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Context: Model Checking

Model checking is a well-established formal method to automatically check the
global correctness of reactive systems against behavioral properties. Properties
usually specified in point-based Propositional Temporal logics (PTLs).

Two types of PTLs differing in the nature of time: linear-time temporal logics, such
as LTL, and branching-time temporal logics, such as CTL and CTL∗.

In the last years, interval temporal logic has been proposed as an alternative
formalism to model check relevant properties of computation stretches of
finite-state systems (finite Kripke structures).

Goal

To check pushdown systems: infinite-state systems modeling the control flow of
sequential programs with nested and recursive procedure calls.

To express branching-time, context-free requirements on the behavior of these
systems in an interval-based temporal logic framework.
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Model checking of Pushdown Automata (PDA)

Checking context-free properties of Pushdown Automata (PDA) is, in general, un-
decidable (the language inclusion problem for PDA is undecidable).

Algorithmic solutions for subclasses of PDA: Visibly Pushdown Automata (VPA)

R. Alur et al. - Visibly Pushdown Languages - STOC’04

Robust subclass of PDA: the input symbols over a pushdown alphabet control the
admissible stack operations (visibility).

The pushdown alphabet Σ is partitioned into

a set Σcall of calls forcing push stack-operations,
a set Σret of returns forcing pop stack-operations, and
a set Σint of internal actions which do not use the stack.

The class of languages accepted by VPA is closed under Boolean operations and
language inclusion is EXPTIME-complete.
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Visibly context-free temporal logics

Temporal modalities for navigating over the nested hierarchical structure of a word
over a pushdown alphabet: each call is associated with a matching return (if any)
in a well-nested manner.
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Σcall = {c}, Σret = {r}, and Σint = {ı}.

A relevant example: CaRet (a linear-time context-free extension of LTL).

Alur et al. - A temporal logic of nested calls and returns - TACAS’04

CaRet provide versions of LTL modalities evaluated over two kinds of non-regular
patterns on input words:

abstract path: local computation within a procedure removing computation
fragments corresponding to nested calls, and
caller path: call-stack content at a given position of the input.

Satisfiability and visibly model-checking for CaRet are EXPTIME-complete.
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Examples of context-free properties
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Total correctness: if the pre-condition p holds when a procedure A is invoked, the
procedure must return and the post-condition q must hold upon return.

Local response: in the local computation of a procedure A, every request req is
followed by a response res.

Call-stack inspection: a procedure A is invoked only if procedure B belongs to the
call stack.
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Interval Temporal Logic (ITL)

ITL provides an alternative framework for reasoning about the time. ITL assumes
intervals, instead of points, as the primitive temporal entities.

It allows one to specify relevant temporal properties, e.g., durative actions,
accomplishments, and temporal aggregations, which cannot be (naturally)
expressed by point-based temporal logics.

Many application fields, including reasoning about action and change, planning,
verification of programs, temporal and spatio-temporal databases.

Observation: an interval temporal logic (instead of a point-based one) is a natural
choice for the specification and verification of context-free requirements.

The distinctive feature of pushdown systems, namely, the matching of calls
and returns, has a natural interval nature: it bounds computation stretches
where local properties can be checked.

The landmark in interval temporal logic is Halpern and Shoham’s modal logic of
time intervals (HS).

HS satisfiability is undecidable over all relevant classes of linear orders.
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Model checking for HS against finite Kripke structures

The model checking (MC) problem for HS against finite Kripke structures has been
systematically investigated only very recently.

Each finite path of a Kripke structure is interpreted as an interval, whose labelling
is defined on the basis of the labelling of the component states.

Homogeneity assumption: a proposition letter holds over an interval if and
only if it holds over each component state.

We focus on the state-based semantics, where time branches both in the future
and in the past.
MC for HS against finite-state Kripke structures is known to be decidable.

A. Molinari et al. - Checking interval properties of computations - Acta
Informatica 2016

Intriguing open question: exact complexity of finite-state MC for full HS.

It has been proved that it is at least EXPSPACE-hard, but the only known
upper bound is non-elementary.
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Expressiveness of HS over (finite) Kripke structures

The state-based version of HS is expressively incomparable with LTL and CTL∗,
and strictly more expressive than finitary CTL∗ (variant of CTL∗ with quantification
over finite paths).

L. Bozzelli et al. - Interval vs. Point Temporal Logic Model Checking: An
Expressiveness Comparison - ACM Trans. Comput. Logic 2019

Known alternative semantics for HS over (finite) Kripke structures:

Computation-tree semantics: interpreted over computation trees (it allows time to
branch only in the future). Expressively equivalent to finitary CTL∗.

Linear-time semantics: interpreted over the subpaths (intervals) of a given infinite
path. Expressively equivalent to LTL (but much more succinct).
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Contributions of the present work

Unification of the linear-time and branching-time semantics of HS in a common
framework (binding HS, BHS for short).

BHS enriches HS with a novel regular binding operator, which restricts the
evaluation of a formula to the interval sub-structure induced by the current
interval.
The interval mapping takes into account both finite and infinite paths.

BHS with the state-based semantics is further extended in order to specify
branching-time, context-free requirements of pushdown systems under the
homogeneity and visibility assumptions (nested BHS).

Despite its simplicity (we just add to BHS a special proposition letter pwm that
captures finite intervals with well-matched pairs of calls and returns), such an
extension of BHS is quite powerful.
Nested BHS differs from known context-free temporal logics where ad hoc
modalities are exploited.

We investigate expressiveness and Visibly Pushdown Model Checking (VPMC)
for nested BHS. We show that VPMC for nested BHS is decidable.
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The model: Kripke structures

A Kripke structure is K = (Prop,S,s0,R,Lab):

Prop is a finite set of proposition letters,
S is a (possibly infinite) set of states and s0 ∈ S (initial state),
R ⊆ S×S is a transition relation,
Lab : S 7→ 2Prop assigns to each state s the set of proposition letters that hold
over it.

A path is a non-empty finite or infinite sequence of states π = s1s2 . . . such that for
all 1≤ i < |π|, (si ,si+1) ∈ E . A path is initial if it starts at the initial state s0.

For a path π, first(π) is the first state of π, and, in case π is finite, last(π) is the last
state of π.

The trace Lab(π) of a path π = s1s2 . . . is the word over 2Prop having the same
length as |π| given by Lab(s1)Lab(s2) . . ..

s0
p

s1
q

L. Bozzelli, A. Montanari, and A. Peron University of Naples Federico II

Interval temporal logic for visibly pushdown systems 10 / 20



The logic: binding HS (BHS)
HS features one existential modality for each of the 13 possible ordering relations
between pairs of intervals (Allen’s relations), apart from equality.
BHS formulas ψ over a set of proposition letters Prop:

ψ ::= p | ¬ψ | ψ∧ψ | 〈X〉ψ | Bψ

where p ∈ Prop, 〈X〉 is the existential temporal modality for the Allen relation
X ∈ {A,L,B,E ,D,O,A,L,B,E ,D,O}, and B is the binding operator.

For any temporal modality 〈X〉, the dual universal modality [X ] is defined as
[X ]ψ := ¬〈X〉¬ψ.

Allen relation HS Definition w.r.t. interval structures Example

x y
v z

v z
v z

v z
v z

v z

MEETS 〈A〉 [x ,y ]RA[v ,z] ⇐⇒ y = v
BEFORE 〈L〉 [x ,y ]RL[v ,z] ⇐⇒ y < v

STARTED-BY 〈B〉 [x ,y ]RB[v ,z] ⇐⇒ x = v ∧ z < y
FINISHED-BY 〈E〉 [x ,y ]RE [v ,z] ⇐⇒ y = z ∧ x < v

CONTAINS 〈D〉 [x ,y ]RD[v ,z] ⇐⇒ x < v ∧ z < y
OVERLAPS 〈O〉 [x ,y ]RO[v ,z] ⇐⇒ x < v < y < z
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BHS state-based semantics - 1
Allen’s relations are interpreted over paths of a Kripke structure K in a natural way.
For paths π and π′,

MEETS: π A π′ if π is finite and last(π) = first(π′);

BEFORE: π L π′ if π is finite and first(π′) is strictly reachable from last(π);

STARTED-BY: π B π′ if π′ is a proper prefix of π;

FINISHED-BY: π E π′ if π′ is a proper suffix of π;

CONTAINS: π D π′ if π E ν and ν B π′ for some path ν (π′ internal subpath of π);

OVERLAPS: π O π′ if π′ = ν ·ν′ for some paths ν and ν′ such that π E ν;

Inverse relations: for each X ∈ {A,L,B,E ,D,O}, π X π′ if π′ X π.

Example: MEETS and MET-BY.
ϕ1

〈A〉ϕ1

ϕ2

〈A〉ϕ2

A binding context C is either ε (the empty context) or a path of K .

A path π belongs to the binding context C if either C = ε or π is a subpath of C.
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BHS state-based semantics - 2

For a Kripke structure K , a binding context C, a path π in C, and an HS formula ψ, the
satisfaction relation K ,π,C |= ψ is defined as (X ∈ {A,L,B,E ,D,O,A,L,B,E ,D,O}):

K ,π,C |= p for p ∈ Prop if p ∈ Lab(π(i)) for all 1≤ i ≤ |π| (homogeneity);

semantics of Boolean connectives is as usual;

K ,π,C |= 〈X〉ψ if K ,π′,C |= ψ for some path π′ in C such that π X π′;

K ,π,C |= Bψ if K ,π,π |= ψ.

K is a model of ψ, written K |= ψ, if K ,π,ε |= ψ for all initial paths π.

Modalities for relations in {B,E ,D} have linear-time semantics: select only sub-
paths of the current path.

Modalities for relations in {A,L,O,A,L,B,E ,D,O}:
branching-time semantics if the current context is empty: non-deterministically
extend the current path in the future or in the past;
linear-time semantics if the current context is not empty: select only subpaths
of the current binding context.
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Checking pushdown systems

Let Prop⊇ {call, ret, int}.
It induces the pushdown alphabet ΣProp = Σcall∪Σret∪Σint:

Σt = {P ⊆ Prop | P ∩{call, ret, int}= {t}} for all t ∈ {call, ret, int}

We show how to turn a Visibly Pushdown System (VPS) P S over Prop into an infinite-
state Kripke structure KP S .

Basic correspondence: the set of states of KP S is the set of configurations of P S .

Traces of KP S are words over the pushdown alphabet ΣProp.

An (initial) computation of P S is an (initial) path in KP S .
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The extended logic: nested BHS

Let Prop⊇ {call, ret, int}.

A word over ΣProp is well-matched if each call has a matching return, and vice versa.

Nested BHS is just BHS + the special well-matched proposition letter pwm

K ,π,C |= pwm if Lab(π) is a finite well-matched word over ΣProp.

We also consider the linear-time fragment of nested BHS (nested BHSlin):
each temporal modality 〈X〉 /∈ {〈B〉,〈E〉,〈D〉} occurs in the scope of the binding opera-
tor B.

Visibly pushdown model checking (VPMC) for nested BHS :
given a VPS P S over Prop and a nested BHS formula ψ over Prop∪ {pwm}, check
whether KP S |= ψ or not.
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Specification of requirements in nested BHS
Some basic formulas to be used as building blocks (macros).

Left and right endpoints. Given a nested BHS formula ψ, formulas left(ψ) and
right(ψ) constrain the current interval (computation) to be finite and ψ to hold at
its left and right endpoints (point intervals), respectively:

left(ψ) := 〈A〉(ψ∧ [B]false) and right(ψ) := 〈A〉(ψ∧ [B]false)

Minimal well-matched intervals. The formula θmwm characterizes those finite
intervals whose left endpoint is a matched call and whose right endpoint is the
matching return:

θmwm := left(call)∧ right(ret)∧pwm∧ [B]¬pwm

Procedural context interval. The formula θpc captures those computations π

starting at a configuration s that precede the end (if any) of the procedural context
associated with s, i.e., such that each non-first return position has a matched-call:

θpc := ξret∧ [B]ξret ξret := right(ret)→ (θmwm∨〈E〉θmwm∨ [E]false)
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Expressive power of nested BHS: an example

In nested BHS, we can naturally express procedural-context/abstract/caller versions of
CTL and CTL∗ requirements, which cannot be formulated in linear-time context-free
temporal logics.

Example: a procedural context version of the CTL formula E(p1Up2).

Consider the condition: “there is a computation π from the current configuration s such
that p1Up2 holds along a prefix of π which precedes the end (if any) of the procedural
context associated with s".

Such a condition is captured by the formula:

〈A〉(θpc∧ [B]p1∧ right(p2))

Notice that 〈A〉 plays the role of the existential path quantifier E of CTL∗ (state-based
semantics of nested BHS).

Various other meaningful examples can be found in the paper.
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Expressiveness of nested BHS
We compared nested BHSlin with known linear-time context-free extensions of LTL

R. Alur et al. - First-Order and Temporal Logics for Nested Words - LICS 2007

We considered the first-order logic for nested words FOµ and the temporal logics
CaRet, CaRet + within modality W, and the Nested-Word Temporal Logic NWTL.

It is known that NWTL and CaRet + W are expressively complete for FOµ, while it
is an open question whether the same holds for CaRet.

Theorem (Expressiveness of nested BHS)
We proved that:

- nested BHSlin is as expressive as FOµ;

- NWTL (resp., CaRet + W) formulas can be translated in polynomial time into
equivalent nested BHSlin formulas ψ, where, for CaRet formulas, ψ is of the form
Bψ′ for some nested HS formula ψ′;

- nested BHS is strictly more expressive than FOµ;

- HS (and thus nested BHS) is strictly more expressive than standard CTL∗.
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VPMC for nested BHS: decision procedures
Let P S be a VPS and ψ be a nested BHS formula. ψ can be translated into a nondeter-
ministic VPA (NVPA) accepting encodings of the computations of P S satisfying ψ.

Theorem
Given a VPS P S and a nested BHS formula ψ, one can construct an NVPA accepting
the words encoding the computations π of P S such that KP S ,π |= ψ. Moreover, the
VPMC problem for nested BHS is decidable with a non-elementary complexity.

Proof.
The first statement holds for nested BHSlin since it can be translated into FOµ and the
latter can be translated into NVPA with a non-elementary blow-up.
As for nested BHS, we exploit the above encoding, the closure of NVPA under Boolean
operators and the operators 〈X〉P S , and the fact that a nested BHS formula can be
seen as a nested HS formula with atomic formulas in nested BHSlin.
Non-elementary hardness already holds for finite MC against BHSlin: polynomial-time
reduction from the universality problem for star-free regular expressions built from
union, concatenation, and negation.

L. Bozzelli, A. Montanari, and A. Peron University of Naples Federico II

Interval temporal logic for visibly pushdown systems 19 / 20



VPMC for nested BHS: decision procedures
Let P S be a VPS and ψ be a nested BHS formula. ψ can be translated into a nondeter-
ministic VPA (NVPA) accepting encodings of the computations of P S satisfying ψ.

Theorem
Given a VPS P S and a nested BHS formula ψ, one can construct an NVPA accepting
the words encoding the computations π of P S such that KP S ,π |= ψ. Moreover, the
VPMC problem for nested BHS is decidable with a non-elementary complexity.

Proof.
The first statement holds for nested BHSlin since it can be translated into FOµ and the
latter can be translated into NVPA with a non-elementary blow-up.
As for nested BHS, we exploit the above encoding, the closure of NVPA under Boolean
operators and the operators 〈X〉P S , and the fact that a nested BHS formula can be
seen as a nested HS formula with atomic formulas in nested BHSlin.
Non-elementary hardness already holds for finite MC against BHSlin: polynomial-time
reduction from the universality problem for star-free regular expressions built from
union, concatenation, and negation.

L. Bozzelli, A. Montanari, and A. Peron University of Naples Federico II

Interval temporal logic for visibly pushdown systems 19 / 20



VPMC for nested BHS: decision procedures
Let P S be a VPS and ψ be a nested BHS formula. ψ can be translated into a nondeter-
ministic VPA (NVPA) accepting encodings of the computations of P S satisfying ψ.

Theorem
Given a VPS P S and a nested BHS formula ψ, one can construct an NVPA accepting
the words encoding the computations π of P S such that KP S ,π |= ψ. Moreover, the
VPMC problem for nested BHS is decidable with a non-elementary complexity.

Proof.
The first statement holds for nested BHSlin since it can be translated into FOµ and the
latter can be translated into NVPA with a non-elementary blow-up.
As for nested BHS, we exploit the above encoding, the closure of NVPA under Boolean
operators and the operators 〈X〉P S , and the fact that a nested BHS formula can be
seen as a nested HS formula with atomic formulas in nested BHSlin.
Non-elementary hardness already holds for finite MC against BHSlin: polynomial-time
reduction from the universality problem for star-free regular expressions built from
union, concatenation, and negation.

L. Bozzelli, A. Montanari, and A. Peron University of Naples Federico II

Interval temporal logic for visibly pushdown systems 19 / 20



Conclusions and future work

Summary of the results

We devised a novel branching-time context-free logical framework to model check
visibly pushdown systems (VPMC):

- it is based on an extension of HS with the state-based semantics over
Kripke structures (under the homogeneity assumption);
- it strictly subsumes well-known linear-time context-free extensions of LTL;
- it is decidable although with a non-elementary complexity.

Future work

Is (nested) BHS strictly more expressive than (nested) HS?

Exact complexity of the VPMC problem for nested HS and its relevant fragments,
and for nested BHS in terms of nesting depth of binding modality.

Expressiveness comparison of nested BHS and visibly pushdown µ-calculus, a
known extension of the modal µ-calculus with future context-free modalities.

To relaxe the homogeneity assumption.
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