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Abstract

In this paper, we focus our attention on the interval temporal logic
of the Allen’s relations “meets”, “begins”, and “begun by” (ABB for
short), interpreted over natural numbers. We first introduce the logic
and we show that it is expressive enough to model distinctive interval
properties, such as accomplishment conditions, to capture basic modal-
ities of point-based temporal logic, such as the until operator, and to
encode relevant metric constraints. Then, we prove that the satisfiabil-
ity problem for ABB over natural numbers is decidable by providing a
small model theorem based on an original contraction method. Finally,
we prove the EXPSPACE-completeness of the problem.

1 Introduction

Interval temporal logics are modal logics that allow one to represent and
to reason about time intervals. It is well known that, on a linear ordering,
one among thirteen different binary relations may hold between any pair
of intervals, namely, “ends”, “during”, “begins”, “overlaps”, “meets”, “be-
fore”, together with their inverses, and the relation “equals” (the so-called



Allen’s relations [1])!. Allen’s relations give rise to respective unary modal
operators, thus defining the modal logic of time intervals HS introduced by
Halpern and Shoham in [12]. Some of these modal operators are actually
definable in terms of others; in particular, if singleton intervals are included
in the structure, it suffices to choose as basic the modalities corresponding
to the relations “begins” B and “ends” E, and their transposes B, E. HS
turns out to be highly undecidable under very weak assumptions on the class
of interval structures over which its formulas are interpreted [12]. In par-
ticular, undecidability holds for any class of interval structures over linear
orderings that contains at least one linear ordering with an infinite ascend-
ing or descending chain, thus including the natural time flows N, Z, Q, and
R. Undecidability of HS over finite structures directly follows from results
in [15]. In [14], Lodaya sharpens the undecidability of HS showing that
the two modalities B, E suffice for undecidability over dense linear orderings
(in fact, the result applies to the class of all linear orderings [11]). Even
though HS is very natural and the meaning of its operators is quite intu-
itive, for a long time such sweeping undecidability results have discouraged
the search for practical applications and further investigations in the field.
A renewed interest in interval temporal logics has been recently stimulated
by the identification of some decidable fragments of HS, whose decidability
does not depend on simplifying semantic assumptions such as locality and
homogeneity [11]. This is the case with the fragments BB, EE (logics of the
“begins/begun by” and “ends/ended by” relations) [11], A, AA (logics of
temporal neighborhood, whose modalities capture the “meets/met by” re-
lations [10]), and D, DD (logics of the subinterval/superinterval relations)
[3, 16].

In this paper, we focus our attention on the product logic ABB, obtained
from the join of BB and A (the case of AEE is fully symmetric), interpreted
over the linear order N of the natural numbers (or a finite prefix of it).
The decidability of BB can be proved by translating it into the point-based
propositional temporal logic of linear time LTL with temporal modalities
F (sometime in the future) and P (sometime in the past), which has the
finite (pseudo-)model property and is decidable, e.g., [9]. In general, such a
reduction to point-based temporal logics does not work: formulas of interval
temporal logics are evaluated over pairs of points and translate into binary

'We do not consider here the case of ternary relations. Amongst the multitude of
ternary relations among intervals there is one of particular importance, which corresponds
to the binary operation of concatenation of meeting intervals. The logic of such a ternary
interval relation has been investigated by Venema in [19]. A systematic analysis of its
fragments has been recently given by Hodkinson et al. [13].



relations. For instance, this is the case with A. Unlike the case of BB,
when dealing with A one cannot abstract way from the left endpoint of
intervals, as contradictory formulas may hold over intervals with the same
right endpoint and a different left endpoint. The decidability of AA, and
thus that of its fragment A, over various classes of linear orderings has been
proved by Bresolin et al. by reducing its satisfiability problem to that of the
two-variable fragment of first-order logic over the same classes of structures
[4], whose decidability has been proved by Otto in [17]. Optimal tableau
methods for A with respect to various classes of interval structures can be
found in [6, 7]. A decidable metric extension of A over the natural numbers
has been proposed in [8]. A number of undecidable extensions of A, and
AA, have been given in [2, 5].

ABB retains the simplicity of its constituents BB and A, but it improves
a lot on their expressive power (as we shall show, such an increase in expres-
siveness is achieved at the cost of an increase in complexity). First, it allows
one to express assertions that may be true at certain intervals, but at no
subinterval of them, such as the conditions of accomplishment. Moreover, it
makes it possible to easily encode the until operator of point-based temporal
logic (this is possible neither with BB nor with A). Finally, meaningful met-
ric constraints about the length of intervals can be expressed in ABB, that is,
one can constrain an interval to be at least (resp., at most, exactly) k points
long. We prove the decidability of ABB interpreted over N by providing a
small model theorem based on an original contraction method. To prove it,
we take advantage of a natural (equivalent) interpretation of ABB formulas
over grid-like structures based on a bijection between the set of intervals over
N and (a suitable subset of ) the set of points of the N x N grid. In addition,
we prove that the satisfiability problem for ABB is EXPSPACE-complete
(that for A is NEXPTIME-complete). In the proof of hardness, we use a
reduction from the exponential-corridor tiling problem.

The paper is organized as follows. In Section 2 we introduce ABB. In
Section 3, we prove the decidability of its satisfiability problem. We first
describe the application of the contraction method to finite models and then
we generalize it to infinite ones. In Section 4 we deal with computational
complexity issues. Conclusions provide an assessment of the work and out-
line future research directions.



2 The interval temporal logic ABB

In this section, we briefly introduce syntax and semantics of the logic ABB,
which features three modal operators (A), (B), and (B) corresponding to
the three Allen’s relations A (“meets”), B (“begins”), and B (“begun by”),
respectively. We show that ABB is expressive enough to capture the no-
tion of accomplishment, to define the standard until operator of point-based
temporal logics, and to encode metric conditions. Then, we introduce the
basic notions of atom, type, and dependency. We conclude the section by
providing an alternative interpretation of ABB over labeled grid-like struc-
tures.

2.1 Syntax and semantics

Given a set Prop of propositional variables, formulas of ABB are built up
from Prop using the boolean connectives — and V and the unary modal
operators (A), (B), (B). As usual, we shall take advantage of shorthands like
01 N\ @2 ="(7¢1 V 792}, [Alo = ~(A)~o, [Blo =—(B)~¢, T =pV—p,
and L =p A —p, with p € Prop. Hereafter, we denote by |@| the size of @.

We interpret formulas of ABB in interval temporal structures over natu-
ral numbers endowed with the relations “meets”, “begins”, and “begun by”.
Precisely, we identify any given ordinal N < w with the prefix of length N
of the linear order of the natural numbers and we accordingly define Iy as
the set of all non-singleton closed intervals [x,y], with x,y € N and x < y.
For any pair of intervals [x,y], [x’,y’] € I, the Allen’s relations “meets”
A, “begins” B, and “begun by” B are defined as follows (note that B is the
inverse relation of B):

o “meets” relation: [x,y] A [x',y’] iff y = x/;

o “begins” relation: [x,y] B [x/,y’] iff x =x’ and y’ < y;

. “begun by” relation: [x,y] B [x’,y’] iff x =x" and y <y’.

Given an interval structure § = (In, A, B, B, o), where 0: Iy — 22(Prop)
is a labeling function that maps intervals in In to sets of propositional

variables, and an initial interval I, we define the semantics of an ABB formula
as follows:

° S,1F aiff a € o(I), for any a € Prop;

° S,IE—qiff 8,1 @;

. S, IE @1 V @ iff ;1 F @1 or §,1F @g;

° for every relation R € {A,B,B}, 8,1 £ (R)¢ iff there is an interval
] € In such that IR J and S, ] F ¢.



Given an interval structure 8§ and a formula @, we say that 8§ satisfies ¢ if
there is an interval I in 8§ such that §,1 F @. We say that ¢ is satisfiable
if there exists an interval structure that satisfies it. We define the satis-
fiability problem for ABB as the problem of establishing whether a given
ABB-formula ¢ is satisfiable.

We conclude the section with some examples that account for ABB ex-
pressive power. The first one shows how to encode in ABB conditions of
accomplishment (think of formula ¢ as the assertion: “Mr. Jones flew from
Venice to Nancy”): (A)((p A Bl(—e A [Alm@) A [B]ﬁ(p). Formulas
of point-based temporal logics of the form { U ¢, using the standard until
operator, can be encoded in ABB (where atomic intervals are two-point inter-
vals) as follows: (A)([BILA@) V (A)((A)([BILA@) A BI((A)([BILAW))).
Finally, metric conditions like: “¢ holds over a right neighbor interval of
length greater than k (resp., less than k, equal to k)” can be captured by
the following ABB formula: (A)(@ A <B>kT) (resp., (A)(@ A [BJ*71L1),
(A)(@ A BIFL A (B)*'T))2%

2.2 Atoms, types, and dependencies

Let 8 = (INn, A, B, B, 0) be an interval structure and ¢ be a formula of ABB.
In the sequel, we shall compare intervals in § with respect to the set of
subformulas of ¢ they satisfy. To do that, we introduce the key notions of
@-atom, @-type, @-cluster, and @-shading.

First of all, we define the closure Cl(¢@) of ¢ as the set of all subformulas
of @ and of their negations (we identify ——a with a, =(A)a with [A]—«,
etc.). For technical reasons, we also introduce the extended closure ClI* (@),
which is defined as the set of all formulas in Cl(¢) plus all formulas of the
forms (R)a and —(R)«, with R € {A, B, B} and « € Cl(o).

A @-atom is any non-empty set F C CIT (@) such that (i) for every
o € ClT (@), we have o € Fiff o ¢ F and (ii) foreveryy = a V B € CIT (o),
we have y € Fiff « € F or § € F (intuitively, a @-atom is a maximal locally
consistent set of formulas chosen from CI™ (¢@)). Note that the cardinalities
of both sets Cl(@) and Cl* () are linear in the number |¢| of subformulas of
@, while the number of @-atoms is at most exponential in || (precisely, we
have [Cl(¢)| = 2|9, |CIT ()| = 14|¢|, and there are at most 27/®! distinct
atoms).

21t is not difficult to show that ABB subsumes the metric extension of A given in [8]. A
simple game-theoretic argument shows that the former is in fact strictly more expressive
than the latter.



We also associate with each interval I € § the set of all formulas o €
Cl* (@) such that 8,1 & . Such a set is called @-type of I and it is denoted
by Typeg(I). We have that every @-type is a @-atom, but not vice versa.
Hereafter, we shall omit the argument ¢, thus calling a @-atom (resp., a
@-type) simply an atom (resp., a type).

Given an atom F, we denote by Obs(F) the set of all observables of F,
namely, the formulas « € Cl(¢) such that &« € F. Similarly, given an atom F
and a relation R € {A, B, B}, we denote by Reqg(F) the set of all R-requests
of F, namely, the formulas & € CI(¢) such that (R)x € F. Taking advantage
of the above sets, we can define the following two relations between atoms
F and G:

FA,G iff Rega(F) = 0bs(G) U Regp(G) U Reqg(G);
Obs(F) U Reqg(F) € Reqg(G) C
Obs(F) U Reqg(F) U Regg(F),
Obs(G) U Regy(G) C Regy(F) C
0bs(G) U Reqp(G) U Regg(G).

Note that the relation —B- is transitive, while 2 is not. Moreover, both

2, and -85 satisfy a view-to-type dependency, namely, for every pair of
intervals I, ] in 8§, we have that

IA] implies Typeg (1) 25 Typeg(])
IB]J implies Typeg (1) 25 Typeg(]).

Relations -2~ and -8 will come into play in the definition of consistency
conditions (see Definition 2.1).

2.3 Compass structures

The logic ABB can be equivalently interpreted over grid-like structures (the
so-called compass structures [19]) by exploiting the existence of a natural
bijection between the intervals I = [x,y] and the points p = (x,y) of an
N x N grid such that x < y. As an example, Figure 1 depicts four in-
tervals Ip, ..., I3 such that Ig A Iy, I B Iy, and Iy B I3, together with the
corresponding points po, ..., ps of a discrete grid (note that the three Allen’s
relations A, B, B between intervals are mapped to corresponding spatial re-
lations between points; for the sake of readability, we name the latter ones
as the former ones).
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Figure 1: Correspondence between intervals and points of a discrete grid.

Definition 2.1. Given an ABB formula ¢, a (consistent and fulfilling) com-
pass (@-)structure of length N < w is a pair § = (Pn, L), where Py is the
set of points p = (x,y), with 0 < x <y < N, and £ is function that maps
any point p € PN to a (@-)atom L(p) in such a way that

° for every pair of points p,q € PN and every relation R € {A, B}, if
p R g holds, then L(p) £ L(q) follows (consistency);

° for every point p € Py, every relation R € {A, B, B}, and every formula
x € Reqg (L(p)), there is a point q € PN such that p R q and o €
Obs (L(q)) (fulfillment).

We say that a compass (@-)structure § = (PN, L) features a formula o if
there is a point p € Py such that &« € L(p). The following proposition
implies that the satisfiability problem for ABB is reducible to the problem
of deciding, for any given formula ¢, whether there exists a @-compass
structure that features .

Proposition 2.2. An ABB-formula ¢ is satisfied by some interval structure
if and only if it is featured by some (@-)compass structure.

3 Deciding the satisfiability problem for ABB

In this section, we prove that the satisfiability problem for ABB is decidable
by providing a “small-model theorem” for the satisfiable formulas of the



logic. For the sake of simplicity, we first show that the satisfiability problem
for ABB interpreted over finite interval structures is decidable and then we
generalize such a result to all (finite or infinite) interval structures.

As a preliminary step, we introduce the key notion of shading. Let
G = (PN, L) be a compass structure of length N < w and let 0 <y < N.
The shading of the row y of G is the set Shadingg(y) = {L(x,y) 10 <
x < y}, namely, the set of the atoms of all points in PN whose vertical
coordinate has value y (basically, we interpret different atoms as different
colors). Clearly, for every pair of atoms F and F in 8hadingg(y), we have
Rega (F) = Rega (F').

3.1 A small-model theorem for finite structures

Let @ be an ABB formula. Let us assume that ¢ is featured by a finite
compass structure § = (Pn, L), with N < w. In fact, without loss of
generality, we can assume that ¢ belongs to the atom associated with a
point p = (0,y) of G, with 0 < y < N. We prove that we can restrict
our attention to compass structures § = (Pn, L), where N is bounded by a
double exponential in |¢@|. We start with the following lemma that proves a

simple, but crucial, property of the relations -2 and -2-.

Lemma 3.1. If F25H and G 25 H hold for some atoms F,G,H, then
F 25 G holds as well.

Proof. Suppose that F-25H and G -2 H hold for some atoms F, G,H. By
applying the definitions of the relations 25 and -2-, we immediately

obtain:

Rega(F) = 0Obs(H) U Regg(H) U Regg(H) (since F A5 H)
= 0bs(G) U Regg(G) U Reg(G) (since G &5 H).

This shows that F 2 G. O]

The next lemma shows that, under suitable conditions, a given compass
structure § may be reduced in length, preserving the existence of atoms
featuring ¢.

Lemma 3.2. Let G be a compass structure featuring @. If there exist two
rows 0 < yo < y1 < N in G such that Shadingg(yo) C Shadingg(y1), then
there exists a compass structure G’ of length N’ < N that features @.
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Figure 2: Contraction §’ of a compass structure G.

Proof. Suppose that 0 < yg < y; < N are two rows of § such that
Shadingg(yo) C Shadingg(y1). Then, there is a function f: {0,...,yo—1} —
{0, ...,y1 — 1} such that, for every 0 < x < yg, L(x,yo) = L(f(x),y1). Let
k =y1 —yo, N’ =N —k (< N), and Py be the portion of the grid that
consists of all points p = (x,y), with 0 < x <y < N’. We extend f to a
function that maps points in Py to points in Py as follows:

° if p=(x,y), with 0 < x <y < yo, then we simply let f(p) = p;

° if p=(x,y), with 0 < x <yg <y, then we let f(p) = (f(x),y + k);

. if p=(x,y), with yo < x <y, then we let f(p) = (x + k,y + k).

We denote by L’ the labeling of Py such that, for every point p € Py,
L'(p) = L(f(p)) and we denote by G’ the resulting structure (Pn/, L) (see
Figure 2). We have to prove that G’ is a consistent and fulfilling compass
structure that features @ (see Definition 2.1). First, we show that G’ satisfies
the consistency conditions for the relations B and A; then we show that G’
satisfies the fulfillment conditions for the B-, B-, and A-requests; finally, we
show that G’ features .

CONSISTENCY WITH RELATION B.  Consider two points p = (x,y) and
p’ = (x',y’) in G’ such that p B p’,ie., 0 < x =x' <y’ <y < N,
We prove that L'(p) - L'(p’) by distinguishing among the following three

cases (note that exactly one of such cases holds):



1. y < yp and y’ < yo,

2. y=vyoandy’ >y,

3. y>ypandy’ <yo.

If y < yp and y’ < yg, then, by construction, we have f(p) = p and
f(p’) = p’. Since G is a (consistent) compass structure, we immediately
obtain L'(p) = L(p) 2= L(p’) = L' (p").

Ify > yo and y > yo, then, by construction, we have either f(p) = (f(x),y+
k) or f(p) = (x + k,y + k), depending on whether x < yg or x > yo.
Similarly, we have either f(p’) = (f(x’),y’ + k) = (f(x),y’ + k) or f(p’) =
(x" +k,y" +k) = (x +k,y’ + k). This implies f(p) B f(p’) and thus,
since §G is a (consistent) compass structure, we have L'(p) = L(f(p)) -
L(f(p") =L (p").

If y > yo and y’ < yp, then, since x < y’ < yp, we have by construc-
tion f(p) = (f(x),y + k) and f(p’) = p’. Moreover, if we consider the
point p” = (x,yo) in §’, we easily see that (i) f(p”) = (f(x),y1), (ii)
f(p) B f(p") (whence L(f(p)) s £(F(p")), (iit) L(F(p”)) = L(p"), and
(iv) p” B p’ (whence L(p”) =25 L(p’)). It thus follows that L'(p) =
L(f(p)) 2 L(f(p")) = L(p") 2 L(p') =L(f(p')) = L'(p). Finally, by
exploiting the transitivity of the relation -2, we obtain L'(p) 2> L/(p’).

CONSISTENCY WITH RELATION A. Consider two points p = (x,y) and
p’ = (x',y’) such that p A p’, ie., 0 <x <y =x' <y’ < N’. We define
p” = (y,y + 1) in such a way that p A p”’ and p’ B p” and we distinguish

between the following two cases:

L. vy =vo,

2. Yy < Yo.

If y > yo, then, by construction, we have f(p) A f(p”). Since G is a (con-
sistent) compass structure, it follows that L'(p) = L(f(p)) 25 L(f(p”)) =
L/(p//)‘

If y < yo, then, by construction, we have L(p”) = L(f(p”)). Again, since G
is a (consistent) compass structure, it follows that L'(p) = L(f(p)) = L(p)
A L") =L(f(p") =L (p").

In both cases we have L'(p) 25 L'(p”). Now, we recall that p’ B p”
and that, by previous arguments, G’ is consistent with the relation B. We
thus have L/(p’) 25 L/(p”). Finally, by applying Lemma 3.1, we obtain
L'(p) 25 L7 (p").

FULFILLMENT OF B-REQUESTS. Consider a point p = (x,y) in §’ and
some B-request & € Regy (L/ (p)) associated with it. Since, by construction,
x € Regy (L(f(p))) and G is a (fulfilling) compass structure, we know that

10



G contains a point q’ = (x’,y’) such that f(p) B q’ and o € Obs(L(q")).
We prove that §’ contains a point p’ such that p B p’ and o € Obs(L'(p"))
by distinguishing among the following three cases (note that exactly one of
such cases holds):

L y<uyo

2.y >y,

3. y=>yoandy <y

If y < yo, then, by construction, we have p = f(p) and q’ = f(q’). There-
fore, we simply define p’ = q’ in such a way that p = f(p) B q’ = p’ and
o€ Obs(L'(p") (= Obs(L(f(p')) = Obs(L(q"))).

If y’ > vy, then, by construction, we have either f(p) = (f(x),y + k) or
f(p) = (x + k,y + k), depending on whether x < yg or x > yg. We define
p’ = (x,y’ —k) in such a way that p B p’. Moreover, we observe that either
f(p’) = (f(x),y’) or f(p’) = (x+k,y’), depending on whether x < yg or x >
Yo, and in both cases f(p’) = q’ follows. This shows that o € Obs (L’(p’))
(= 0bs(L(f(p")) = Obs(L(q"))).

If y > yp and y’ < y1, then we define p = (x,yp) and @ = (x’,y1) and we
observe that f(p) B @, g B q’, and f(p) = q. From f(p) B g and q B q’,
it follows that o € Regp (L(q)) and hence & € Regp (L(f))). Since G is a
(fulfilling) compass structure, we know that there is a point p’ such that
p Bp’ and « € Obs(L(p’)). Moreover, since p B p’, we have f(p’) = p’,
from which we obtain p B p’ and « € Obs(L(p’)).

FULFILLMENT OF B-REQUESTS. The proof that G’ fulfills all B-requests of
its atoms is symmetric with respect to the previous one.

FULFILLMENT OF A-REQUESTS. Consider a point p = (x,y) in §’ and
some A-request & € Reqa (L‘/ (p)) associated with p in §’. Since, by previous
arguments, G’ fulfills all B-requests of its atoms, it is sufficient to prove that
either « € Obs(L’(p’)) or o € Regg (L' (p’)), where p’ = (y,y + 1). This
can be easily proved by distinguishing among the three cases y < yo — 1,
y=yo— 1, and y = yo.

FEATURED FORMULAS. Recall that, by previous assumptions, § contains
a point p = (0,y), with 0 < y < N, such that ¢ € L(p). If y < yo,
then, by construction, we have @ € L'(p) (= L(f(p)) = L(p)). Other-
wise, if y > yo, we define ¢ = (0,yo) and we observe that q B p. Since
G is a (consistent) compass structure and (B)p € €It (@), we have that
@ € Reqg (L(q)). Moreover, by construction, we have L'(q) = L(f(q))
and hence @ € Regg(L'(q)). Finally, since §’ is a (fulfilling) compass
structure, we know that there is a point p’ in G’ such that f(q) B p’ and

11



@ € Obs(L'(p"). 0

On the grounds of the above result, we can provide a suitable upper
bound for the length of a minimal finite interval structure that satisfies ¢, if
there exists any. This yields a straightforward, but inefficient, 2EXPSPACE
algorithm that decides whether a given ABB-formula ¢ is satisfiable over
finite interval structures.

Theorem 3.3. An ABB-formula ¢ is satisfied by some finite interval struc-
ture iff it is featured by some compass structure of length N < 927! (i.e
double exponential in |@|).

°)

Proof. One direction is trivial. We prove the other one (“only if” part).
Suppose that @ is satisfied by a finite interval structure 8. By Proposition
2.2, there is a compass structure G that features ¢ and has finite length
N < w. Without loss of generality, we can assume that N is minimal among
all finite compass structures that feature ¢. We recall from Section 2.2 that
G contains at most 271®! distinct atoms. This implies that there exist at most
22" different shadings of the form Shadingg(y), with 0 <y < N. Finally,

by applying Lemma 3.2, we obtain N < 927! (otherwise, there would exist
two rows 0 < yo < yi < N such that Shadingg(yo) = Shadingg(y1), which
is against the hypothesis of minimality of N). O

3.2 A small-model theorem for infinite structures

In general, compass structures that feature ¢ may be infinite. Here, we prove
that, without loss of generality, we can restrict our attention to sufficiently
“regular” infinite compass structures, which can be represented in double
exponential space with respect to |@|. To do that, we introduce the notion
of periodic compass structure.

Definition 3.4. An infinite compass structure § = (P, L) is periodic, with
threshold Yo, period Uy, and binding g :{0,...,yo +y — 1} — {0,...,yo — 1},
if the following conditions are satisfied:

° for every yo +y < x <y, we have L(x,y) =L(x—y,y —Y),

o for every 0 < x < Yo+ 7Y <y, we have L(x,y) = L(g(x),y —y).

Figure 3 gives an example of a periodic compass structure (the arrows repre-
sent some relationships between points induced by the binding function g).
Note that any periodic compass structure § = (P,, L) can be finitely repre-
sented by specifying (i) its threshold yo, (ii) its period y, (iii) its binding g,
and (iv) the labeling L restricted to the portion Py ;g1 of the domain.

12
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Figure 3: A periodic compass structure with threshold yg, period y, and
binding g.

The following theorem leads immediately to a 2EXPSPACE algorithm
that decides whether a given ABB-formula ¢ is satisfiable over infinite in-
terval structures.

Theorem 3.5. An ABB-formula ¢ is satisfied by an infinite interval struc-
ture iff it is featured by a periodic compass structure with threshold yo < 927!
and period y < 2|@| - 9277l 27!

Proof. One direction is trivial. We prove the other one (“only if” part).
Suppose that @ is satisfied by an infinite interval structure §. By Proposition
2.2, there is an infinite compass structure G that features ¢. Below, we show
how to turn § into a periodic compass structure G’ that still features ¢ and
whose threshold and period satisfy the bounds given by the theorem.
THRESHOLD Yg. Since § is infinite, we know that there exist infinitely
many rows Yo, Yi,Ys, ... such that Shadingg(yi) = Shadingg(y;) for every
pair of indices 1,j € N. We define yg as the least of all such rows. By simple
counting arguments, we have that yo < 227!

13



Figure 4: A set Jmg,, (f) of rows that fulfill all requests at row yo.

PERIOD y. Since § is a (fulfilling) compass structure, there is a function f
that maps any point p = (x, o), any relation R € {A, B}, and any request o €
Reqr (L(p)) to apoint p” = f(p, R, &) such that p R p’ and « € Obs(L(p’)).
Let f be one such function. We denote by Jmg(f) the image set of f, namely,
the set of all points of the form p’ = f(p, R, &), with p = (x, o), R € {A, B},
and o € Reqg (L(p)) Moreover, we denote by Jmg, (f) the projection of
Img(f) on the y-component. Intuitively, Jmg, (f) is a minimal set of rows
that fulfill all A-requests and all B-requests of atoms along the row Uy in
G (see, for instance, Figure 4). Clearly, min(ngy(f)) > Yo and Img,, (f)
contains at most 2|@| - yo (possibly non-contiguous) rows (namely, at most
one row for each choice of 0 < x < Yo, R € {A, B}, and « € Reqg (L(x,ﬁo))).
We call gap of Img, (f) any set Y ={y,y + 1,...,y’} of contiguous rows of G
such that yp <y <y’ < max(ﬂmgy (f)) and Jmg,, (f)NY = 0. From previous
results (in particular, from the proofs of Lemma 3.2 and Theorem 3.3), we
can assume, without loss of generality, that every gap Y of IJmg,, (f) has size
at most 227 —1 (otherwise, we can find two rows yj) and y{ in Y that satisfy
the hypothesis of Lemma 3.2 and hence we can “remove” the rows from y
toy] —1 from G, without affecting consistency and fulfillment). This shows
that max(f]mgy(f)) < Yo + 2|l - yo - 22" We then define J as the least
value such that Yoy > max(ﬂmgy (f)) and Shadingg(yo) = Shadingg(yo+y).
Again, by exploiting simple counting arguments, one can prove that y <
max(f]mgy (f)) —go + 227\@\ < 2|(P‘ ) go . 227\@\ + 227\@\ < (2‘@| .go + 1) . 227I<P\
<2l (Do +1) 227" < 2qf- 227" 2277
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BINDING g. Since 8hadingg(yo) = 8hadingg(yo + ), we know that there
is a (surjective) function g that maps any value x € {0,...,yo+y — 1} to a
value g(x) € {0, ...,yo— 1} in such a way that L(x,yo+y) = L(g(x),yo). We
choose one such function as g.

PERIODIC COMPASS STRUCTURE §’'. According to Definition 3.4, the
threshold yg, the period y, the binding g, and the labeling L of § re-
stricted to the finite domain Pg 15— uniquely determine a periodic struc-
ture §' = (Pw,L’). It thus remains to show that §’ is a (consistent and
fulfilling) compass structure that features @. The proof that the labeling
L' is consistent with the relations A, B, and B is straightforward, given the
above construction. As for the fulfillment of the various requests, one can
prove, by induction on n, that, for every n € N, every point p = (x,y) with
Y = Yo + Ny, every relation R € {A, B} (resp., R = B), and every R-request
« € Regg (L'(p)), there is a point p’ = (x’,y’) such that y’ < Yo+ (n+1)y
(resp., y' < Yo +ny), p R p’, and o € Obs(L'(p’)). This suffices to
claim that G’ is a consistent and fulfilling compass structure. Consider the
case of relation B (the case of relation B is fully symmetric and the case
of relation A can be easily reduced to that of B). By contradiction, let us
suppose that there is a point p = (x,y), with Yo+ ny <y <yo + (n+ 1)y,
such that o € Regg(L(p)) and o« ¢ Obs(L(p’)) for all points p’ such
that p B p’. Since G’ is consistent, we have o € Regg(L(q)), where
q = (X,ljg + (n+ 1)1]) (note that p B q holds) and thus, by construc-
tion, there is a point q’ = (x,y’), with yo+ (n+ 1)y <y’ <yo+ (n+2)y,
such that « € Obs(L(q’)) (a contradiction). Finally, one can show that G’
features the formula ¢ by exploiting the same argument that was given in
the proof of Lemma 3.2. O

4 Tight complexity bounds to the satisfiability
problem for ABB

In this section, we show that the satisfiability problem for ABB interpreted
over (either finite or infinite) interval temporal structures is EXPSPACE-
complete.

The EXPSPACE-hardness of the satisfiability problem for ABB follows
from a reduction from the exponential-corridor tiling problem, which is known
to be EXPSPACE-complete [18]. Formally, an instance of the exponential-
corridor tiling problem is a tuple T = (T,t,,t+,H, V,n) consisting of a
finite set T of tiles, a bottom tile t; € T, a top tile t+ € T, two binary re-
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lations H,V over T (specifying the horizontal and vertical constraints), and
a positive natural number n (represented in unary notation). The problem
consists in deciding whether there exists a tiling f : Nx{0,...,2"—1} — T of
the infinite discrete corridor of height 2™, that associates the tile t; (resp.,
t1) with the bottom (resp., top) row of the corridor and that respects the
horizontal and vertical constraints H and V, namely,

i) for every x € N, we have f(x,0) =1,

ii)  for every x € N, we have f(x,2™ — 1) = t,

iii) for every x € N and every 0 <y < 2™, we have f(x,y) H f(x + 1,y),
iv) for every x € N and every 0 <y < 2™—1, we have f(x,y) V f(x,y+1).
The proof of the following lemma, which reduces the exponential-corridor
tiling problem to the satisfiability problem for ABB. Intuitively, such a
reduction exploits (i) the correspondence between the points p = (x,y)
inside the infinite corridor N x {0, ...,2™ — 1} and the intervals of the form
I, = [y+2™x,y+2"x+1], (ii) [T| propositional variables which represent the
tiling function f, (iii) n additional propositional variables which represent
(the binary expansion of) the y-coordinate of each row of the corridor, and
(iv) the modal operators (A) and (B) by means of which one can enforce
the local constrains over the tiling function f (as a matter of fact, this

shows that the satisfiability problem for the AB fragment is already hard
for EXPSPACE).

Lemma 4.1. There is a polynomial-time reduction from the exponential-
corridor tiling problem to the satisfiability problem for ABB.

Proof. Consider a generic instance 7 = (T,t,,t1, H, V,n) of the exponential-
corridor tiling problem, where T = {ti,...,tx}. We guarantee the exis-
tence of a tiling function f : N x {0,...,2™ — 1} — T that satisfies the
instance T through the existence of a labeled (infinite) interval structure
8§ = (I, A, B, o) that satisfies a suitable AB formula with size polynomial
in T. We use k propositional variables ty, ..., tx to represent the tiles from T,
N propositional variables yg, ...,yn_1 to represent the binary expansion of
the y-coordinate of a row, and one propositional variable ¢ to identify those
intervals in [, that correspond to points of the infinite corridor of height
2™, The correspondence between the points p = (x,y), with x € N and
0 <y < 2™, of the infinite corridor and the intervals I, € I, is obtained
by letting I, = [y + 2™x,y + 2™x + 1] (Figure 5 can be used as a reference
example through the rest of the proof). According to such an encoding, the
labeling function o is related to the tiling function f as follows:
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Figure 5: Encoding of a tiling function.

for every point p = [x,y] € N x{0,...,2™ — 1} and every inder 1 <1 <k, if
f(p) =ti, then o(lp) ={c, ti,jy, - Y ), where {j1, ..., j;} €{0,...,n — 1} and
Y= 2 5elmin 2

For the sake of brevity, we introduce a universal modal operator [U], which
is defined as follows:
U = o A [Ala A [A][A]c.

We now show how to express the existence of a tiling function f that satisfies
T. First of all, we associate the propositional variable ¢ with all and only the
intervals of the form I, = [y +2"x,y+2"x+1], withx € Nand 0 <y < 2"
(atomic intervals), as follows:

¢c = [U(c « [BIL).
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The tiling function f: N x {0, ...,2™ — 1} — T is represented by associating
with each c-labeled interval I, = [y+2™x,y+2"x+1] a unique propositional
variable f(p) in T as follows:

er = U] (C - \/léigkti> AU (C - /\1<i<)‘<kﬁ(ti N tj))'

Next, we associate with each (possibly non-minimal) interval of the form
I=[y+2"%x,y+2"x+1] a subset of the propositional variables yg, ..., Yn_1
that encodes the binary expansion of y. Such a labeling can be enforced by
the formula:

Py = (/\0<i<n_‘yi) A U] (/\ogi<n(yi < [Blyi) A (—yi < [B]ﬁyi)> N
(e — oY)
where the formula (p}nc is defined (by induction on i € {n, ..., 0}) as follows:
T ifi=mn,
Ohe = ¢ (Wi AA Ay Agill) vV

. ifi<mn,
“Yi A (A)(cAyi) A ot

The formula (p}m involves the formula (p’éq, which is defined (by induction
onie€{n,..,0}) as follows:

T ifi=n,
oty = § (Wi A (AeAw) v .
. 1 .
(Fui A (A)eA—Y)) A @it

It remains to express the constraints on the tiling function f. This can be
done by using the following formulas (for the sake of simplicity, we assume,
without loss of generality, that (tt,t;) € V):

o1 = (e A Agcion—vi — to)

T = [U](c A NogienVi — tT)

on = WA car((am A B)e A ) = Viuen (A)e A 1))
ov = WA ca(le A t) = Vigev (A)le A 1)),
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where @ corr = (pgq AN [B]ﬁ(pgq (intuitively, the formula @ holds over all
and only the intervals of the form I = [y + 2™,y + 2™ (x + 1)], in such a
way that, if ] and K are the shortest intervals such that I B J and I A K,
then ] corresponds to the point p = (x,y) and K corresponds to the point
q=(x+1y)).

Summing up, we have that the formula @ = @ A @ A @y N @1 A
©T N\ ©H /\ @v, which has polynomial size in |J] and uses only the modal
operators (A) and (B), is satisfiable if and only if T is a positive instance of
the exponential-corridor tiling problem. O

As for the EXPSPACE-completeness, we claim that the existence of a
compass structure G that features a given formula ¢ can be decided by
verifying suitable local (and stronger) consistency conditions over all pairs
of contiguous rows. In fact, in order to check that these local conditions
hold between two contiguous rows y and y + 1, it is sufficient to store into
memory a bounded amount of information, namely, (i) a counter y that
ranges over {1, e 22" 4 lp] - 927! }, (ii) the two guessed shadings S and S’
associated with the rows y and y + 1, and (iii) a function g: S — S’ that
captures the horizontal alignment relation between points with an associated
atom from S and points with an associated atom from S’. This shows that
the satisfiability problem for ABB can be decided in exponential space, as
claimed by Lemma 4.2 below.

In order to prove this lemma, we preliminarily need to introduce two
variants of the dependency relations -2+ and -2 | which are more restric-
tive than the previous ones and which are evaluated (locally) over pairs of
atoms that lie along two contiguous rows. Precisely, we define the following
relations between atoms F and G:

Rega(F) = Obs(G) U Reqg(G)
Reqg(G) = 0

Reqg(F) = 0bs(G) U Regg(G)
Reqg(G) = Obs(F) U Reqg(F).

FA- G iff {

F2s G iff {

Note that F+-2- G (resp., F+2— G) implies F 25 G (resp., F 25 G), but the
converse implications are not true in general. Moreover, it is easy to see that
any consistent and fulfilling finite compass structure § = (In, L), with N €
N, satisfies the following properties, and, conversely, any finite structure § =
(In, L), with N € N, that satisfies the following properties is a consistent
and fulfilling compass structure:
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let @ be an input formula

procedure CheckConsistency (5, f, & i
for cach g-atom Fe 5
do {if FeuGor fIF] ST
then return false
return true

procedure CheckFulfillment(5)
for each g-atom Fe 5§
J' do {if Regs(Fl # 0 or Regg(Fl #8
then return false
Lmturn true

main )
(M +— any value in {1: L2
F+— any g-atom such that Regy(F) =0 and ¢ € Obs(F) L Regg (F)
S« {F}

fory+«— 1to N

f «+— any mapping from 5 to the set of all p-atoms
4 G — any fp-atom
do if not CheckConsistency(5, g, E]

then return false

S« {f(F) : Fe 5} U {G}
| return CheckFulfillment|(S)

Figure 6: Algorithm for the satisfiability problem over finite structures.

i) for every pair of points p = (x,y) and q = (y,y + 1) in G, we have
L(p) - L(q),

ii)  for every pair of points p = (x,y) and q = (x,y + 1) in G, we have
L(q) - L(p),

iii)  for the lower-left point p = (0,1) in G, we have Reqp (L(p)) =0,

iv) for every upper point p = (x,N) in G, we have Regg (L(p)) = () and
fRqu(L(p)) = 0.

Lemma 4.2. There is an EXPSPA CE non-deterministic procedure that de-
cides whether a given formula of ABB is satisfiable or not.

Proof. We first consider the (easier) case of satisfiability with interpretation
over finite interval structures; then, we shall deal with the more general case
of satisfiability with interpretation over infinite interval structures.

FINITE CASE. In Figure 6, we describe an EXPSPACE non-deterministic
procedure that decides whether a given ABB formula is satisfiable over finite
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labeled interval structures. Below, we prove that such a procedure is sound
and complete.

(SOUNDNESS) As for the soundness, we consider a successful computation
of the procedure and we show that there is a finite compass structure § =
(PN, L) that features ¢, where N € N is exactly the value that was guesses at
the beginning of the computation. We build such a structure § inductively
on the value of the variable y € {1, ..., N} as follows.

° Ify =1, then we let §; = (I1, £1), where £1 maps the unique point of
I; to the atom F that was guessed at the beginning of the computation.
Note that Gy satisfies the consistency condition of Definition 2.1, but
it may not satisfy the fulfillment condition for the relations A and B.

° If y > 1, then assuming that Gy = (Iy—1,Ly—1) is the consistent
(possibly non-fulfilling) compass structure obtained during the y—1-th
iteration, we define G = (I, Ly ), where:

i)  Ly(p) = Ly—1(p) for every point p = (x’,y’) that belongs to
Iy_1, namely, such that 0 < x’ <y’ <vy;

i) Ly(p) = f(Ly,l(q)) for every pair of points of the form p =
(x,y) and q = (x,y — 1), with 0 < x < y — 1, where f is the
function guessed during the y-th iteration;

iii) Ly(ﬁ)) = 8, where p = (y — 1,y) and G is the atom guessed
during the y-th iteration.

We then define G to be the structure Gn. Now, knowing that every call to

the function CheckConsistency was successful, we can conclude that the

structure G satisfies the following two properties:

i) for every pair of points p = (x,y) and q = (y,y + 1) in G, we have
Lp) - L(a),

ii)  for every pair of points p = (x,y) and q = (x,y + 1) in G, we have
L(q) 2 L(p).

Moreover, since the first guessed atom F was such that Reqg (F) = () and since

the call to the function CheckFulfillment at the end of the computation

was successful, we know that G satisfies also the following two properties:

iii)  for the lower-left point p = (0,1), we have Reqg (L(p)) =0,

iv) for every upper point p = (x,N), we have Regg (L(p)) = () and
Reqa (L(P)) = 0.

By previous arguments, this shows that G is a consistent and fulfilling

compass structure. Finally, since the first guessed atom F was such that
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@ € Obs(F)UReqg(F), we have that G features the input formula ¢. Propo-
sition 2.2 finally implies that there is a labeled finite interval structure that
satisfies @.

(COMPLETENESS) As for completeness, we consider a finite labeled interval
structure 8 = (In/, A, B, B, o) that satisfies ¢. By Theorem 3.3, we know
that there is a (consistent and fulfilling) compass structure § = (In, L) of
length N < 22! that features @. We exploit such a structure § to show
that there is a successful computation of the algorithm of Figure 6. To do
that, it is sufficient to describe, at each step of the computation where the
value of a variable needs to be guessed, which is the right choice for that
value. Clearly, at the beginning of the computation, the variable N will take
as value exactly the length of the compass structure G. Similarly, the initial
value for the variable F is chosen to be the atom {L(p)} associated with
the lower-left point p = (0,1). Then, at each iteration of the main loop, we
choose the values for f and for G as follows. We assume that, at the y-th
iteration, S is exactly the shading associated with the row y in G (it can be
easily proved that this is an invariant of the computation) and, for every
atom F in S, we denote by pr = (xf,y) a generic point along the row y such
that L(pg) = F (such a point exists by assumption). We then choose f to be
the function that maps every atom F € S to the atom f(F) = L(xp,y+1). It
is routine to prove that the computation that results from the above-defined
sequence of guesses is successful.

INFINITE CASE. Figure 7 reports an EXPSPACE non-deterministic pro-
cedure that decides whether a given ABB formula is satisfiable over infinite
labeled interval structures.

(SOUNDNESS) In order to prove that the described procedure is sound, we
consider a successful computation of the procedure and we show that there
is an infinite periodic compass structure § = (P, L) that features ¢. The
threshold yo and the period y of G are defined to be the values of the corre-
sponding variables that were guessed at the beginning of the computation.
As for the binding function g, we choose any arbitrary mapping g from S
to S such that g o f is the identity on S, where S, S, and f are the values
of the corresponding variables at the end of the computation. It now re-
mains to describe the labeling of the finite portion Py, g_1 of G (note that
this labeling uniquely determines the infinite periodic compass structure §).
This can be done by following the same construction given in the finite case.
Similarly, the fact that G satisfies the consitency conditions of Definition 2.1
can be proved by exploiting arguments analogous to the finite case. The
proof that G satisfies also the fulfillment condition requires more details.
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| let @ be an input formula

procedure CheckConsistency (5, f, (& J
{as before)
procedure UpdatePFulfillment| fulfilied, 5, . 5, G ]
(for each g-atom F & 5 and A-request oo & Reg, [F)
do {if a € Obs(G)
then fulfilled F, A, o] +— true
for each w-atom F & S and E-request o & Reg g(F]
i {if aE Obs(flF))
L then fulfilled F.B, o0 +— true

procedure CheckFulfillment | fulfilled, 5, T, 5]
(if5+5
then return false
J for cach @-atom Fe 5: relation B 1A, B}, and R-request o £ ReqplFl
do {if not fulfilled|F, R, o
then return false
| return true

main
(up +— any value in {1:...:2':_ v '}
U+ any value in {1..., 2| - PR 1}
F+— any p-atom such that Reg,(F) =0 and ¢ & Obs(F} L Regz (F)
5+ {F}
for y+— 1 to up
f « any mapping from 5 to the set of all p-atoms
E +— any @-atom
do ¢ if not CheckConsistency(S,g.G)
then return false
S« {f(F|: Fe S} u{C}
5§
K, f— the identity function on 5
for each g-atom F & é relation B £ A, E}: and B-request oo £ Regp(Fl
do  felfilledF, R, @ +— false
for y«—Us—~1tou,+Uu
(f+ any mapping from 5 to the set of all p-atoms
G — any g-atom
if not CheckConsistency(S, g.G)
do then return false
fefof
S« {f(F] : Fe 5} U {G}
| UpdateFulfillment | fulfilled. §, T, §, G)

| return CheckFulfillment| fulfilled, 5,1, 5]

Figure 7: Algorithm for the satisfiability problem over infinite structures.
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In particular, one can prove, again by exploiting induction on y, that for
every row Yy, with yo < y < yg +y, every point p = (x,Yp), every relation
R € {A,B}, and every R-request o € fReqR(L(p)), if L(p) =F (e g) and
fulfilled[F, R, ] is true during the y-th iteration of the main loop, then there
exists a point q = (x’,y) such that p R g and « € Obs(L(q)). Thus, at
the end of the computation, since all entries of the variable fulfilled are set
to true, we know that all A-requests and all B-requests of atoms associated
with row yg are fulfilled below row yg+1y. This shows that G is a consistent
and fulfilling compass structure. As before, one can conclude that G fea-
tures the input formula ¢ and hence there exists an infinite labeled interval
structure that satisfies .

(COMPLETENESS) As for completeness, we consider an infinite labeled in-
terval structure § = (I, A, B, B, o) that satisfies ¢. By Theorem 3.5, we
know that there is a periodic (consistent and fulfilling) compass structure
G = (Iy, L), with threshold yg < 227‘¢‘, period y < 2|o| - 927! -227‘@, and
binding ¢ : {0,...,yo+Yy — 1} — {0,...,yo — 1}. We exploit such a periodic
structure G to show that there is a successful computation of the algorithm
of Figure 7. In particular, at each step of the computation where the value
of a variable needs to be guessed, we describe which is the right choice for
that value. Clearly, at the beginning of the computation, the variables yg
and y will take as values exactly the threshold and the period of the compass
structure §. Similarly, the initial value for the variable F is chosen to be the
atom {L(p)} associated with the lower-left point p = (0,1). Then, at each
iteration of one of the two main loops, we choose the values for f and for
6 as follows. We assume that, at each iteration of one of the two loops, S
is the shading associated with the row y in G, where y is the value of the
corresponding variable (it can be easily proved that this is an invariant of
the computation) and, for every atom F in S, we denote by pr = (xf,y) a
generic point along the row y such that L(pf) = F (such a point exists by as-
sumption). We then choose f to be the function that maps every atom F € S
to the atom f(F) = L(xf,y+1). It is routine to prove that the computation
that results from the above-defined sequence of guesses is successful. O

Summing up, we obtain the following tight complexity result.

Theorem 4.3. The satisfiability problem for ABB interpreted over (prefizes
of ) natural numbers is EXPSPACE-complete.
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5 Conclusions

In this paper, we proved that the satisfiability problem for ABB interpreted
over (prefixes of) the natural numbers is EXPSPACE-complete. We re-
stricted our attention to these domains because it is a common commitment
in computer science. Moreover, this gave us the possibility of expressing
meaningful metric constraints in a fairly natural way. Nevertheless, we be-
lieve it possible to extend our results to the class of all linear orderings as
well as to relevant subclasses of it. Another restriction that can be relaxed is
the one about singleton intervals: all results in the paper can be easily gen-
eralized to include singleton intervals in the underlying structure In. The
most exciting challenge is to establish whether the modality A can be added
to ABB preserving decidability (and complexity). It is easy to see that there
is not a straightforward way to lift the proof for ABB to ABBA ((A), (B),
and (B) are all future modalities, while (A) is a past one).
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