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Model checking

• Model checking: the desired properties of a system are checked
against a model of the system

• the model is a (finite) state-transition graph
• system properties are specified by a temporal logic (e.g., LTL, CTL,
CTL*, …)

• Distinctive features of model checking:
• exhaustive verification of all the possible behaviours
• fully automatic process
• a counterexample is produced for a violated property
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Point-based vs. interval-based model checking

• Model checking is usually point-based:
• properties express requirements over points (snapshots) of a
computation (states of the state-transition system)

• they are specified by means of point-based temporal logics such
as LTL and CTL

• Interval-based model checking:
• Interval-based properties express conditions on computation
stretches: accomplishments, actions with duration, and temporal
aggregations

• they are specified by means of interval temporal logics, e.g., HS
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The logic HS

HS features a modality for any Allen ordering relation between pairs
of intervals (except for equality)

Allen rel. HS Definition Example
x y

v z
v z

v z
v z
v z

v z

meets ⟨A⟩ [x, y]RA[v, z] ⇐⇒ y = v
before ⟨L⟩ [x, y]RL[v, z] ⇐⇒ y < v

started-by ⟨B⟩ [x, y]RB[v, z] ⇐⇒ x = v ∧ z < y
finished-by ⟨E⟩ [x, y]RE[v, z] ⇐⇒ y = z ∧ x < v
contains ⟨D⟩ [x, y]RD[v, z] ⇐⇒ x < v ∧ z < y
overlaps ⟨O⟩ [x, y]RO[v, z] ⇐⇒ x < v < y < z

All modalities can be expressed by means of ⟨A⟩, ⟨B⟩, ⟨E⟩ and their
transposed modalities only
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Kripke structures
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∅

v2p2
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r2

r3

r1 r3

r1

r2

An example of Kripke structure

• HS formulas are interpreted
over (finite) state-transition
systems whose states are
labelled with sets of
proposition letters (Kripke
structures)

• An interval is a track (finite
path) in a Kripke structure
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HS semantics and model checking

Truth of a formula ψ over a track ρ of a Kripke structure K :

• K , ρ |= p iff p ∈
∩
w∈states(ρ) µ(w), for any letter p ∈ AP

(homogeneity assumption);
• negation, disjunction, and conjunction are standard;
• K , ρ |= ⟨A⟩ψ iff there is a track ρ′ s.t. lst(ρ) = fst(ρ′) and

K , ρ′ |= ψ;
• K , ρ |= ⟨B⟩ψ iff there is a prefix ρ′ of ρ s.t. K , ρ′ |= ψ;
• K , ρ |= ⟨E⟩ψ iff there is a suffix ρ′ of ρ s.t. K , ρ′ |= ψ;
• the semantic clauses for ⟨A⟩, ⟨B⟩, and ⟨E⟩ are similar

Model Checking
K |= ψ ⇐⇒ for all initial tracks ρ of K , it holds that K , ρ |= ψ

Possibly infinitely many tracks!
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BE-descriptors

v0p
v1q

BE2-descriptor for the track ρ = v0v1v40v1
(only the part for prefixes is shown)

(v0, {v0, v1}, v1)

(v0, ∅, v1)(v0, {v1}, v0)

(v0, ∅, v1)

(v0, {v0, v1}, v0)

(v0, ∅, v1)(v0, {v1}, v0)

(v0, {v0, v1}, v0)

(v0, ∅, v1)(v0, {v1}, v0)(v0, {v0, v1}, v0)

• FACT 1: For any Kripke structure K the number of different
descriptors of bounded depth k is finite

• FACT 2: Two tracks ρ and ρ′ of a Kripke structure K described by
the same BEk-descriptor are k-equivalent
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Decidability of HS model checking
Theorem
The model checking problem for full HS on Kripke structures is decidable
(non-elementary algorithm)

Reference

A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron. Checking
interval properties of computations.

Acta Informatica, 2016

Theorem
The model checking problem for BE on Kripke structures is EXPSPACE-hard

Reference

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Interval Temporal
Logic MC: the Border Between Good and Bad HS Fragments.

In IJCAR, LNAI 9706, pages 389–405. Springer, 2016
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The fragment AAB

〈B〉ϕ3

ϕ3

• Branching semantics of ⟨A⟩/⟨A⟩

• MC for AAB is complete for PNP = ∆p
2
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PNP MC algorithm for AAB formulas

Algorithm 1 MC(K , ψ,direction)
1: for all ⟨A⟩ϕ ∈ ModSubfAA(ψ) do
2: MC(K , ϕ, forward)
3: for all ⟨A⟩ϕ ∈ ModSubfAA(ψ) do
4: MC(K , ϕ, backward)
5: for all v ∈ states(K ) do
6: if direction is forward then
7: VA(ψ, v)← Success(Oracle(K , ψ, v, forward, VA ∪ VA))
8: else if direction is backward then
9: VA(ψ, v)← Success(Oracle(K , ψ, v, backward, VA ∪ VA))

• ModSubfAA(ψ): AA-modal-subformulas of ψ
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PNP MC algorithm for AAB formulas

Algorithm 2 MC(K , ψ,direction)
1: for all ⟨A⟩ϕ ∈ ModSubfAA(ψ) do
2: MC(K , ϕ, forward)
3: for all ⟨A⟩ϕ ∈ ModSubfAA(ψ) do
4: MC(K , ϕ, backward)
5: for all v ∈ states(K ) do
6: if direction is forward then
7: VA(ψ, v)← Success(Oracle(K , ψ, v, forward, VA ∪ VA))
8: else if direction is backward then
9: VA(ψ, v)← Success(Oracle(K , ψ, v, backward, VA ∪ VA))

• Oracle(K , ψ, v,direction, VA ∪ VA) is called for all v ∈ states(K )

• VA(ϕ, v) = ⊤ ⇐⇒ ∃ a track ρ ∈ TrkK starting from v s.t. K , ρ |= ϕ

• direction = forward / backward (for ⟨A⟩ / ⟨A⟩)
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NP oracle

〈A〉 〈A〉

〈A〉

>

⊥⊥

Ψ
ρ̃

Oracle

The oracle:
• generates ρ̃ by non-deterministically visiting the unravelling of
the Kripke structure.

• performs a bottom-up deterministic verification of Ψ against ρ̃
(for all the subformulas / for all the prefixes).
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NP oracle

〈A〉 〈A〉

〈A〉

>

⊥⊥

Ψ
ρ̃

Oracle

• “polynomial-size model-track property”:
if ρ is a track of K , ϕ is an AAB formula, and K , ρ |= ϕ⇒
∃ρ′ such that |ρ′| ≤ |W| · (2|ϕ|+ 1)2 and K , ρ′ |= ϕ.
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PNP MC algorithm for AAB formulas

Theorem
Let K be a finite Kripke structure, w0 be its initial state, and ψ an
AAB formula. If MC(K ,¬ψ, forward) is executed, then

VA(¬ψ,w0) = ⊥ ⇐⇒ K |= ψ.

Corollary
The model checking problem for AAB formulas over finite Kripke
structures is in PNP.
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PNP-hardness of MC for AB formulas
Definition (SNSAT: a PNP-complete problem)

An instance I of SNSAT:

• a set of Boolean variables X = {x1, · · · , xn}
• a set of Boolean formulas {F1(Z1), F2(x1, Z2), · · · , Fn(x1, · · · , xn−1, Zn)}
(where Zi are private variables)

vI is the valuation of the variables in X defined as:

vI(xi) = ⊤ ⇐⇒ Fi(vI(x1), · · · , vI(xi−1), Zi) is satisfiable.

SNSAT: to decide whether vI(xn) = ⊤.

Given I , we build a Kripke structure KI and an AB formula ΦI s.t.

vI(xn) = ⊤ ⇐⇒ KI |= ΦI .
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PNP-hardness of MC for AB formulas

wx1

s1

wx1

choice
Z
1

wxn

sn

wxn

choice
Z
n

wx2

s2

wx2

choice
Z
2

s0

ψn = (1)
∧
i xi ⇒ Fi(x1, · · · , xi−1, Zi) is true

(2)
∧
i ¬xi ⇒ Fi(x1, · · · , xi−1, Zi) is unsat for any choice of Zi

(3) the track reaches the last state s0

13



PNP-hardness of MC for AB formulas

Theorem

vI(xn) = ⊤ ⇐⇒ KI |= [B]⊥ → ψn.

Corollary
The model checking problem for AB formulas over finite Kripke
structures is PNP-hard (under LOGSPACE reductions).

Therefore AB, AAB, AE, AAE are PNP-complete.
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The fragment AB

• AB allows one to impose specific constraints on the branches
departing from a state occurring in a given path… ⟨B⟩ ⟨A⟩ θ
⇒ PNP-hardness of AB.

• AB…

can’t express constraints of this form: pairing ⟨A⟩ and ⟨B⟩
does not give any advantage in terms of expressiveness
⇒ MC for AB in PNP[O(log

2 n)].
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The fragment AB

Membership to PNP[O(log
2 n)] is proved by means of Boolean circuits

with SAT oracles

B

∃V1.F1(Y, V1)
G1

∃V2.F2(Y, V2)
G2

· · · ∃Vp.Fp(Y, Vp)
Gp

x1 x2 xp

E1(X) E2(X) · · · Ek(X)

z : z1 z2 zk

y1: y11 y12 · · · y1k · · · ym1 ym2 · · · ymkym:

16



The fragment AB: tree of blocks

B1

B2 B3

B4 B5 B6 B7

Theorem
TB(SAT) is PNP-complete.
TB(SAT)1×M (i.e., Fi can use only one bit from each input vector of B)
is PNP[O(log

2 n)]-complete.

Reference

P. Schnoebelen. Oracle circuits for branching-time model checking.

In ICALP, pages 790–801, 2003
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The fragment AB: from a formula to a tree of blocks

ψ =
((

⟨A⟩ r ∧ ⟨A⟩ ⟨A⟩q
)
→ ⟨A⟩ ⟨B⟩p

)

¬ψ

⟨A⟩q

r ⟨B⟩p q

FW

BW BW

BW

BW

Every formula Fi of a block B:

1. is a translation of the oracle algorithm;
2. is built starting from the AB formula associated with B
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The fragment AB: complexity

Theorem

Broot(z1) = ⊥ ⇐⇒ K |= ψ.

Corollary
The model checking problem for AB formulas, over finite Kripke
structures, is in PNP[O(log

2 n)].

PNP[O(log n)]-hardness follows immediately from that of A

Reference

A. Molinari, A. Montanari, A. Peron, and P. Sala. Model Checking
Well-Behaved Fragments of HS: the (Almost) Final Picture.

In KR, pages 473–483, 2016
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Complexity picture

AABE PSPACE-complete 2,3 B PSPACE-complete 4

E PSPACE-complete 4

AAEE PSPACE-complete 5AABB PSPACE-complete 5

AA PNP[O(log
2 n)] 4

PNP[O(log n)]-hard 4
A, A PNP[O(log

2 n)] 4

PNP[O(log n)]-hard 4
AB, AE PNP[O(log

2 n)]

PNP[O(log n)]-hard

AAB PNP-complete AAE PNP-complete

AB PNP-complete AE PNP-complete

B coNP-complete 5

E coNP-complete 5

Prop coNP-complete 3

AABBE EXPSPACE 2

PSPACE-hard 3

succinct AABBE EXPSPACE 2

NEXP-hard 2
BE nonELEMENTARY 1

EXPSPACE-hard 5

full HS nonELEMENTARY 1

EXPSPACE-hard 5

hardness

hardness

hardness

hardness

upper-bound

hardness

hardness

hardness

hardness
hardness

hardness

upper-bound

hardness

upper-bound

1 [2], 2 [4], 3 [3], 4 [5], 5 [1]
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Current/future work

• Determining the precise complexity of full HS

• Relaxing the homogeneity assumption
• Comparison of HS model checking with LTL, CTL, and CTL* one
(two new semantic variants of the problem introduced,
respectively based on the linear-past semantics and the linear
semantics) - DONE

• Application: Planning as Model Checking in Interval Temporal
Logic - IN PROGRESS
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Expressiveness comparison

HSct

HSlin

HSst

finitary CTL∗

LTL

CTL

CTL∗
≡

≡

<

̸=

<

̸=

̸=
̸=

̸=
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