Satisfiability and Model Checking for the Logic of Sub-Intervals under the Homogeneity Assumption ICALP 2017

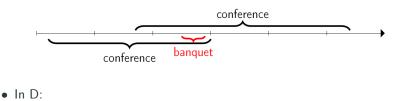
Laura Bozzelli, Alberto Molinari, <u>Angelo Montanari*</u>, Adriano Peron, Pietro Sala July 12, 2017

* University of Udine, Dept. of Maths, Computer Science, and Physics

The temporal logic D of the sub-interval relation

One modality only, $\langle D \rangle$, corresponding to the Allen relation during

• Consider the property: "there is always a banquet during a conference" (C) by J. Michaliszyn



conference $\longrightarrow \langle D \rangle$ banquet

• In LTL:

 $conference_{start} \longrightarrow$ $X(\neg conference_{end} U(banquet_{start} \land (\neg conference_{end} U(banquet_{end} \land \neg conference_{end} \land F conference_{ends}))))$

- The temporal logic of sub-intervals comes into play in the study of temporal prepositions in natural language [Pratt-Hartmann 2005]
- The connections between the temporal logic of (strict) sub-intervals and the logic of Minkowski space-time have been explored by Shapirovsky and Shehtman [Shapirovsky and Shehtman 2003].
- The temporal logic of reflexive sub-intervals has been studied first by van Benthem, who proved that, when interpreted over dense linear orderings, it is equivalent to the standard modal logic S4 [van Benthem 1991].

The logic D is a real character:

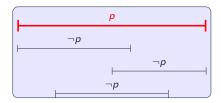
- The satisfiability problem for D is **PSPACE**-complete over the class of dense linear orders [Shapirovsky 2004, Bresolin et al. 2010]
- It is undecidable when interpreted over the classes of finite and discrete linear orders [Marcinkowski and Michaliszyn 2011]
- Unknown over the class of all linear orders

Remark: three variables are needed to encode D in first-order logic (the two-variable property is a sufficient condition for decidability, but it is not a necessary one...)

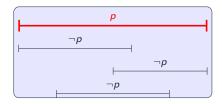
We show that:

- the satisfiability problem for D over finite linear orders (under the homogeneity assumption) belongs to **PSPACE**
- the model checking problem for D formulas over finite Kripke structures (under the homogeneity assumption) is in **PSPACE** as well
- Both problems are **PSPACE**-complete

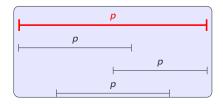
The general case: truth of a proposition letter is defined over intervals (not points), with no restriction.



The general case: truth of a proposition letter is defined over intervals (not points), with no restriction.



The homogeneous case: a proposition letter holds over an interval iff it holds over all its points/subintervals (a reasonable assumption in various application domains).



Syntax and semantics of D under homogeneity ($D|_{Hom}$ logic)

${\sf Syntax}$

• $D|_{\mathcal{H}\textit{om}}$ -formulas are defined by the grammar:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle D \rangle \varphi \qquad ([D]\varphi = \neg \langle D \rangle \neg \varphi)$$

Syntax

• $\mathsf{D}|_{\mathcal{H}\textit{om}}\text{-}\mathsf{formulas}$ are defined by the grammar:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle D \rangle \varphi \qquad ([D]\varphi = \neg \langle D \rangle \neg \varphi)$$

Semantics

Let $\mathcal{M} = \langle \mathbb{I}(\mathbb{S}), \sqsubset, \mathcal{V} \rangle$, where

- $\mathbb{I}(\mathbb{S})$ is the set of intervals over the linear order $\mathbb{S} = \langle S, \langle \rangle$;
- \square is the proper sub-interval relation (it is not reflexive);
- V : AP → 2^{I(S)} assigns to every proposition letter p ∈ AP the set of intervals V(p) over which p holds in such a way that [x, y] ∈ V(p) iff [x', x'] ∈ V(p) for every x ≤ x' ≤ y (homogeneity).

Syntax

• $D|_{\mathcal{H}om}$ -formulas are defined by the grammar:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle D \rangle \varphi \qquad ([D]\varphi = \neg \langle D \rangle \neg \varphi)$$

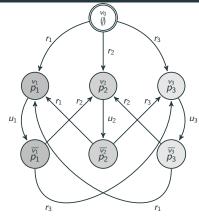
Semantics

Let $\mathcal{M} = \langle \mathbb{I}(\mathbb{S}), \sqsubset, \mathcal{V} \rangle$, where

- $\mathbb{I}(\mathbb{S})$ is the set of intervals over the linear order $\mathbb{S} = \langle S, \langle \rangle$;
- \square is the proper sub-interval relation (it is not reflexive);
- V : AP → 2^{I(S)} assigns to every proposition letter p ∈ AP the set of intervals V(p) over which p holds in such a way that [x, y] ∈ V(p) iff [x', x'] ∈ V(p) for every x ≤ x' ≤ y (homogeneity).
- (i) $\mathcal{M}, [x, y] \models p$ if and only if $[x, y] \in \mathcal{V}(p)$;
- (ii) Boolean connectives are standard;

(iii)
$$\mathcal{M}, [x, y] \models \langle D \rangle \psi$$
 if and only if
there is an interval $[x', y'] \in \mathbb{I}(\mathbb{S})$ s.t. $[x', y'] \sqsubset [x, y]$ and $\mathcal{M}, [x', y'] \models \psi$

The logic $D|_{Hom}$ at work: model checking



Model Checking $\mathcal{K} \models \psi \iff$ for all initialtraces ρ of $\mathcal{K}, \ \mathcal{K}, \rho \models \psi$

Possibly infinitely many traces!

At least 2 processes witnessed in any subinterval of length \geq 5 of an initial trace:

$$\mathscr{K}_{\mathcal{S}ched} \models [D] (len_{\geq 5} \rightarrow \bigvee_{1 \leq i < j \leq 3} (\langle D \rangle p_i \land \langle D \rangle p_j))$$

In any sub-interval of length at \geq 11 of an initial trace, process 3 is executed at least once in some states:

$$\mathcal{K}_{Sched} \not\models [D] (len_{\geq 11} \rightarrow \langle D \rangle p_3)$$

In any sub-interval of length \geq 7 of an initial trace, p_1, p_2 , and p_3 are all witnessed:

 $\mathscr{K}_{Sched} \not\models [D] \big(len_{\geq 7} \rightarrow (\langle D \rangle p_1 \land \langle D \rangle p_2 \land \langle D \rangle p_3) \big)$

Definition

Given a $D|_{Hom}$ -formula φ , a φ -atom A is a subset of the closure of φ , denoted by $CL(\varphi)$, such that:

- for every $\psi \in CL(\varphi)$, $\psi \in A$ iff $\neg \psi \notin A$, and
- for every $\psi_1 \lor \psi_2 \in CL(\varphi)$, $\psi_1 \lor \psi_2 \in A$ iff $\psi_1 \in A$ or $\psi_2 \in A$.

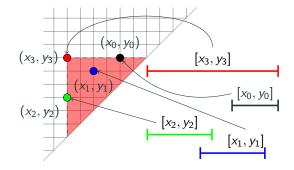
An atom enforces a "local" form of consistency among the formulas it contains.

For "global consistency" (among atoms), we introduce the binary relation D_{φ} .

Definition

For each pair of atoms $A, A' \in A_{\varphi}$, $A D_{\varphi} A'$ holds iff both $\psi \in A'$ and $[D]\psi \in A'$ for each formula $[D]\psi \in A$.

A spatial representation of interval models: compasses



Definition

Given a finite $\mathbb{S} = \langle S, \langle \rangle$ and φ , a compass φ -structure is $\mathcal{G} = (\mathbb{P}_{\mathbb{S}}, \mathcal{L})$, where

- $\mathbb{P}_{\mathbb{S}}$ is the (finite) set of points (x, y), with $x, y \in S$ and $x \leq y$, and
- \mathcal{L} is a function that maps $(x,y)\in\mathbb{P}_{\mathbb{S}}$ to a arphi-atom $\mathcal{L}(x,y)$

such that for all pairs $(x, y), (x', y') \in \mathbb{P}_{\mathbb{S}},$ $x \le x' \le y' \le y \land (x, y) \ne (x', y') \Longrightarrow \mathcal{L}(x, y) D_{\varphi} \mathcal{L}(x', y')$ (temporal consistency)

Definition

 $\mathcal{G} = (\mathbb{P}_{\mathbb{S}}, \mathcal{L})$ is fulfilling if for every $(x, y) \in \mathbb{P}_{\mathbb{S}}$ and each formula $\langle D \rangle \psi \in \mathcal{L}(x, y)$, there exists $(x', y') \sqsubset (x, y)$ in $\mathbb{P}_{\mathbb{S}}$ such that $\psi \in \mathcal{L}(x', y')$.

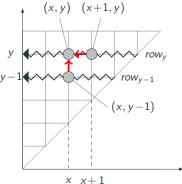
Proposition

A $D|_{\mathcal{H}om}$ -formula φ is satisfiable if and only if there is a fulfilling compass φ -structure such that $\varphi \in \mathcal{L}(x, y)$, for some $(x, y) \in \mathbb{P}_{\mathbb{S}}$.

The PSPACE satisfiability proof — the labeling rule

The ingredient #1: the labeling rule

We define a rule (a ternary relation over φ -atoms) that determines the φ -atoms labeling all the points of \mathcal{G} , starting from the ones on the diagonal (homogeneity plays a key role here)



If the above rule holds among all atoms in consecutive positions of a compass φ -structure, then the structure is fulfilling, and vice versa.

The ingredient #2: the contraction rule

We define an equivalence relation \sim between rows of a compass $\varphi\text{-structure}$ that

- relates pairs of rows with the same "shape" (the same atoms in the same order and with the same multiplicity up to a certain threshold);
- has a finite index.

Since \sim preserves the fulfillment of compasses, it is possible to "contract" the structure between two equivalent rows

The ingredient #2: the contraction rule

We define an equivalence relation \sim between rows of a compass $\varphi\text{-structure}$ that

- relates pairs of rows with the same "shape" (the same atoms in the same order and with the same multiplicity up to a certain threshold);
- has a finite index.

Since \sim preserves the fulfillment of compasses, it is possible to "contract" the structure between two equivalent rows

Outcome:

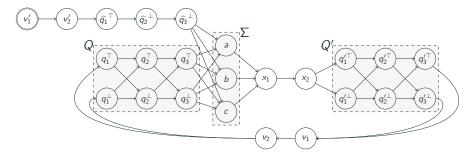
- a (non-deterministic) satisfiability algorithm for D|_{Hom}-formulas which makes use of polynomial working space only, because
 - 1. all rows satisfy some nice properties that make it possible to succinctly encode them
 - 2. it only needs to keep track of two rows of a compass at a time
 - 3. it guesses the most compact elements of the equivalence classes of \sim

- We consider some finite linear orders precisely those corresponding to the initial traces of the finite Kripke structure *K* — checking whether ¬φ holds over them (if this is the case, counterexample found: *K* ⊭ φ).
- "satisfiability driven by the traces of *K*": for any initial trace ρ, we build a compass φ-structure induced by ρ
 - ρ can be viewed as the diagonal of the compass structure; the labeling rule
 allows us to generate the whole structure from the diagonal

The model checking procedure: a simple variant of the satisfiability algorithm, still working in polynomial space.

PSPACE-hardness of satisfiability and MC for $\mathsf{D}|_{\mathcal{H}\textit{om}}$

We reduce the **PSPACE**-complete problem of *(non-)universality of the language of an NFA* to the MC problem for $D|_{Hom}$ over finite Kripke structures.



- The Kripke structure + the $\mathsf{D}|_{\mathcal{H}\textit{om}}$ formula encode legal computations of the NFA

This proves the **PSPACE**-hardness of model checking.

As for the **PSPACE**-hardness of satisfiability, for any Kripke structure there is a polynomial-size $D|_{Hom}$ -formula encoding its initial traces. ¹⁴

Where are we? $D|_{\mathcal{H}\textit{om}}$ is a small fragment of the logic HS

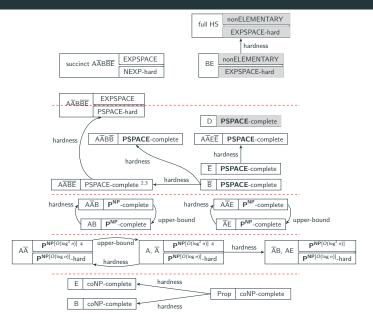
HS features a modality for any Allen ordering relation between pairs of intervals (except for equality)

Allen rel.	HS	Definition	Example
			x••Y
meets	$\langle A \rangle$	$[x,y]\mathcal{R}_{A}[v,z] \iff y=v$	V ●● Z
before	$\langle L \rangle$	$[x, y] \mathcal{R}_L[v, z] \iff y < v$	V ●● Z
started-by	$\langle B \rangle$	$[x, y] \mathcal{R}_{\mathcal{B}}[v, z] \iff x = v \land z < y$	V ●● Z
finished-by	$\langle E \rangle$	$[x, y] \mathcal{R}_{E}[v, z] \iff y = z \land x < v$	<i>V</i> ● <i>→ Z</i>
contains	$\langle D \rangle$	$[x, y] \mathcal{R}_D[v, z] \iff x < v \land z < y$	V ●—● Z
overlaps	$\langle O \rangle$	$[x, y] \mathcal{R}_{\mathcal{O}}[v, z] \iff x < v < y < z$	V ●

 $\langle D \rangle$ can be easily defined by means of modality $\langle B \rangle$ and $\langle E \rangle$:

$$\langle D \rangle \varphi = \langle B \rangle \langle E \rangle \varphi = \langle E \rangle \langle B \rangle \varphi$$

Future work: BE model checking (under homogeneity)



Known results:

- The satisfiability problem for BE is undecidable over the class of dense linear orders [Lodaya 2000] (for D is **PSPACE**-complete)
- It is undecidable also over the classes of finite and discrete linear orders [Marcinkowski and Michaliszyn 2011] (it immediately follows from undecidability of D)

Open issue: exact complexity of the satisfiability problem for BE over finite linear orders (under homogeneity)