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Temporal logics: origins and application fields

◮ Temporal logics play a major role in computer science
◮ automated system verification

◮ Temporal logics are (multi-)modal logics
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A different approach: from points to intervals

◮ worlds are intervals (time period — pairs of points)
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Motivations

◮ properties intrinsically related to intervals (instead of points)

◮ points have no duration

Example: “traveling from Reykjavik to Napoli”:

◮ true over a precise interval of time

◮ not true over all other intervals
(starting/ending intervals, inner intervals, ecc.)

Several philosophical and logical paradoxes disappear:

◮ Zeno’s flying arrow paradox (“if at each instant the flying
arrow stands still, how is movement possible?”)

◮ The dividing instant dilemma (“if the light is on and it is turned
off, what is its state at the instant between the two events?”)
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Binary interval relations on linear orders

Later

After (right neighbour)

Overlaps (to right)

Ends

During (subinterval)

Begins

6 relations + their inverses + equality = 13 Allen’s relations.

J. F. Allen

Maintaining knowledge about temporal intervals.

Communications of the ACM, volume 26(11), pages 832-843, 1983.
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Halpern-Shoham’s modal logic of interval relations

interval relations give rise to
modal operators

HS logic

HS is undecidable over all significant classes of linear orders] HS91 J.
Halpern and Y. Shoham

A propositional modal logic of time intervals.

Journal of the ACM, volume 38(4), pages 935-962, 1991.

Syntax:
ϕ ::= p | ¬ϕ | ϕ∧ϕ | 〈X〉ϕ

〈X〉 ∈ {〈A〉, 〈L〉, 〈B〉, 〈E〉, 〈D〉, 〈O〉, 〈A〉, 〈L〉, 〈B〉, 〈E〉, 〈D〉, 〈O〉}

Models:
M = 〈I(D),V〉
V : I(D) 7→ 2AP

AP atomic propositions (over intervals)
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〈L〉: M, [d0,d1] 
 〈L〉φ iff there exists d2,d3 such that d1 < d2 < d3 and
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Formal semantics of HS - contd’

〈L〉: M, [d0,d1] 
 〈L〉φ iff there exists d2,d3 such that d1 < d2 < d3 and
M, [d2,d3] 
 φ.

〈L〉: M, [d0,d1] 
 〈L〉φ iff there exists d2,d3 such that d2 < d3 < d0 and
M, [d2,d3] 
 φ.

〈D〉: M, [d0,d1] 
 〈D〉φ iff there exists d2,d3 such that d0 < d2 < d3 < d1 and
M, [d2,d3] 
 φ.

〈D〉: M, [d0,d1] 
 〈D〉φ iff there exists d2,d3 such that d2 < d0 < d1 < d3 and
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 φ.
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(Un)decidability of HS fragments: main parameters

Research agenda:

◮ search for maximal decidable HS fragments;

◮ search for minimal undecidable HS fragments.

Undecidability rules
... but meaningful exceptions exist.

(Un)decidability of HS fragments depends on two factors:

◮ the set of interval modalities;

◮ the class of interval structures (linear orders) over which the
logic is interpreted.
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Strong discreteness

Strongly discrete linear orders

There is a finite number of points between any pairs of points over
the linear order

Example

◮ natural numbers N

◮ integers Z

Counterexample

◮ rational numbers Q

◮ Z+ Z

From now on we will talk about strongly discrete linear orders



The complete picture

Main contributions of the paper

To prove that the diagram is correct (assuming strong discreteness)
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Relative expressive power

〈L〉p ≡ 〈A〉〈A〉p

〈L〉p ≡ 〈A〉〈A〉p

Lemma

The above set of inter-definabilities is sound and complete within

the fragment AABB

Soundness: all equations are valid SIMPLE

Completeness:
there are no more

BISIMULATIONS
inter-definability equations

Theorem Invariance of modal formulae wrt bisimulations
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Bisimulation between interval structures
Z ⊆ M1 ×M2 is a bisimulations wrt the fragment X1X2 . . . Xn iff

1. Z-related intervals satisfy the same propositional letters, i.e.:

(i1, i2) ∈ Z ⇒ (p is true over i1 ⇔ p is true over i2)

2. the bisimulation relation is “preserved” by modal operators,
i.e., for every modal operator 〈X〉:

(i1, i2) ∈ Z

(i1, i
′

1
) ∈ X

}

⇒ ∃i ′2 s.t.

{

(i ′
1
, i ′

2
) ∈ Z

(i2, i
′

2
) ∈ X

M1

M2

i1

i2

i ′
1
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Z

X
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How to use bisimulations to disprove definability

Suppose that we want to prove:

〈X〉 is not definable in terms of L

We must provide:

1. two models M1 and M2

2. a bisimulation Z ⊆ M1 ×M2 wrt fragment L

3. two interval i1 ∈ M1 and i2 ∈ M2 such that

a. i1 and i2 are Z-related
b. M1, i1 
 〈X〉p and M2, i2 
 ¬〈X〉p

By contradiction

If 〈X〉 is definable in terms of L, then 〈X〉p is.
Truth of 〈X〉p should have been preserved by Z, but 〈X〉p is true in
i1 (in M1) and false in i2 (in M2) ⇒ contradiction
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Bisimulation wrt ABBL (AP = {p}):

◮ models: M1 = 〈I({0, 1, 2}),V1〉,M2 = 〈I({0, 1, 2}),V2〉
◮ V1(p) = {[1, 2]}
◮ V2(p) = ∅

◮ bisimulation relation Z = { }
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0 1 2

p

¬p



〈A〉 is not definable in terms of ABBL
A bisimulation wrt fragment ABBL but not A

Bisimulation wrt ABBL (AP = {p}):

◮ models: M1 = 〈I({0, 1, 2}),V1〉,M2 = 〈I({0, 1, 2}),V2〉
◮ V1(p) = {[1, 2]}
◮ V2(p) = ∅

◮ bisimulation relation Z = {([0, 1], [0, 1]), }

0 1 2

0 1 2

p

¬p



〈A〉 is not definable in terms of ABBL
A bisimulation wrt fragment ABBL but not A

Bisimulation wrt ABBL (AP = {p}):

◮ models: M1 = 〈I({0, 1, 2}),V1〉,M2 = 〈I({0, 1, 2}),V2〉
◮ V1(p) = {[1, 2]}
◮ V2(p) = ∅

◮ bisimulation relation Z = {([0, 1], [0, 1]), ([0, 2], [0, 2])}

0 1 2

0 1 2

p

¬p



〈A〉 is not definable in terms of ABBL
A bisimulation wrt fragment ABBL but not A

Bisimulation wrt ABBL (AP = {p}):

◮ models: M1 = 〈I({0, 1, 2}),V1〉,M2 = 〈I({0, 1, 2}),V2〉
◮ V1(p) = {[1, 2]}
◮ V2(p) = ∅

◮ bisimulation relation Z = {([0, 1], [0, 1]), ([0, 2], [0, 2])}

0 1 2

0 1 2

p

¬p

M1, [0, 1] 
 〈A〉p and M2, [0, 1] 
 ¬〈A〉p



〈A〉 is not definable in terms of ABBL
A bisimulation wrt fragment ABBL but not A

Bisimulation wrt ABBL (AP = {p}):

◮ models: M1 = 〈I({0, 1, 2}),V1〉,M2 = 〈I({0, 1, 2}),V2〉
◮ V1(p) = {[1, 2]}
◮ V2(p) = ∅

◮ bisimulation relation Z = {([0, 1], [0, 1]), ([0, 2], [0, 2])}

0 1 2

0 1 2

p

¬p

M1, [0, 1] 
 〈A〉p and M2, [0, 1] 
 ¬〈A〉p ⇒ the thesis
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Undecidability

Reduction from the non-emptiness problem for incrementing
counter automata over ω-words

All fragments not displayed in diagram are undecidable

AB, AB, AE, and AE are undecidable
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NP-completeness

BBLL and EELL are in NP



Complexity of decidable fragments

Other complexity results (membership and hardness)

◮ P. Sala, Decidability of Interval Temporal Logic, PhD Thesis,
2010

◮ Bresolin et al., Interval Temporal Logics over Finite Linear
Orders: the Complete Picture, ECAI, 2012

NP-completeness

BBLL and EELL are in NP



Strongly discrete linear orders: recall the picture for



The complete picture over natural numbers
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Conclusions and future work

◮ We identified all decidable HS fragments over the class of
strongly discrete linear orders and we classified them in terms
of both relative expressive power and complexity

◮ 44 expressively-different decidable fragments
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◮ Our goal: To provide the classification for all significant classes
of linear orders (dense and all)

Thank you!


	Interval Temporal Logics: origin and motivations
	Halpern-Shoham's modal logic HS
	HS over strongly discrete linear orders

