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Model checking

• Model checking: the desired properties of a system are checked

against a model of the system

• the model is a (finite) state-transition graph

• system properties are specified by a temporal logic (e.g., LTL, CTL,

CTL*, . . . )

• Distinctive features of model checking:

• exhaustive verification of all the possible behaviours

• fully automatic process

• a counterexample is produced for a violated property
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Point-based vs. interval-based model checking

• Model checking is usually point-based:

• properties express requirements over points (snapshots) of a

computation (states of the state-transition system)

• they are specified by means of point-based temporal logics such as

LTL and CTL

• Interval-based model checking:

• Interval-based properties express conditions on computation

stretches: accomplishments, actions with duration, and temporal

aggregations

• they are specified by means of interval temporal logics, e.g., HS
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The logic HS

HS features a modality for any Allen ordering relation between pairs of

intervals (except for equality)

Allen rel. HS Definition Example

x y

v z

v z

v z

v z

v z

v z

meets 〈A〉 [x , y ]RA[v , z ] ⇐⇒ y = v

before 〈L〉 [x , y ]RL[v , z ] ⇐⇒ y < v

started-by 〈B〉 [x , y ]RB [v , z ] ⇐⇒ x = v ∧ z < y

finished-by 〈E〉 [x , y ]RE [v , z ] ⇐⇒ y = z ∧ x < v

contains 〈D〉 [x , y ]RD [v , z ] ⇐⇒ x < v ∧ z < y

overlaps 〈O〉 [x , y ]RO [v , z ] ⇐⇒ x < v < y < z

All modalities can be expressed by means of 〈A〉, 〈B〉, 〈E〉 and their

transposed modalities only
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Kripke structures
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An example of Kripke structure

• K = (AP ,W , δ, µ,w0)

• HS formulas are interpreted

over (finite) state-transition

systems whose states are

labelled with sets of proposition

letters (Kripke structures)

• An interval is a track (finite

path) in a Kripke structure
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HS semantics and model checking

Truth of a formula ψ over a track ρ of a Kripke structure K :

• K , ρ |= p iff p ∈
⋂

w∈states(ρ) µ(w), for any letter p ∈ AP
(homogeneity assumption);

• negation, disjunction, and conjunction are standard;

• K , ρ |= 〈A〉ψ iff there is a track ρ′ s.t. lst(ρ) = fst(ρ′) and

K , ρ′ |= ψ;

• K , ρ |= 〈B〉ψ iff there is a prefix ρ′ of ρ s.t. K , ρ′ |= ψ;

• K , ρ |= 〈E〉ψ iff there is a suffix ρ′ of ρ s.t. K , ρ′ |= ψ;

• the semantic clauses for 〈A〉, 〈B〉, and 〈E〉 are similar

Model Checking

K |= ψ ⇐⇒ for all initial tracks ρ of K , it holds that K , ρ |= ψ

Possibly infinitely many tracks!
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HS state semantics

• The semantics features branching both in the past and in the future.

ϕ1

〈B〉ϕ1

ϕ1

〈E〉ϕ1

ϕ1

〈A〉ϕ1

ϕ2

〈A〉ϕ2

• HS with state semantics is not comparable w.r. to LTL, CTL and

CTL∗.
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Decidability of HS model checking

Theorem

The model checking problem for full HS on Kripke structures is decidable (with a

non-elementary algorithm)

Reference

A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron. Checking interval

properties of computations.

Acta Informatica, 2015.

Accepted for publication
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Complexity picture

AABE PSPACE-complete B PSPACE-complete

E PSPACE-complete

AAEE PSPACE-completeAABB PSPACE-complete

AA
PNP[O(log2 n)]

PNP[O(log n)]-hard
A

PNP[O(log2 n)]

PNP[O(log n)]-hard

B coNP-complete

E coNP-complete

Prop coNP-complete

AABBE
EXPSPACE

PSPACE-hard

succinct AABBE
EXPSPACE

NEXP-hard
BE

nonELEMENTARY

EXPSPACE-hard

full HS
nonELEMENTARY

EXPSPACE-hard

hardness

hardness

hardness

hardness

upper-bound

hardness

hardness

hardness
hardness
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The fragment BE

Theorem

The model checking problem for BE on Kripke structures is

EXPSPACE-hard

Proved by a polynomial-time reduction from a domino-tiling problem for

grids with rows of single exponential length:

• For an instance I of the problem we build in polynomial time a

Kripke structure KI and a BE formula ϕI ;

• there exists an initial track of KI satisfying ϕI if and only if there

exists a tiling of I;

• Hence, KI |= ¬ϕI iff there does not exist a tiling of I.
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BE hardness: Encoding of a tiling

Instance of tiling problem: (C ,∆, n, dinit, dfinal), where C is a finite set of

colors, ∆ ⊆ C 4 is a set of tuples (cB , cL, cT , cR)

dk
0 dk

1 dk
2 dk

2n−2 dk
2n−1

d j+1
i

d j
i

d j−1
i

d j
i−1 d j

i+1

d0
2d0

1d0
0 d0

2n−2 d0
2n−1dInit

dFin

d j
ic ji L c ji R

c ji B =

c ji T

d j−1
i

c j−1i T

String encoding of a tiling

d0
0 0 · · · 00 d0

1 1 · · · 00 · · · d0
2n−1 1 · · · 11 $ d1

0 0 · · · 00 d1
1 1 · · · 00 · · · d1

2n−1 1 · · · 11 $

column 0 column 1 column 2n − 1 column 0 column 1 column 2n − 1

row 0 row 1
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BE hardness: KI and ϕI

• For AP = ∆ ∪ {$} ∪ {0, 1}, the Kripke structure KI is defined as

KI = (AP ,AP ,AP ×AP , µ, dinit), where µ(p) = {p}, for any p ∈ AP .

• The formula ϕI checks that an initial track of KI is a correct

encoding of a tiling.

It exploits the following features of BE:

• Measuring the length of a track: the formula lengthi characterizes

the tracks of length i .

lengthi := (〈B〉 . . . 〈B〉︸ ︷︷ ︸
i−1

>) ∧ ([B] . . . [B]︸ ︷︷ ︸
i

⊥).

• Constraining arbitrary subtracks with the derived operator 〈G〉 and its

dual [G ], which allow us to select arbitrary subtracks of a given track:

〈G〉ψ := ψ ∨ 〈B〉ψ ∨ 〈E〉ψ ∨ 〈B〉 〈E〉ψ.
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The fragments AAEE and AABB

• A PSPACE MC algorithm for AAEE and AABB can be devised by

exploiting a polynomial size model-track property.

• Polynomial size model-track property: if a track ρ of a Kripke

structure K satisfies a formula ϕ, then there is a track π, whose

length is polynomial in the sizes of ϕ and K , that satisfies ϕ.

• The MC algorithm to decide K |= ϕ searches a counterexample, i.e.

a track ρ such that |ρ| ≤ |W | · (2|ϕ|+ 3)2 and K , ρ |= ¬ϕ.

Algorithm 1 ModCheck(K , ϕ)

1: for all initial ρ̃ ∈ TrkK s.t. |ρ̃| ≤ |W | · (2|ϕ|+ 3)2 do

2: if Check(K , ϕ, ρ̃) = 0 then

3: return 0: “K , ρ̃ 6|= ϕ” / Counterexample found

4: return 1: “K |= ϕ”
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The fragment AAEE: Polynomial-size model-track property

• Contraction technique (permitted by homogeneity assumption):

ρ

ρ′ = ρ(0, i) · ρ(j+1)[

ρ(i) = ρ(j)

Pattern(ρ, i) = Pattern(ρ, j)Pattern(ρ, k) = {p ∈ AP : K , ρk[ |= p}

• ∀i ≤ h ≤ j ,∀p ∈ AP : K , ρh[ |= p iff K , ρj[ |= p;

• ρ′ is well-formed w.r. to ρ.

Proposition

For any track ρ of K = (AP ,W , δ, µ,w0), there exists a track π of K ,

which is well-formed with respect to ρ, such that |π| ≤ |W | · (|AP |+ 1).
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The fragment AAEE: Polynomial-size model-track property

• Contraction technique by well-formedness contraction:

ρ

ρ′ = ρ(0, ij ) · π · ρ
ij+1)[

i1 ij ij+1 ik

〈E〉ψ1 〈E〉ψj 〈E〉ψj+1 〈E〉ψk

π

• 〈E〉ψj is a subformula of ϕ s.t. K , ρ |= 〈E〉ψj for 1 ≤ j ≤ k;

• ij is the greatest index of ρ such that K , ρij [ |= ψj ;

• π is well-formed w.r. to ρ(ij , ij+1) and |π| ≤ |W | · (|AP |+ 1);

• ρ′ |= ϕ.

Theorem

Let K = (AP ,W , δ, µ,w0), ρ ∈ TrkK , and ϕ be an AAEE formula (in

NNF) such that K , ρ |= ϕ. Then, there is ρ ∈ TrkK , induced by ρ, such

that K , ρ |= ϕ and |ρ| ≤ |W | · (|ϕ|+ 1)2.
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Model checking routine
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Complexity picture: future work

AABE PSPACE-complete 2,3 B PSPACE-complete

E PSPACE-complete

AAEE PSPACE-completeAABB PSPACE-complete

AA
PNP[O(log2 n)] 4

PNP[O(log n)]-hard
A, A

PNP[O(log2 n)] 4

PNP[O(log n)]-hard
AB, Æ

PNP[O(log2 n)]

PNP[O(log n)]-hard

AAB PNP-complete AAE PNP-complete

AB PNP-complete AE PNP-complete

B coNP-complete

E coNP-complete

Prop coNP-complete

AABBE
EXPSPACE

PSPACE-hard

succinct AABBE
EXPSPACE

NEXP-hard
BE

nonELEMENTARY

EXPSPACE-hard

full HS
nonELEMENTARY

EXPSPACE-hard

hardness

hardness

hardness

hardness

upper-bound

hardness

hardness

hardness

hardness
hardness

hardness

upper-bound

hardness

upper-bound
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Future work

• Determining the precise complexity of full HS (automata-based

approach)

• AAB and AAE are PNP -complete;

• Investigating other possible HS semantics, in particular to compare

HS with LTL/CTL (in particular, linear track semantics,

computation tree semantics);

• Relaxing the homogeneity assumption.
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