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Model checking

Model checking: the desired properties of a system are checked
against a model of it
I the model is usually a (finite) state-transition system
I system properties are specified by a temporal logic (LTL, CTL,

CTL∗ and the like)

Distinctive features of model checking:
I exaustive check of all the possible behaviours
I fully automatic process
I a counterexample is produced for a violated property
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Point-based vs. interval-based model checking

Model checking is usually point-based:
I properties express requirements over points (snapshots) of a

computation (states of the state-transition system)
I they are specified by means of point-based temporal logics

such as LTL, CTL, and CTL∗

Interval properties express conditions on computation stretches
instead of on computation states
A lot of work has been done on interval temporal logic (ITL)
satisfiability checking (an up-to-date survey can be found at:
https : //users.dimi .uniud .it/∼angelo.montanari/Movep2016-
partI.pdf ).
ITL model checking entered the research agenda only recently
(Bozzelli, Lomuscio, Michaliszyn, Molinari, Montanari, Murano,
Perelli, Peron, Sala)
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Outline of the talk

I The model checking problem for interval temporal logics

I Complexity results: the general picture

I Interval vs. point temporal logic model checking: an
expressiveness comparison (a short account)

I Interval temporal logic model checking with regular
expressions (a short account)

I Ongoing work and future developments
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The modeling of the system: Kripke structures
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An example of Kripke structure

I HS formulas are interpreted
over (finite) state-transition
systems, whose states are
labeled with sets of
proposition letters (Kripke
structures)

I An interval is a trace (finite
path) in a Kripke structure
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HS: the modal logic of Allen’s interval relations
Allen’s interval relations: the 13 binary ordering relations between 2
intervals on a linear order. They give rise to corresponding unary
modalities over frames where intervals are primitive entities:
I HS features a modality for any Allen ordering relation between

pairs of intervals (except for equality)

Allen rel. HS Definition Example
x y

v z
v z

v z
v z
v z

v z

meets 〈A〉 [x , y]RA[v , z] ⇐⇒ y � v
before 〈L〉 [x , y]RL[v , z] ⇐⇒ y < v

started-by 〈B〉 [x , y]RB[v , z] ⇐⇒ x � v ∧ z < y
finished-by 〈E〉 [x , y]RE[v , z] ⇐⇒ y � z ∧ x < v
contains 〈D〉 [x , y]RD[v , z] ⇐⇒ x < v ∧ z < y
overlaps 〈O〉 [x , y]RO[v , z] ⇐⇒ x < v < y < z

All modalities can be expressed by means of 〈A〉, 〈B〉, 〈E〉, and
their transposed modalities only (if point intervals are admitted, 〈B〉,
〈E〉, and their transposed modalities suffice)
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HS semantics and model checking

Truth of a formula ψ over a trace ρ of a Kripke structure K �

(AP ,W , δ, µ,w0) defined by induction on the complexity of ψ:
I K , ρ |� p iff p ∈ ⋂

w∈states(ρ) µ(w), for any letter p ∈ AP
(homogeneity assumption);

I clauses for negation, disjunction, and conjunction are standard;
I K , ρ |� 〈A〉 ψ iff there is a trace ρ′ s.t. lst(ρ) � fst(ρ′) and

K , ρ′ |� ψ;
I K , ρ |� 〈B〉 ψ iff there is a proper prefix ρ′ of ρ s.t. K , ρ′ |� ψ;
I K , ρ |� 〈E〉 ψ iff there is a proper suffix ρ′ of ρ s.t. K , ρ′ |� ψ;
I the semantic clauses for 〈A〉, 〈B〉, and 〈E〉 are similar

Model Checking
K |� ψ ⇐⇒ for all initial traces ρ of K , it holds that K , ρ |� ψ
Possibly infinitely many traces!
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Remark: HS state semantics (HSst)

I According to the given semantics, HS modalities allow one to
branch both in the past and in the future

ϕ1
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ϕ1
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ϕ1

〈A〉 ϕ1

ϕ2
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The Kripke structure KSched for a simple scheduler
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A short account of KSched

KSched models the behaviour of a scheduler serving 3 processes
which are continuously requesting the use of a common resource (it
can be easily generalised to an arbitrary number of processes)

Initial state: v0 (no process is served in that state)
In vi and v i the i-th process is served (pi holds in those states)
The scheduler cannot serve the same process twice in two
successive rounds:
I process i is served in state vi , then, after “some time”, a

transition ui from vi to v i is taken; subsequently, process i
cannot be served again immediately, as vi is not directly
reachable from v i

I a transition rj , with j , i, from v i to vj is then taken and process
j is served



Model Checking: the Interval Way Angelo Montanari

Some meaningful properties to be checked over KSched
Validity of properties over all legal computation intervals can be
forced by modality [E] (they are suffixes of at least one initial trace)
Property 1: in any computation interval of length at least 4, at least 2
processes are witnessed (YES/no process can be executed twice in a row)

KSched |� [E]
(
〈E〉3> → (χ(p1 , p2) ∨ χ(p1 , p3) ∨ χ(p2 , p3))

)
,

where χ(p, q)� 〈E〉 〈A〉 p ∧ 〈E〉 〈A〉 q
Property 2: in any computation interval of length at least 11, process 3 is
executed at least once (NO/the scheduler can postpone the execution of a
process ad libitum—starvation)

KSched 6 |� [E](〈E〉10> → 〈E〉 〈A〉 p3)

Property 3: in any computation interval of length at least 6, all processes
are witnessed (NO/the scheduler should be forced to execute them in a
strictly periodic manner, which is not the case)

KSched 6 |� [E](〈E〉5 → (〈E〉 〈A〉 p1 ∧ 〈E〉 〈A〉 p2 ∧ 〈E〉 〈A〉 p3))
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Model checking: the key notion of BEk-descriptor
I The BE-nesting depth of an HS formula ψ (NestBE(ψ)) is the

maximum degree of nesting of modalities B and E in ψ
I Two traces ρ and ρ′ of a Kripke structure K are k-equivalent if

and only if K , ρ |� ψ iff K , ρ′ |� ψ for all HS-formulas ψ with
NestBE(ψ) ≤ k

For any given k, we provide a suitable tree representation for a
trace, called a BEk-descriptor
The BEk-descriptor for a trace ρ � v0v1..vm−1 vm, denoted BEk(ρ),
has the following structure:

(v0 , {v1 , .., vm−1}, vm)

. . .

. . .. . .. . .

BEk−1(ρS2)

. . .. . .. . .

BEk−1(ρS1)

. . .. . .. . .

. . .

. . .. . .. . .

BEk−1(ρP2)

. . .. . .. . .

BEk−1(ρP1)

. . .. . .. . .

← descriptor element

↑ ρP1 , ρP2 , . . . prefixes of ρ ↑ ρS1 , ρS2 , . . . suffixes of ρ

Remark: the descriptor does not feature sibling isomorphic subtrees
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An example of a BE2-descriptor

v0p
v1q

The BE2-descriptor for the
trace ρ � v0v1v40v1 (for the
sake of readability, only the
subtrees for prefixes are
displayed and point inter-
vals are excluded)

(v0 , {v0 , v1}, v1)

(v0 , {}, v1)(v0 , {v1}, v0)

(v0 , {}, v1)

(v0 , {v0 , v1}, v0)

(v0 , {}, v1)(v0 , {v1}, v0)

(v0 , {v0 , v1}, v0)

(v0 , {}, v1)(v0 , {v1}, v0)(v0 , {v0 , v1}, v0)

Remark: the subtree to the left is associated with both prefixes
v0v1v30 and v0v1v40 (no sibling isomorphic subtrees in the descriptor)
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Decidability of model checking for full HS

FACT 1: For any Kripke structure K and any BE-nesting depth
k ≥ 0, the number of different BEk-descriptors is finite (and thus at
least one descriptor has to be associated with infinitely many traces)

FACT 2: Two traces ρ and ρ′ of a Kripke structure K described by
the same BEk descriptor are k-equivalent

Theorem
The model checking problem for full HS on finite Kripke structures is
decidable (with a non-elementary algorithm)

A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron, Checking
Interval Properties of Computations, Acta Informatica, Special Issue:
Temporal Representation and Reasoning (TIME’14), Vol. 56, n. 6-8, October
2016, pp. 587-619

What about lower bounds?
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The logic BE

Theorem
The model checking problem for BE, over finite Kripke structures, is
EXPSPACE-hard

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala, Interval
Temporal Logic Model Checking: The Border Between Good and Bad HS
Fragments, IJCAR 2016

Proof: a polynomial-time reduction from a domino-tiling problem for
grids with rows of single exponential length
I for an instance I of the problem, we build a Kripke structure KI and

a BE formula ϕI in polynomial time
I there is an initial trace of KI satisfying ϕI iff there is a tiling of I
I KI |� ¬ϕI iff there exists no tiling of I
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BE hardness: encoding of the domino-tiling problem

Instance of the tiling problem: (C,∆, n, dinit , dfinal), with C a finite set
of colors and ∆ ⊆ C × C × C × C a set of tuples (cB , cL , cT , cR)

dk
0 dk

1 dk
2 dk

2n−2 dk
2n−1

d j+1
i

d j
i

d j−1
i

d j
i−1 d j

i+1

d0
2d0

1d0
0 d0

2n−2 d0
2n−1dInit

dFin

d j
icjiL cjiR

cjiB �

cjiT

d j−1
i

cj−1i T

String (interval) encoding of the problem

d0
0 0 · · · 00 d0

1 1 · · · 00 · · · d0
2n−1 1 · · · 11 $ d1

0 0 · · · 00 d1
1 1 · · · 00 · · · d1

2n−1 1 · · · 11 $
column 0 column 1 column 2n − 1 column 0 column 1 column 2n − 1

row 0 row 1
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The complexity picture

AABE PSPACE-complete B PSPACE-complete

E PSPACE-complete

AAEE PSPACE-completeAABB PSPACE-complete

AA
PNP[O(log2 n)]

PNP[O(log n)]-hard
A, A

PNP[O(log2 n)]

PNP[O(log n)]-hard
AB, AE

PNP[O(log2 n)]

PNP[O(log n)]-hard

AAB PNP-complete AAE PNP-complete

AB PNP-complete AE PNP-complete

B coNP-complete

E coNP-complete
Prop coNP-complete

AABBE, AAEBE
EXPSPACE

PSPACE-hard

BE nonELEMENTARY

EXPSPACE-hard

full HS nonELEMENTARY

EXPSPACE-hard

hardness

hardness

hardness

hardness

upper-bound

hardness

hardness

hardness

hardness
hardness

hardness

upper-bound

hardness

upper-bound
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Three main gaps to fill

There are three main gaps to fill:
I full HS and BE are in between nonELEMENTARY and

EXPSPACE

I AABBE,AAEBE,ABBE,AEBE,ABBE, and AEBE are in
between EXPSPACE and PSPACE

I A,A,AA,AB, and AE are in between PNP[O(log2 n)] and
PNP[O(log n)]

The first gap is definitely the most significant one (a progress report)
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Point vs. interval temporal logic model checking
Question: is there any advantage in replacing points by intervals as
the primary temporal entities, or is it just a matter of taste?

In order to compare the expressiveness of HS in model checking
with those of LTL, CTL, and CTL∗, we consider three semantic
variants of HS:
I HS with state-based semantics (the original one)
I HS with computation-tree-based semantics
I HS with trace-based semantics

These variants are compared with the above-mentioned standard
temporal logics and among themselves

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala, Interval vs. Point
Temporal Logic Model Checking: an Expressiveness Comparison.
Proceedings of the 36th IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS),
December 2016, pp. 26:1-14
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Branching semantic variant of HS

〈B〉ϕ3

ϕ3

State-based semantics of HS (HSst):
I both the future and the past are branching

A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron, Checking
Interval Properties of Computations, Acta Informatica, Special Issue:
Temporal Representation and Reasoning (TIME’14), Vol. 56, n. 6-8, October
2016, pp. 587-619



Model Checking: the Interval Way Angelo Montanari

Linear-past semantic variant of HS

Computation-tree-based semantics of HS (HSct):
I the future is branching
I the past is linear, finite and cumulative
I similar to CTL∗ + linear past

A. Lomuscio and J. Michaliszyn, Decidability of model checking multi-agent
systems against a class of EHS specifications, Proc. of the 21st European
Conference on Artificial Intelligence (ECAI), August 2014, pp. 543–548
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Linear semantic variant of HS

Trace-based semantics of HS (HSlin):
I neither the past not the future is branching
I similar to LTL + past
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The expressiveness picture

HSlp

HSlin

HSst

finitary CTL∗
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ITL model checking with regular expressions
Can we relaxe the homogeneity assumption? The addition of
regular expressions:

r ::� ε | φ | r ∪ r | r · r | r∗

where φ is a Boolean (propositional) formula over AP .
Examples:
I r1 � (p ∧ s) · s∗ · (p ∧ s)
I r2 � (¬p)∗

v0
{p, s}

v1
{q, s}

I ρ � v0v1v0v1v1
I µ(ρ) � {p, s}{q, s}{p, s}{q, s}{q, s}

I ρ′ � v0v1v1v1v0
I µ(ρ′) � {p, s}{q, s}{q, s}{q, s}{p, s}

I µ(ρ) < (r1), but µ(ρ′) ∈ (r1)
I µ(ρ) < (r2) and µ(ρ′) < (r2)



Model Checking: the Interval Way Angelo Montanari

ITL model checking with regular expressions

In the definition of the truth of a formula ψ over a trace ρ of a Kripke
structure K � (AP ,W , δ, µ,w0), we replace the clause for
propositional letters by a clause for regular expressions:
I K , ρ |� r iff µ(ρ) ∈ L(r)

Homogeneity can be recovered as a special case. To force it, all
regular expressions in the formula must be of the form:

p · (p)∗

Solution: given K and an HS formula ϕ over AP , we build an NFA
over K accepting the set of traces ρ such that K , ρ |� ϕ.
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ITL model checking with regular expressions
Model checking for full HS with regular expressions is decidable
and its complexity, when restricted to system models—that is, if we
assume the formula to be constant length—is PTIME
Model checking for AABB and its fragments is PSPACE-complete

L. Bozzelli, A. Molinari, A. Montanari, and A. Peron, An In-Depth Investigation
of Interval Temporal Logic Model Checking with Regular Expressions. Proc.
of the 15th International Conference on Software Engineering and Formal
Methods (SEFM), LNCS 10469, Springer, September 2017, pp. 104-119

Model checking for AABBE and AAEBE with regular expressions is
AEXPpol-complete ( AEXPpol is the complexity class of problems
decided by exponential-time bounded alternating Turing Machines
with a polynomially bounded number of alternations)

L. Bozzelli, A. Molinari, A. Montanari, and A. Peron, On the Complexity of
Model Checking for Syntactically Maximal Fragments of the Interval
Temporal Logic HS with Regular Expressions. Proc. of the 8th International
Symposium on Games, Automata, Logics and Formal Verification
(GandALF), EPTCS 256, September 2017, pp. 31-45
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Ongoing work and future developments - 1

Ongoing work: to determine the exact complexity of the satisfiability
/ model checking problems for BE over finite linear orders, under
the homogeneity assumption (the three semantic variants of HS
coincide over BE)

We know that the satisfiability/model checking problems for D over
finite linear orders, under the homogeneity assumption, are
PSPACE-complete (we exploit a spatial encoding of the models for
D and a suitable contraction technique)

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala, Satisfiability and
Model Checking for the Logic of Sub-Intervals under the Homogeneity
Assumption, Proc. of the 44th International Colloquium on Automata,
Languages, and Programming(ICALP), LIPIcs 80, July 2017, pp.
120:1–120:14

There is no a natural way to generalize the solution for D to BE
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Ongoing work and future developments - 2

Ongoing work: we are looking for possible replacements of Kripke
structures by more expressive system models
I visibly pushdown systems, that can encode recursive

programs and infinite state systems
I inherently interval-based models, that allows one to directly

describe systems on the basis of their interval
behavior/properties, such as, for instance, those involving
actions with duration, accomplishments, or temporal
aggregations (no restriction on the evaluation of proposition
letters)

As for future developments: planning as satisfiability checking /
model checking in interval temporal logic


