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Introduction



Introduction

A real-time system is commonly described as a system that
“controls an environment by receiving data, processing them, and
returning the results sufficiently quickly to affect the environment at
that time”.

• their correctness does not depend only on their logical
correctness, but also on their response time;

• most of the mission or safety critical systems are real-time:
their formal correctness is an aspect that cannot be overlooked.
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Linear Temporal Logic - LTL

In classical LTL, we can express the request-response property:

ϕ := G(request → F response)

We do not know the exact times at which the request and the
response actually take place: the only thing we know is the
temporal ordering between these two events.

LTL ⇒ qualitative time requirements only,
not suitable for real-time properties.
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TPTL - Syntax

Timed Propositional Temporal Logic (TPTL [AH94]) allows for
quantitative time requirements.

• Syntax:

(terms) π := x + c | c
(formulae) φ := p | π1 ≤ π2 | π1 ≡d π2 |

¬φ1 | φ1 ∨ φ2 | φ1 ∧ φ2 |
X φ1 | φ1 U φ2 | φ1 R φ2 |
x .φ1

where x is a variable, p is a proposition letter and c,d ∈ N.
• ‘x .’ is a freeze quantifier : ‘x .’ freezes the variable x to the

time of the local temporal context.
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TPTL - Timed state sequences

Definition (Timed state sequence)
Let σ = σ0σ1σ2 . . . be an infinite sequence of states (each state is
a subset of proposition letters).

A time sequence τ = τ0τ1τ2 . . .

is an infinite sequence of times τi ∈ N, for all i ≥ 0, that satisfies
the following conditions:

1. monotonicity: τi ≤ τi+1, for all i ≥ 0;
2. progress: for all t ∈ N, there exists i ≥ 0 such that τi > t.

A timed state sequence ρ = (σ, τ) is a pair consisting of a state
sequence σ and a time sequence τ .

Let E : V → N be an interpretation for the variables, that we call
environment.
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TPTL - Semantics

We inductively define ρi |=E φ, as follows:

1. ρi |=E p iff p ∈ σi

2. ρi |=E π1 ≤ π2 iff E(π1) ≤ E(π2)
3. ρi |=E π1 ≡d π2 iff E(π1) ≡d E(π2)
4. ρi |=E x .φ iff ρi |=E[x :=τi ] φ

The other operators are interpreted in the same way as in LTL.

Example (classical time bounded request-response property):

φBR := G x .(request → F y .(response ∧ y ≤ x + 10))
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The TPTLb+P logic

TPTLb+P is a bounded version of TPTL with past operators:

1. ρi |=ξ Xw φ1 iff τi+1 ≤ τi + w and ρi+1 |=ξ φ1

2. ρi |=ξ φ1 Uw φ2 iff there exists j ≥ i such that
(i) τj ≤ τi + w
(ii) ρj |=ξ φ2

(iii) ρk |=ξ φ1 for all i ≤ k < j

The bounds on the operators allow us to know a priori the bound
between two variables. The bounds are similar to the ones of Metric
Temporal Logic.
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TPTL and TPTLb+P - Satisfiability

The satisfiability problem for TPTL (resp. TPTLb+P) is the
problem of deciding whether there exists a model satisfying a given
TPTL (resp. TPTLb+P) formula.

Useful in a number of situations:

• sanity check: it allows one to check whether an input formula
is satisfiable before running a model checking algorithm;

• monitoring, synthesis (UNSAT → UNREALIZABLE), and, in
general, all the steps of a model-based design approach;

• the timeline-based planning problem with bounded
temporal constraints can be captured by TPTLb+P [Del+17].
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Tableau methods

Tableau methods are among the most well known techniques used
to solve the satisfiability problem for temporal logics:

• Two-pass and graph-shaped [MP95]:
• first pass → builds the graph encoding all the candidate models;
• second pass → prunes the graph by removing the wrong

candidates;
• difficult to implement and impractical because of the huge size

of the graph.
• One-pass and tree-shaped [Ber+16]:

• in a single pass, we can build a candidate model and decide to
either accept or reject it;

• easy to describe and to implement (since each branch is
independent from the others, they are easily parallelisable);
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Goals and results

Main contribution of the paper: the proposal of two original
one-pass and tree-shaped tableau systems for the logics

• TPTL
• TPTLb+P

proving their soundness and completeness and analyzing their
complexity (both algorithms run in doubly exponential space).
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The Tableau System



Tableau for TPTL - Structure

• The tableau is a tree where each node is labeled by a set of
subformulae and a time point belonging to N;

• The initial tableau for z .φ (in Negated Normal Form) is a tree
consisting of the following single node (the root):

{z .φ}TIME=0
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Tableau for TPTL - Structure

• The tableau is built recursively and top-down starting from the
root, by applying a set of rules to the leaves of the tree (in this
order):
1. expansion rules: add one or two children to a leaf of the tree;
2. termination rules: close a branch either by ticking a leaf, and

thus accepting the branch (3), or by crossing a leaf, and thus
rejecting the branch (7);

3. step rule: force an advancement in time of the model.

• If all the branches of the tableau are closed (that is, either
ticked or crossed), we say that the tableau is complete.

• Given a complete tableau Tφ, the input formula φ is satisfiable
if and only if there is in Tφ at least one accepted branch.

11



Tableau for TPTL - Structure

• The tableau is built recursively and top-down starting from the
root, by applying a set of rules to the leaves of the tree (in this
order):
1. expansion rules: add one or two children to a leaf of the tree;
2. termination rules: close a branch either by ticking a leaf, and

thus accepting the branch (3), or by crossing a leaf, and thus
rejecting the branch (7);

3. step rule: force an advancement in time of the model.

• If all the branches of the tableau are closed (that is, either
ticked or crossed), we say that the tableau is complete.

• Given a complete tableau Tφ, the input formula φ is satisfiable
if and only if there is in Tφ at least one accepted branch.

11



Tableau for TPTL - Structure

• The tableau is built recursively and top-down starting from the
root, by applying a set of rules to the leaves of the tree (in this
order):
1. expansion rules: add one or two children to a leaf of the tree;
2. termination rules: close a branch either by ticking a leaf, and

thus accepting the branch (3), or by crossing a leaf, and thus
rejecting the branch (7);

3. step rule: force an advancement in time of the model.

• If all the branches of the tableau are closed (that is, either
ticked or crossed), we say that the tableau is complete.

• Given a complete tableau Tφ, the input formula φ is satisfiable
if and only if there is in Tφ at least one accepted branch.

11



Tableau for TPTL - Structure

• The tableau is built recursively and top-down starting from the
root, by applying a set of rules to the leaves of the tree (in this
order):
1. expansion rules: add one or two children to a leaf of the tree;
2. termination rules: close a branch either by ticking a leaf, and

thus accepting the branch (3), or by crossing a leaf, and thus
rejecting the branch (7);

3. step rule: force an advancement in time of the model.

• If all the branches of the tableau are closed (that is, either
ticked or crossed), we say that the tableau is complete.

• Given a complete tableau Tφ, the input formula φ is satisfiable
if and only if there is in Tφ at least one accepted branch.

11



Tableau for TPTL - Structure

• The tableau is built recursively and top-down starting from the
root, by applying a set of rules to the leaves of the tree (in this
order):
1. expansion rules: add one or two children to a leaf of the tree;
2. termination rules: close a branch either by ticking a leaf, and

thus accepting the branch (3), or by crossing a leaf, and thus
rejecting the branch (7);

3. step rule: force an advancement in time of the model.

• If all the branches of the tableau are closed (that is, either
ticked or crossed), we say that the tableau is complete.

• Given a complete tableau Tφ, the input formula φ is satisfiable
if and only if there is in Tφ at least one accepted branch.

11



Expansion rules



Expansion rules

Expansion rules are applied to the leaves of the tree, until no
expansion rule can be applied anymore.

• ψ → ∆1

• ψ → ∆1 | ∆2
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z .(Fβ)→ {β} | {z .XFβ}
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Expansion rules

Expansion rules are applied to the leaves of the tree, until no
expansion rule can be applied anymore.

• ψ → ∆1 z .y .α→ z .α[z/y ]
• ψ → ∆1 | ∆2

Freeze quantifier:

{z .y .α . . . }

{z .α[z/y ] . . . }
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Poised nodes

By repeatedly applying expansion rules, we eventually reach a node
whose label contains only:

• proposition letters;
• timing constraints;
• formulae of type z .Xα.

Such a node is called a poised node.

13



Step rule

Once we reach a poised node, we can apply the STEP rule and
advance in a state of the model.

{z .Xα . . . }TIME=i

{z .α0 . . . }TIME=i {z .α1 . . . }TIME=i+1 {z .αδφ . . . }TIME=i+δφ. . .

where δφ is a value that we can pre-compute from the initial formula
φ and that does not affect satisfiability.

(·)δ is called a temporal shift. For instance:

• x .XG y .(p → y ≤ x + 1)1 = x .XG y .(p → y ≤ x)
• x .XG y .(p → y ≤ x + 1)2 = x .XG y .(p → ⊥)
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Termination rules



Termination rules

Termination rules decide if

• the current branch has to be accepted (3) (in this case we
have found a model);

• the current branch has to be rejected (7);
• or the current branch must be further explored (i.e., STEP
rule).
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EMPTY rule and CONTRADICTION rule

EMPTY rule:

{. . . , z .p, z .q,¬z .r , . . . }

{}
3

CONTRADICTION rule:

{. . . , z .p,¬z .p, . . . }
7
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SYNC rule

SYNC rule:

{. . . , x .(x ≤ x + 1), . . . }
3

We can check the truth of this timing contraint by simply checking
if 0 ≤ 1.

Remark: thanks to the expansion rule z .y .α→ {z .α[z/y ]} and the
temporal shift, all the timing constraints that can appear in a label
are of the form z .(z ∼ z + c), for some operator ∼ and some
constant c ∈ N.
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LOOP rule

Consider the TPTL formula for the bounded request-response
property:

φBR := G x .(request → F y .(response ∧ y ≤ x + 10))

Among the models of this formula there are models featuring
infinitely many requests, and consequently infinitely many responses.
LOOP rule
Let v be a poised leaf, and let u < v be a poised node, which is a
proper ancestor of v , such that Γ(u) = Γ(v) and all the
eventualities (i.e., z .X(α U β) or z .XFβ) requested in u are
fulfilled between u and v (included). Then,

• if time(u) = time(v), then v is crossed and the branch rejected;
• if time(u) < time(v), then v is ticked and the branch accepted.
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LOOP rule - Example

{. . . ,XFα,XFβ,XF γ, . . . }TIME=i

{. . . , γ, . . . }

{. . . , α, β, . . . }

{. . . ,XFα,XFβ,XF γ, . . . }TIME=i

7

We cross the branch because the difference between the two
timestamps is 0: the candidate model does not satisfy the progress
condition.

19



PRUNE rule

Consider the formula G¬p ∧ q U p. Even though it does not present
any propositional contradiction, it is unsatisfiable because the
eventuality p cannot be fulfilled.

PRUNE rule
Let w be a poised leaf. If there exist three poised nodes
u < v < w such that Γ(u) = Γ(v) = Γ(w), and each eventuality
requested in u and fulfilled between v and w is also fulfilled
between u and v , then, w is crossed and the branch rejected.

20
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PRUNE rule - Intuition

Intuition
The PRUNE rule recognizes and prunes the redundant cycles.

Why three occurrences (and not only two)?

• with two nodes we identify one cycle (e.g., LOOP rule). If this
cycle does not fulfill all the eventualities, then it is an
incomplete cycle, but not redundant as it still can fulfill in the
future the pending requests;

• with three nodes we identify two cycles. Therefore, if the
second cycles fufills a subset of the eventualities fulfilled by the
first, then it is a redundant cycle and we can prune it.

Conclusions

22
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Examples



Tableau for TPTL - Example

{x .G y .(p → y ≤ x + 2)}TIME=0

{x .y .(p → y ≤ x + 2), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .(p → x ≤ x + 2), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .(¬p), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .G y .(p → y ≤ x + 2)}TIME=0

{x .(¬p), x .XG y .(p → y ≤ x + 2)}TIME=0

7 LOOP1

STEP0

DISJUNCTION

{. . . , x .(x ≤ x + 2), . . . }TIME=0

FREEZE

ALWAYS

TPTLb+P

23



Tableau for TPTL - Example

{x .G y .(p → y ≤ x + 2)}TIME=0

{x .y .(p → y ≤ x + 2), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .(p → x ≤ x + 2), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .(¬p), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .G y .(p → y ≤ x + 2)}TIME=0

{x .(¬p), x .XG y .(p → y ≤ x + 2)}TIME=0

7 LOOP1

STEP0

DISJUNCTION

{. . . , x .(x ≤ x + 2), . . . }TIME=0

FREEZE

ALWAYS

TPTLb+P

23



Tableau for TPTL - Example

{x .G y .(p → y ≤ x + 2)}TIME=0

{x .y .(p → y ≤ x + 2), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .(p → x ≤ x + 2), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .(¬p), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .G y .(p → y ≤ x + 2)}TIME=0

{x .(¬p), x .XG y .(p → y ≤ x + 2)}TIME=0

7 LOOP1

STEP0

DISJUNCTION

{. . . , x .(x ≤ x + 2), . . . }TIME=0

FREEZE

ALWAYS

TPTLb+P

23



Tableau for TPTL - Example

{x .G y .(p → y ≤ x + 2)}TIME=0

{x .y .(p → y ≤ x + 2), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .(p → x ≤ x + 2), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .(¬p), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .G y .(p → y ≤ x + 2)}TIME=0

{x .(¬p), x .XG y .(p → y ≤ x + 2)}TIME=0

7 LOOP1

STEP0

DISJUNCTION

{. . . , x .(x ≤ x + 2), . . . }TIME=0

FREEZE

ALWAYS

TPTLb+P

23



Tableau for TPTL - Example

{x .G y .(p → y ≤ x + 2)}TIME=0

{x .y .(p → y ≤ x + 2), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .(p → x ≤ x + 2), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .(¬p), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .G y .(p → y ≤ x + 2)}TIME=0

{x .(¬p), x .XG y .(p → y ≤ x + 2)}TIME=0

7 LOOP1

STEP0

DISJUNCTION

{. . . , x .(x ≤ x + 2), . . . }TIME=0

FREEZE

ALWAYS

TPTLb+P

23



Tableau for TPTL - Example

{x .G y .(p → y ≤ x + 2)}TIME=0

{x .y .(p → y ≤ x + 2), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .(p → x ≤ x + 2), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .(¬p), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .G y .(p → y ≤ x + 2)}TIME=0

{x .(¬p), x .XG y .(p → y ≤ x + 2)}TIME=0

7 LOOP1

STEP0

DISJUNCTION

{. . . , x .(x ≤ x + 2), . . . }TIME=0

FREEZE

ALWAYS

TPTLb+P

23



Tableau for TPTL - Example

{x .G y .(p → y ≤ x + 2)}TIME=0

{x .y .(p → y ≤ x + 2), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .(p → x ≤ x + 2), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .(¬p), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .G y .(p → y ≤ x + 2)}TIME=0

{x .(¬p), x .XG y .(p → y ≤ x + 2)}TIME=0

7 LOOP1

STEP0

DISJUNCTION

{. . . , x .(x ≤ x + 2), . . . }TIME=0

FREEZE

ALWAYS

TPTLb+P

23



Tableau for TPTL - Example

{x .(¬p), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .G y .(p → y ≤ x + 1)}TIME=1

{x .(x ≤ x + 1), x .XG y .(p → y ≤ x + 1)}TIME=1

SYNC

{x .G y .(p → y ≤ x)}TIME=2

{x .(x ≤ x), x .XG y .(p → y ≤ x)}TIME=2

{x .G y .(p → ⊥)}TIME=3

{. . .⊥ . . . }TIME=3

7 CONTRADICTION

{x .(¬p), x .XG y .(p → ⊥)}TIME=3

{x .(¬p), x .XG y .(p → ⊥)}TIME=4

3 LOOP2

STEP1

STEP1

STEP1

STEP1

24



Tableau for TPTL - Example

{x .(¬p), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .G y .(p → y ≤ x + 1)}TIME=1

{x .(x ≤ x + 1), x .XG y .(p → y ≤ x + 1)}TIME=1

SYNC

{x .G y .(p → y ≤ x)}TIME=2

{x .(x ≤ x), x .XG y .(p → y ≤ x)}TIME=2

{x .G y .(p → ⊥)}TIME=3

{. . .⊥ . . . }TIME=3

7 CONTRADICTION

{x .(¬p), x .XG y .(p → ⊥)}TIME=3

{x .(¬p), x .XG y .(p → ⊥)}TIME=4

3 LOOP2

STEP1

STEP1

STEP1

STEP1

24



Tableau for TPTL - Example

{x .(¬p), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .G y .(p → y ≤ x + 1)}TIME=1

{x .(x ≤ x + 1), x .XG y .(p → y ≤ x + 1)}TIME=1

SYNC

{x .G y .(p → y ≤ x)}TIME=2

{x .(x ≤ x), x .XG y .(p → y ≤ x)}TIME=2

{x .G y .(p → ⊥)}TIME=3

{. . .⊥ . . . }TIME=3

7 CONTRADICTION

{x .(¬p), x .XG y .(p → ⊥)}TIME=3

{x .(¬p), x .XG y .(p → ⊥)}TIME=4

3 LOOP2

STEP1

STEP1

STEP1

STEP1

24



Tableau for TPTL - Example

{x .(¬p), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .G y .(p → y ≤ x + 1)}TIME=1

{x .(x ≤ x + 1), x .XG y .(p → y ≤ x + 1)}TIME=1

SYNC
{x .G y .(p → y ≤ x)}TIME=2

{x .(x ≤ x), x .XG y .(p → y ≤ x)}TIME=2

{x .G y .(p → ⊥)}TIME=3

{. . .⊥ . . . }TIME=3

7 CONTRADICTION

{x .(¬p), x .XG y .(p → ⊥)}TIME=3

{x .(¬p), x .XG y .(p → ⊥)}TIME=4

3 LOOP2

STEP1

STEP1

STEP1

STEP1

24



Tableau for TPTL - Example

{x .(¬p), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .G y .(p → y ≤ x + 1)}TIME=1

{x .(x ≤ x + 1), x .XG y .(p → y ≤ x + 1)}TIME=1

SYNC

{x .G y .(p → y ≤ x)}TIME=2

{x .(x ≤ x), x .XG y .(p → y ≤ x)}TIME=2

{x .G y .(p → ⊥)}TIME=3

{. . .⊥ . . . }TIME=3

7 CONTRADICTION

{x .(¬p), x .XG y .(p → ⊥)}TIME=3

{x .(¬p), x .XG y .(p → ⊥)}TIME=4

3 LOOP2

STEP1

STEP1

STEP1

STEP1

24



Tableau for TPTL - Example

{x .(¬p), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .G y .(p → y ≤ x + 1)}TIME=1

{x .(x ≤ x + 1), x .XG y .(p → y ≤ x + 1)}TIME=1

SYNC

{x .G y .(p → y ≤ x)}TIME=2

{x .(x ≤ x), x .XG y .(p → y ≤ x)}TIME=2

{x .G y .(p → ⊥)}TIME=3

{. . .⊥ . . . }TIME=3

7 CONTRADICTION

{x .(¬p), x .XG y .(p → ⊥)}TIME=3

{x .(¬p), x .XG y .(p → ⊥)}TIME=4

3 LOOP2

STEP1

STEP1

STEP1

STEP1

24



Tableau for TPTL - Example

{x .(¬p), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .G y .(p → y ≤ x + 1)}TIME=1

{x .(x ≤ x + 1), x .XG y .(p → y ≤ x + 1)}TIME=1

SYNC

{x .G y .(p → y ≤ x)}TIME=2

{x .(x ≤ x), x .XG y .(p → y ≤ x)}TIME=2

{x .G y .(p → ⊥)}TIME=3

{. . .⊥ . . . }TIME=3

7 CONTRADICTION

{x .(¬p), x .XG y .(p → ⊥)}TIME=3

{x .(¬p), x .XG y .(p → ⊥)}TIME=4

3 LOOP2

STEP1

STEP1

STEP1

STEP1

24



Tableau for TPTL - Example

{x .(¬p), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .G y .(p → y ≤ x + 1)}TIME=1

{x .(x ≤ x + 1), x .XG y .(p → y ≤ x + 1)}TIME=1

SYNC

{x .G y .(p → y ≤ x)}TIME=2

{x .(x ≤ x), x .XG y .(p → y ≤ x)}TIME=2

{x .G y .(p → ⊥)}TIME=3

{. . .⊥ . . . }TIME=3

7 CONTRADICTION

{x .(¬p), x .XG y .(p → ⊥)}TIME=3

{x .(¬p), x .XG y .(p → ⊥)}TIME=4

3 LOOP2

STEP1

STEP1

STEP1

STEP1

24



Tableau for TPTL - Example

{x .(¬p), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .G y .(p → y ≤ x + 1)}TIME=1

{x .(x ≤ x + 1), x .XG y .(p → y ≤ x + 1)}TIME=1

SYNC

{x .G y .(p → y ≤ x)}TIME=2

{x .(x ≤ x), x .XG y .(p → y ≤ x)}TIME=2

{x .G y .(p → ⊥)}TIME=3

{. . .⊥ . . . }TIME=3

7 CONTRADICTION
{x .(¬p), x .XG y .(p → ⊥)}TIME=3

{x .(¬p), x .XG y .(p → ⊥)}TIME=4

3 LOOP2

STEP1

STEP1

STEP1

STEP1

24



Tableau for TPTL - Example

{x .(¬p), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .G y .(p → y ≤ x + 1)}TIME=1

{x .(x ≤ x + 1), x .XG y .(p → y ≤ x + 1)}TIME=1

SYNC

{x .G y .(p → y ≤ x)}TIME=2

{x .(x ≤ x), x .XG y .(p → y ≤ x)}TIME=2

{x .G y .(p → ⊥)}TIME=3

{. . .⊥ . . . }TIME=3

7 CONTRADICTION
{x .(¬p), x .XG y .(p → ⊥)}TIME=3

{x .(¬p), x .XG y .(p → ⊥)}TIME=4

3 LOOP2

STEP1

STEP1

STEP1

STEP1

24



Tableau for TPTL - Example

{x .(¬p), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .G y .(p → y ≤ x + 1)}TIME=1

{x .(x ≤ x + 1), x .XG y .(p → y ≤ x + 1)}TIME=1

SYNC

{x .G y .(p → y ≤ x)}TIME=2

{x .(x ≤ x), x .XG y .(p → y ≤ x)}TIME=2

{x .G y .(p → ⊥)}TIME=3

{. . .⊥ . . . }TIME=3

7 CONTRADICTION
{x .(¬p), x .XG y .(p → ⊥)}TIME=3

{x .(¬p), x .XG y .(p → ⊥)}TIME=4

3 LOOP2

STEP1

STEP1

STEP1

STEP1

24



Tableau for TPTL - Example

{x .(¬p), x .XG y .(p → y ≤ x + 2)}TIME=0

{x .G y .(p → y ≤ x + 1)}TIME=1

{x .(x ≤ x + 1), x .XG y .(p → y ≤ x + 1)}TIME=1

SYNC

{x .G y .(p → y ≤ x)}TIME=2

{x .(x ≤ x), x .XG y .(p → y ≤ x)}TIME=2

{x .G y .(p → ⊥)}TIME=3

{. . .⊥ . . . }TIME=3

7 CONTRADICTION
{x .(¬p), x .XG y .(p → ⊥)}TIME=3

{x .(¬p), x .XG y .(p → ⊥)}TIME=4

3 LOOP2

STEP1

STEP1

STEP1

STEP1

24



Tableau for TPTLb+P

• It has the same structure of the previous tableau for TPTL.
• Now it is not true anymore that y is instantiated always in the
future w.r.t. x, but we can give a priori a bound to the
difference between the timestamps of two variables, thanks to
the bounds on the temporal operators. This is crucial for
simplifying the timed constraints.

• In order to deal with past modalities, the YESTERDAY rule
has been introduced:
YESTERDAY : it checks if all the past requests made by the
formulae of the current node are already satisfied by the
previous nodes of the current branch;

• if this is not the case, the current branch is rejected and the
construction of the tableau restarts from a previous state of
the branch, assuming that all the past requests are true.

conclusions
25



Yesterday rule - Example

{z .φ}TIME=0

{. . . , z .XY(ϕ), . . . }TIME=0

{. . . , z .Y(ψ), . . . }TIME=δ

7 YESTERDAY

STEPδ

{. . . , z .XY(ϕ), z .ψ−δ, . . . }TIME=0

{. . . , z .Y(ψ), . . . }TIME=δ

. . .

. . .
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Conclusions



Conclusions - 1

Results: we developed two original one-pass and tree-shaped tableau
systems for the logics TPTL and TPTLb+P.

• easy to implement and well suited for parallel implementations;
• no optimality: altough the satisfiability problem for these two
logics is EXPSPACE-complete, our tableau systems run in
doubly exponential space (logarithmic encoding for the
constants).
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Conclusions - 2

Future developments:

• SAT-based encoding of the tableau for LTL, based on bounded
satisfiability;

• SMT-based encoding of the tableau for TPTL, using Difference
Logic (DL) as the underlying theory;

• tableau system for TPTL+P:
• there is a heavy price to pay for the addition of past modalities

to TPTL: the satisfiability problem for TPTL+P is
nonelementary;

• at the moment, there exists no direct procedure for deciding its
satisfiability;

• the main problem to solve is how to recognize a period.
• extending the tableau systems of [Ber+16] to other linear time
temporal logics, e.g., metric LTL.
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Thank you for your attention!
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