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Point-based vs. interval-based MC

• Model checking (MC) is usually point-based:
– properties express requirements over points (snapshots) of a

computation (states of the state-transition system)
– they are specified by means of point-based temporal logics such as LTL,

CTL, and CTL∗.

• Interval-based MC:
– Interval-based properties express conditions on computation stretches
– they are specified by means of interval temporal logics, which feature

intervals as their basic ontological entities (e.g., HS)
» ability to express: actions with duration, accomplishments, temporal

aggregations
» applied to computational linguistics, artificial intelligence, temporal

databases, formal verification
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The logic HS

HS features a modality for each of the 13 Allen’s ordering relations
between pairs of intervals (except for equality)

Allen rel. HS Definition Example
x y

v z
v z

v z
v z
v z

v z

meets 〈A〉 [x, y]RA[v, z] ⇐⇒ y = v
before 〈L〉 [x, y]RL[v, z] ⇐⇒ y < v

started-by 〈B〉 [x, y]RB[v, z] ⇐⇒ x = v∧ z < y
finished-by 〈E〉 [x, y]RE[v, z] ⇐⇒ y = z∧ x < v
contains 〈D〉 [x, y]RD[v, z] ⇐⇒ x < v∧ z < y
overlaps 〈O〉 [x, y]RO[v, z] ⇐⇒ x < v < y < z

ψ ::= p | ¬ψ | ψ∨ ψ | 〈X〉ψ | 〈X〉ψ X ∈ {A, L,B, E,D,O}.
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Kripke structures
v0
;

v2p2
v1p1

v3p3

v1p1
v2p2

v3p3

• HS formulas are interpreted
over (finite) state-transition
systems whose states are
labeled with sets of proposition
letters (Kripke structures)

• An interval is a trace (finite
path) in a Kripke structure
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HS (state-based) semantics

〈B〉ϕ3

ϕ3

• Branching semantics of past/future operators

MC
K |= ψ ⇐⇒ for all initial traces ρ of K , it holds that K , ρ |= ψ

Possibly infinitely many traces!
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Decidability of HS MC
Theorem
The MC problem for full HS over Kripke structures is decidable (with a non-elementary
algorithm)

Reference

A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron. Checking interval
properties of computations.
Acta Informatica, pages 587–619, 2016

Theorem
The MC problem for BE over Kripke structures, under homogeneity, is EXPSPACE-hard

Reference

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Interval Temporal Logic
Model Checking: the Border Between Good and Bad HS Fragments.
In IJCAR, pages 389–405, 2016

Many other HS fragments studied (PSPACE! NP).
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Ongoing work

We are looking for possible replacements of Kripke structures by more
expressive system models in interval-based MC:

• interval-based system models, that allow one to directly describe
systems on the basis of their interval behavior/properties
(e.g., timelines).

• visibly pushdown systems, that can encode recursive programs and infinite state systems;
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Timelines

• Timelines have been fruitfully exploited in temporal planning
• Timeline-based planning (TP for short) is a more declarative

alternative to the classic action-based planning

• Temporal domain commonly assumed discrete.
• Gigante et al. showed that TP with bounded temporal relations and

token durations, and no temporal horizon, is EXPSPACE-complete
and expressive enough to capture action-based temporal planning.
(EXPSPACE-completeness also with unbounded relations)
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Timelines
State variable

x = (Vx, Tx,Dx)

where, e.g.,
• Vx = {a, b, c},
• Tx(a) = {b, c}, Tx(b) = {a, b, c}, Tx(c) = {a, b} and
• Dx(a) = [5,8], Dx(b) = [1, 4], Dx(c) = [2,∞[

Example of timeline for x:

x
t =0 t =7 t =10 t =13.9

x = a x = b x = c x = b

(a, 7)(b, 3)(c, 3.9) · · ·

Pairs of value/duration are called tokens.
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Timelines

x

y

z

t =0 t =4 t =7 t =10.2 t =13 t =17.1 t =20.9

x = a11 x = a21 x = a31

y = a12 y = a22 y = a32 y = a22

z = a13z = a13 z = a23

x = a41

Synchronization rules on timelines:

Trigger-less rules.
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Timelines as system models

• We study timeline-based planning (TP) over dense domains (no
recourse to discretization).

1. Why TP before MC? Timelines will be our system models. TP is a
necessary condition for MC (feasibility check of the system description).

2. Why dense domains? To avoid discreteness in system descriptions⇒
abstraction at a higher level, neglecting unnecessary details, and paving
the way for a more general interval-based MC;

• Both (i) the system model and (ii) the specifications (temporal
formulas) can be translated into a common formalism (timed
automata)
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Undecidability of TP over dense domains
Theorem
Timeline-based planning (TP) is undecidable over dense temporal
domains, even with a single state variable.

• Undecidability proved via a reduction from the halting problem for
Minsky 2-counter machines (inspired by SAT of Metric Temporal Logic
with past/future on dense time).
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Undecidability of TP over dense domains

`i c1 c1 c2 c2
`i+1,

inc1
c1# c1 c1 c2 c2 `i+1 c1 c1 c1 c2 c2 · · ·· · ·

· · ·
=1

=1
=1

=1

=1
=1

=1
=1

=1

t=k + 1

type(`i) = inc1xM

t=k t=k + 2
· · ·

wcheck

wmain

• Exactly one occurrence of ℓinit and ℓhalt (transition function);

• For each v ∈ VCtrl \ {ℓhalt},

o[xM = v] →
⋁︁

u∈VCtrl

∃ o′[xM = u] . o ≤s,s
[1,1] o

′.

• For each i = 1, 2, v ∈ (Uci ∩ Vmain) \ Vhalt (forward):

o[xM = v] →
⋁︁
u∈Uci

∃ o′[xM = u] . o ≤s,s
[1,1] o

′.

• For each i = 1, 2, v ∈ (Uci ∩ Vcheck) \ Vinit (backward):

o[xM = v] →
⋁︁
u∈Uci

∃ o′[xM = u] . o′ ≤s,s
[1,1] o.
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What happens if we restrict to future?
• Future: the token triggering a rule can only “refer” to other tokens in

the future (i.e., starting after it).

s(o)

s(o1)

e(o2)

s(o4) e(o5)
s(o3)

trigger

Theorem
Future TP is non-primitive recursive-hard, even with a single state variable.

• Reduction from the halting problem for Gainy counter machines,
known to be non-primitive recursive

• Only forward constraint can be expressed by future rules! 12/18



Decidability—(1) Translating rules

• Decidability of future TP with arbitrary trigger rules is open.
• We restrict to simple trigger rules:

all existentially quantified tokens (but not the trigger!) occur just
once in the rule.

• Decidability can be recovered if rules are simple and future.
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Translation into MTL/MITL

The simple form allows translation into MTL/MITL (future only+finite w!):

φ ::= > | p | φ∨ φ | ¬φ | φUIφ

with p ∈ AP , I ∈ Intv, UI is the standard strict timed untilMTL modality

x

y

z

t=1 t=4 t=7 t=10.2 t=13 t=17.1 t=20.9

x = a11 x = a21 x = a31

y = a12 y = a22 y = a32 y = a42

z = a13z = a13 z = a23

((a11, a
1
2, a

1
3), 1)

((ε, a22, ε), 4)

((a21, a
3
2, ε), 7)

((ε, ε, a13), 10.2) ((ε, a42, ε), 17.1)

((a41, ε, ε), 20.9)((a31, ε, a
2
3), 13)

x = a41
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Decidability—(2) Translating state variables

q0,x x = a

x = bx = c

. . .Ã

cx∈ [1, 1] , cx :=0
a

cx∈ [2.9, 10),
cx :=0b

c
cx∈ [2,8] , cx :=0

Theorem
Future TP with simple trigger rules is decidable (in non-primitive recursive
time). If the intervals in atoms of the trigger rules are non-singular (resp.,
belong to Intv(0,∞)), then it is in EXPSPACE (resp., in PSPACE).

EXPSPACE-completeness (resp., PSPACE-completeness) holds.
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Timeline-based planning and MC: results
System model:

xtemp = (Vtemp, Ttemp,Dtemp)

xproc = (Vproc, Tproc,Dproc)

xtransm = (Vtransm, Ttransm,Dtransm)

+

∀o[xproc = reading1] →
(∃o1[xproc = read0] .o ≤e,s

[0,1] o1)∨

(∃o2[xproc = read1]∃o3[xtemp = ready] .o ≤e,s
[0,1] o2 ∧ o3 ≤e,e

[0,+∞[ o).

Property specification:

F≤8 ψ(s, read1) F≥0
(︀
ψ(s, ready)∧ (>U>0 ψ(s, ready))

)︀
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Timeline-based planning and MC: results
Given a system model P (state vars + rules), it is possible to build a TA Ã
that accepts all and only the (timed words encoding) computations of P.

Definition (Timeline-based model checking)
Given a systemmodel (in the form of)Ã and aMITL formula φ, to decide if

LT(Ã ) ⊆ LT(φ).

We make a product between Ã andA¬φ and check for emptiness.

Theorem
The MC problem for MITL formulas over timelines, with simple future
trigger rules and non-singular intervals, is in EXPSPACE.
The MC problem for MITL(0,∞) formulas over timelines, with simple future
trigger rules and intervals in Intv(0,∞), is in PSPACE.

Matching lower bounds derive from TP.
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Thanks!
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HS (state-based) semantics and MC

Truth of a formula ψ over a trace ρ of a Kripke structure
K = (AP ,W, δ, μ,w0):

• K , ρ |= p iff p labels all states of K composing ρ, for any p ∈ AP
(homogeneity assumption);

• negation, disjunction, and conjunction are standard;
• K , ρ |= 〈A〉ψ . . . ;
• K , ρ |= 〈B〉ψ . . . ;
• K , ρ |= 〈E〉ψ . . . ;
• inverse operators 〈A〉, 〈B〉, 〈E〉

MC
K |= ψ ⇐⇒ for all initial traces ρ of K , it holds that K , ρ |= ψ

Possibly infinitely many traces!
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The Kripke structure KSched for a simple scheduler
v0
;

v2p2
v1p1

v3p3

v1p1
v2p2

v3p3
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A short account of KSched

KSched models the behaviour of a scheduler serving 3 processes which are
continuously requesting the use of a common resource
(easily generalizable to an arbitrary number of processes)

Initial state: v0 (no process is served in that state)
In vi and vi the i-th process is served (pi holds in those states)
The scheduler cannot serve the same process twice in two successive
rounds:
• process i is served in state vi, then, after “some time”, a transition ui

from vi to vi is taken; subsequently, process i cannot be served again
immediately, as vi is not directly reachable from vi

• a transition rj, with j 6= i, from vi to vj is then taken and process j is
served

3/12



Some properties to be checked over KSched
Validity of properties over all reachable computation intervals can be
forced by modality [E] (they are suffixes of at least one initial trace).

• In any computation interval of length at least 4, at least 2 processes
are witnessed (YES: no process can be executed twice in a row)

KSched |= [E]
(︀
〈E〉3>→ (χ(p1, p2)∨ χ(p1, p3)∨ χ(p2, p3))

)︀
,

where χ(p, q)= 〈E〉 〈A〉 p∧ 〈E〉 〈A〉 q.

• In any computation interval of length at least 11, process 3 is executed
at least once (NO: the scheduler can postpone the execution of a
process ad libitum—starvation)

KSched 6|= [E](〈E〉10>→ 〈E〉 〈A〉 p3).

• In any computation interval of length at least 6, all processes are
witnessed (NO: the scheduler should be forced to execute them in a
strictly periodic manner, which is not the case)

KSched 6|= [E](〈E〉5 → (〈E〉 〈A〉 p1 ∧ 〈E〉 〈A〉 p2 ∧ 〈E〉 〈A〉 p3)). 4/12



Complexity results

Homogeneity

Full HS, BE
non-elementary

EXPSPACE-hard

AABBE,AAEBE
∈ AEXPPol

PSPACE-hard

AABE PSPACE-complete

AABB,BB,B,
PSPACE-complete

AAEE, EE, E

AAB,AAE,AB,AE PNP-complete

AA,AB,AE,A,A
∈ PNP[O(log

2 n)]

PNP[O(log n)] -hard

Prop,B, E co-NP-complete
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Complexity results
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Expressiveness results (under homogeneity)

HSct

HSlin

HSst

finitary CTL∗

LTL

CTL

CTL∗
≡

≡

<

6=

<

6=

6=
6=

6=

Reference

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Interval vs.
Point Temporal Logic Model Checking: an Expressiveness Comparison.
In FSTTCS, 2016

6/12



Sketch of PSPACE-hardness

• Reduction from the PSPACE-complete problem Periodic SAT
• We are given a Boolean formula φ(x1, . . . , xn, x+11 , . . . , x+1n ) in CNF

• φj is φ in which we replace each xi by a fresh xji, and x
+1
i by xj+1i .

• Decide the satisfiability of the infinite-length formula

 =
⋀︁
j≥1

φj

(actually equivalent to f =
⋀︀22n+1

j=1 φj).
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Sketch of PSPACE-hardness

$ $̃x>1 x>2 x⊥3 x>4 x̃1
> x̃2

⊥ x̃3
> x̃4

⊥ $. . . . . .

︸ ︷︷ ︸
ϕj

$̃x⊥1 x>2 x⊥3 x>4︸ ︷︷ ︸
ϕj+1

For the t-th conjunct of φ,

o[y = $̃] →
(︁ ⋁︁
xi∈∩L+t

∃o′[y = x̃i>] .o ≤e,s
[0,4n] o

′
)︁
∨

(︁ ⋁︁
x+1i ∈

+1∩L+t

∃o′[y = x>i ] .o ≤
e,s
[0,4n] o

′
)︁
∨

(︁ ⋁︁
xi∈∩L−t

∃o′[y = x̃i⊥] .o ≤e,s
[0,4n] o

′
)︁
∨

(︁ ⋁︁
x+1i ∈

+1∩L−t

∃o′[y = x⊥i ] .o ≤
e,s
[0,4n] o

′
)︁
∨

∃o′′[y = stop] .o ≤e,s
[0,2n] o

′′. 8/12



Timelines with trigger-less rules only
• Trigger-less synchronization rules can be directly translated into a

timed automaton (no need to translate into MTL)
• Timed automaton of exponential size: it gives us an exponential

bound (*) on the number of tokens and on the horizon

• We observe that:
1. timelines for different variables evolve independently, and
2. each trigger-less rule enforces at most one “synchronization point”

among timelines.

Theorem
TP with trigger-less rules only is NP-complete.

How we deal with 1. and 2.:
1. timeline evolutions are enforced by a linear program (where

constants are exponential (*)), resting on results on Eulerian
multi-graphs (thanks G. Woeginger!)

2. we non-deterministically position tokens (those to which rules refer)
along timelines (their start/end times can be generated in polynomial
time (*)) and check satisfaction of rules
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NP-completeness of the trigger-less case

• Timed automata give us (i) an exponential bound on the number of
tokens of any plan and (ii) an exponential bound on the horizon.

• We start by reducing to integers all the rational values occurring in
the instance.

• For every quantifier oi[xi = vi] in the rules, the algorithm guesses
1. the integer part of the start and end time of the token for xi to which oi

is mapped,
2. an order of all fractional parts of such start/end times.

If we change the start/end time of (some of the) tokens associated with
quantifiers, but we leave unchanged (i) all the integer parts,
(ii) zeroness/non-zeroness of fractional parts, and (iii) the fractional
parts’ order, satisfaction of atoms in the rules does not change.
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NP-completeness of the trigger-less case

• Now we have to check that there exists a legal timeline evolution
“connecting” each pair of adjacent guessed tokens over the same
variable

x

y

z

o[x = v]

v v′

o′[x = v′]
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NP-completeness of the trigger-less case
• We interpret each state variable xi = (Vi, Ti,Di) as a directed graph

G = (Vi, Ti) where Di associates each v ∈ Vi with a duration interval.
• For a pair of adjacent guessed tokens (xi, v, d) and (xi, v′, d′):

G

v

v′

v0

vn

Ti

Ti

d0

dn∑n
i=0 di = . . .

di

• To this aim we guess a set of integers {αu,v | (u, v) ∈ Ti} where αu,v
is the number of times the path traverses (u, v) and check that they
specify a directed Eulerian path (in a multi-graph) v0 vn.

• To check all this, we solve a linear problem. (thanks G. Woeginger!)

Theorem
TP with trigger-less rules is NP-complete.

NP-hardness: from existence of a Hamiltonian path in directed graph.
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