
apply the (A)-rule on d. Go back to step 1.

3. If there exist an active point d € Dg and a formula
(AW € Regg(d) such that (A)Y is not fulfilled in B for d, then
apply the (A)-rule on d. Go back to step 1.

A tableau T for @ is final if and only if every branch B of T is
closed or blocked.



Termination, soundness, and completeness

Termination.
Let T be a final tableau for ¢ and B be a branch of 7. We have
that [B| < (2 [g| - 231¢1T1) . (2. || - 231011 —1) /2,

Soundness.
Let T be a final tableau for . If T features one blocked branch,
then ¢ is satisfiable over all linear orders.

Completeness.

Let @ be an AA formula which is satisfiable over the class of all
linear orders. Then there exists a final tableau for it with at least
one blocked branch.

The tableau system can be tailored to the dense and discrete cases.



Conclusions: AA is (nearly) maximal w.r.to decidability

dis, fin all all
dis, fin  all all all\ finite

UNDECIDABLE @ @

NONPRIMITIVE RECURSIVE-hard AABB
all\ finite

EXPSPACE-complete ABBL

all\ finite

NEXPTIME-complete
PSPACE-complete BBDDLL



Future work

» Implementation: a naive implementation of the tableau system
is easy, but computationally unfeasible

» The case of real numbers: there are AA formulae which are
satisfiable over dense linear orders (in fact, rational numbers),
but not over real numbers.

Open problem: is the satisfiability problem for AA over the
real numbers decidable?



The formula NoReal

Let NoReal be the AA formula

PA(AYAYGNAIGI((p = (A)P)A (g = (A)gA

(p — [AI([Alp A TA][AIP)) A (q — [AI(TAIg A [ATTA]Q))A
(P AN (P A=q = (A)p A (A)q)),
where [G] is the universal operator defined as follows:

[GIW = b A [ATATATD A TATATIATD A [ATATATY A [ATATATW

NoReal is satisfiable over the class of dense linear orders, but it is not satisfiable
over the real numbers

PA(A)(A)q P PP V2 4q44q49
|—| p (A)‘p I T T 1 | I T T 1 q’<X>q
—_




