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Model checking

Model checking: the desired properties are checked against a
model of the system
I the model is a (finite) state-transition system
I system properties are specified by a temporal logic (LTL, CTL,

and the like)

Distinctive features of model checking:
I exaustive check of all the possible behaviours
I fully automatic process
I a counterexample is produced for a violated property
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Point-based vs. interval-based model checking

Model checking is usually point-based:
I properties express requirements over points (snapshots) of a

computation (states of the state-transition system)
I they are specified by means of point-based temporal logics

such as LTL and CTL

Interval-based properties express conditions on computation
stretches, e.g., accomplishments, actions with duration, and
temporal aggregations

Little work has been done on interval temporal logic (ITL) model
checking (Bozzelli, Lomuscio, Michaliszyn, Molinari, Montanari,
Murano, Perelli, Peron, Sala)



Temporal Logic, Satisfiability and Model Checking Angelo Montanari

Kripke structures
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A finite Kripke structure KSched

I HS formulas are interpreted
over (finite) state-transition
systems whose states are
labeled with sets of
proposition letters (Kripke
structures)

I An interval is a trace (finite
path) in a Kripke structure
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A short account of KSched

KSched models the behaviour of a scheduler serving 3 processes
which are continuously requesting the use of a common resource

Initial state: v0 (no process is served in that state)
In vi and v i the i-th process is served (pi holds in those states)
The scheduler cannot serve the same process twice in two
successive rounds:
I process i is served in state vi , then, after “some time”, a

transition ui from vi to v i is taken; subsequently, process i
cannot be served again immediately, as vi is not directly
reachable from v i

I a transition rj , with j , i, from v i to vj is then taken and process
j is served

It can be easily generalised to an arbitrary number of processes
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Some meaningful properties to be checked over KSched
Validity of properties over all legal computation intervals can be
forced by modality [E] (they are suffixes of at least one initial trace)
Property 1: in any computation interval of length at least 4, at least 2
processes are witnessed (YES/no process can be executed twice in a row)

KSched |� [E]
(
〈E〉3> → (χ(p1 , p2) ∨ χ(p1 , p3) ∨ χ(p2 , p3))

)
,

where χ(p, q)� 〈E〉 〈A〉 p ∧ 〈E〉 〈A〉 q
Property 2: in any computation interval of length at least 11, process 3 is
executed at least once (NO/the scheduler can postpone the execution of a
process ad libitum)

KSched 6 |� [E](〈E〉10> → 〈E〉 〈A〉 p3)

Property 3: in any computation interval of length at least 6, all processes
are witnessed (NO/the scheduler should be forced to execute them in a
strictly periodic manner, which is not the case)

KSched 6 |� [E](〈E〉5 → (〈E〉 〈A〉 p1 ∧ 〈E〉 〈A〉 p2 ∧ 〈E〉 〈A〉 p3))
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HS semantics and model checking
Truth of a formula ψ over a trace ρ of a Kripke structure K �

(AP ,W , δ, µ,w0) defined by induction on the complexity of ψ:
I K , ρ |� p iff p ∈

⋂
w∈states(ρ) µ(w), for any letter p ∈ AP

(homogeneity assumption);
I negation, disjunction, and conjunction are standard;
I K , ρ |� 〈A〉 ψ iff there is a trace ρ′ s.t. lst(ρ) � fst(ρ′) and

K , ρ′ |� ψ;
I K , ρ |� 〈B〉 ψ iff there is a prefix ρ′ of ρ s.t. K , ρ′ |� ψ;
I K , ρ |� 〈E〉 ψ iff there is a suffix ρ′ of ρ s.t. K , ρ′ |� ψ;
I the semantic clauses for 〈A〉, 〈B〉, and 〈E〉 are similar

Model Checking
K |� ψ ↔ for all initial traces ρ of K , it holds that K , ρ |� ψ

Possibly infinitely many traces!
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Remark: HS state semantics

I According to the given semantics, HS modalities allow one to
branch both in the past and in the future

ϕ1

〈B〉 ϕ1

ϕ1

〈E〉 ϕ1

ϕ1

〈A〉 ϕ1

ϕ2

〈A〉 ϕ2
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The key notion: BEk-descriptor
I The BE-nesting depth of an HS formula ψ (NestBE(ψ)) is the

maximum degree of nesting of modalities B and E in ψ
I Two traces ρ and ρ′ of a Kripke structure K are k-equivalent if

and only if K , ρ |� ψ iff K , ρ′ |� ψ for all HS-formula ψ with
NestBE(ψ) ≤ k

We provide a suitable tree representation for a trace, called a
BEk-descriptor
The BEk-descriptor for a trace ρ � v0v1..vm−1 vm, denoted BEk (ρ),
is defined as follows:

(v0 , {v1 , .., vm−1}, vm)

. . .

. . .. . .. . .

BEk−1(ρS2 )

. . .. . .. . .

BEk−1(ρS1 )

. . .. . .. . .

. . .

. . .. . .. . .

BEk−1(ρP2 )

. . .. . .. . .

BEk−1(ρP1 )

. . .. . .. . .

← descriptor element

↑ ρP1 , ρP2 , . . . prefixes of ρ ↑ ρS1 , ρS2 , . . . suffixes of ρ

Remark: the descriptor has not sibling isomorphic subtrees
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An example of a BE2-descriptor

v0p
v1q

The BE2-descriptor for the
trace ρ � v0v1v40v1 (for the
sake of readability, only the
subtrees for prefixes are
displayed)

(v0 , {v0 , v1}, v1)

(v0 , {}, v1)(v0 , {v1}, v0)

(v0 , {}, v1)

(v0 , {v0 , v1}, v0)

(v0 , {}, v1)(v0 , {v1}, v0)

(v0 , {v0 , v1}, v0)

(v0 , {}, v1)(v0 , {v1}, v0)(v0 , {v0 , v1}, v0)

Remark: the subtree to the left is associated with both prefixes
v0v1v30 and v0v1v40 (the descriptor has not sibling isomorphic
subtrees)
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Decidability of model checking for full HS

FACT 1: For any Kripke structure K and any BE-nesting depth
k ≥ 0, the number of different BEk-descriptors is finite (and thus at
least one descriptor has to be associated with infinitely many traces)

FACT 2: Two traces ρ and ρ′ of a Kripke structure K described by
the same BEk descriptor are k-equivalent

Theorem
The model checking problem for full HS on finite Kripke structures is
decidable (with a non-elementary algorithm)

A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron, Checking
Interval Properties of Computations, Acta Informatica (to appear)

What about lower bounds?
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The logic BE

Theorem
The model checking problem for BE, over finite Kripke structures, is
EXPSPACE-hard

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala, Interval
Temporal Logic Model Checking: The Border Between Good and Bad HS
Fragments, IJCAR 2016

Proof (sketch): a polynomial-time reduction from a domino-tiling
problem for grids with rows of single exponential length
I for an instance I of the problem, we build a Kripke structure KI and

a formula ϕI in polynomial time
I there is an initial trace of KI satisfying ϕI iff there is a tiling of I
I KI |� ¬ϕI iff there exists no tiling of I
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BE hardness: encoding of the domino-tiling problem

Instance of the tiling problem: (C,∆, n, dinit , dfinal), with C a finite set
of colors and ∆ ⊆ C × C × C × C a set of tuples (cB , cL , cT , cR)

dk
0 dk

1 dk
2 dk

2n−2 dk
2n−1

d j+1
i

d j
i

d j−1
i

d j
i−1 d j

i+1

d0
2d0

1d0
0 d0

2n−2 d0
2n−1dInit

dFin

d j
icjiL cjiR

cjiB �

cjiT

d j−1
i

cj−1i T

String (interval) encoding of the problem

d0
0 0 · · · 00 d0

1 1 · · · 00 · · · d0
2n−1 1 · · · 11 $ d1

0 0 · · · 00 d1
1 1 · · · 00 · · · d1

2n−1 1 · · · 11 $
column 0 column 1 column 2n − 1 column 0 column 1 column 2n − 1

row 0 row 1
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The general picture

AABE PSPACE-complete B PSPACE-complete

E PSPACE-complete

AAEE PSPACE-completeAABB PSPACE-complete

AA
PNP[O(log2 n)]

PNP[O(log n)]-hard
A, A

PNP[O(log2 n)]

PNP[O(log n)]-hard
AB, AE

PNP[O(log2 n)]

PNP[O(log n)]-hard

AAB PNP-complete AAE PNP-complete

AB PNP-complete AE PNP-complete

〈B〉 coNP-complete

〈E〉 coNP-complete
Prop coNP-complete

AABBE, AAEBE
EXPSPACE

PSPACE-hard

BE nonELEMENTARY

EXPSPACE-hard

full HS nonELEMENTARY

EXPSPACE-hard

hardness

hardness

hardness

hardness

upper-bound

hardness

hardness

hardness

hardness
hardness

hardness

upper-bound

hardness

upper-bound
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Three main gaps to fill

The picture shows that there three main gaps to fill:
I full HS and BE are in between nonELEMENTARY and

EXPSPACE

I AABBE,AAEBE,ABBE,AEBE,ABBE, and AEBE are in
between EXPSPACE and PSPACE

I A,A,AA,AB, and AE are in between PNP[O(log2 n)] and
PNP[O(log n)]
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The logic AABBE

Let us consider the case of the logic AABBE, which is obtained
from full HS (AABEBE) by removing modality 〈E〉

Some fundamental facts:
I we can restrict our attention on prefixes (Bk-descriptors suffice)
I the size of the tree representation of Bk-descriptors is larger

than necessary (redundancy) and it prevents their efficient
exploitation in model checking algorithms

I a trace representative can be chosen to represent a (possibly
infinite) set of traces with the same Bk-descriptor

I a bound, which depends on both the number |W | of states of
the Kripke structure and the B-nesting depth k, can be given to
the length of trace representatives
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Traces and sequences of descriptor elements

v0

v1

v2

v3 Let us consider the trace
ρ � v0v0v0v1v2v1v2v3v3v2v2

The descriptor element DElem(ρ) for ρ:

(v0 , {v0 , v1 , v2 , v3}, v2)

The descriptor sequence ρds for ρ (∆i stands for {v0 , . . . , vi }):

(v0 , ∅, v0)(v0 ,∆0 , v0)(v0 ,∆0 , v1)(v0 ,∆1 , v2)(v0 ,∆2 , v1)(v0 ,∆2 , v2)
(v0 ,∆2 , v3)(v0 ,∆3 , v3)(v0 ,∆3 , v2)(v0 ,∆3 , v2)

The descriptor sequence is the sequence of the descriptor
elements for ρ and for its prefixes in increasing order (from the one
for the shortest prefix to the one for the whole trace)
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A contraction method

I Repeated occurrences of the same descriptor element in a
descriptor sequence ρds represent prefixes of a trace which
unwind a loop in a Krypke structure

I Two occurrences of the same descriptor element in a
descriptor sequence ρds are k-indistinguishable if the
associated trace prefixes have the same Bk-descriptor

I If two repeated occurrences are k-indistiguinshable, we can
contract the trace avoiding the second repetition

ρ

ρ′

ρ(i) ρ(j)
Bk (ρ(0, i)) � Bk (ρ(0, j))

Bk (ρ) � Bk (ρ′)
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Boundedness theorem

I given a trace ρ, we can repeatedly contract it until it has not
occurrences of k-indistiguishable descriptor elements

Theorem (Boundedness theorem)
If ρ is a trace of a Kripke structure K , with set of states W, and
k ≥ 0, then there exists a trace ρ′, with the same Bk-descriptor as
ρ, such that

|ρ′ | ≤ τ(|W |, k) � min
{

1+ (1+ |W |)2k+4 + |W |
1+ (k + 3) |W |2+1 + |W |

}

I if |ρ | > τ(|W |, k), then ρ necessarily has some occurrences of
k-indistiguishable descriptor elements

I termination criterion: when enumerating traces, it is enough to
consider traces of length less then or equal to τ(|W |, k)
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The model checking algorithm

ModCheck(K , ψ)

0: k ← NestB(ψ)
0: u← New (Unravel_from(K , init_state(K ), k , forward))
0: while u.hasMoreTraces() do
0: ρ ← u.getNextTrace()
0: if Check(K , k , ψ, ρ) � 0 then return 0: “K , ρ 6 |� ψ”

return 1: “K |� ψ” =0

EXPSPACE:
(
|ψ |+1

)
·O

(
|W |+NestB(ψ)

)
· τ

(
|W |,NestB(ψ)

)
bits

A. Molinari, A. Montanari, and A. Peron, A Model Checking Procedure for
Interval Temporal Logics based on Track Representatives, CSL 2015
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PSPACE-hardness of AABBE model checking

PSPACE-hardness of the model checking problem for the fragment
B (and thus for AABBE) can be proved by a reduction from the QBF
problem

Theorem
The model checking problem for B, and thus for AABBE, over finite
Kripke structures is PSPACE-hard.

Remark: AABBE model checking is in between PSPACE and
EXPSPACE (remind: BE is EXPSPACE-hard)

A. Molinari, A. Montanari, A. Peron, and P. Sala, Model Checking
Well-Behaved Fragments of HS: The (Almost) Final Picture, KR 2016
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Current research agenda

I To complete the picture of interval temporal logic model
checking under the homogeneity assumption (and the HS
state semantics)

I To explore alternative HS semantics. In particular, the trace
semantics, where the infinite paths (computations) of the
Kripke structure are the main semantic entities, and the
computation tree semantics, where future is branching, but
past is linear (as well as finite and cumulative). Trace (resp.,
computation tree) semantics allows us to establish a bridge
between HS (model checking) and LTL (resp., CTL) (model
checking)

I To remove the homogeneity assumption
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Epistemic HS (Lomuscio and Michaliszyn)

Distinctive feature of Epistemic HS (EHS for short): the labelling
function is defined on the endpoints of the (finite) traces/intervals

Lomuscio and Michaliszyn proved that the local model checking
problem (verification of a given specification against a single initial
trace) for the fragment EHS[BE] is PSPACE-complete
If epistemic modalities are removed, it is in PTIME (notice that
modalities B and E allow one to access only sub-intervals of the
given initial one, whose number is quadratic in the length of it)

A. Lomuscio and J. Michaliszyn, An Epistemic Halpern-Shoham Logic, IJCAI
2013
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Epistemic HS (Lomuscio and Michaliszyn) - cont’d

Later on, they showed that the picture drastically changes with other
fragments of HS that allow one to access infinitely many traces

They proved that the model checking problem for the HS fragment
AB , extended with epistemic modalities, is decidable, with a
non-elementary upper bound

Notice that formulas of this logic can possibly refer to infinitely many
(future) traces

A. Lomuscio and J. Michaliszyn, Decidability of model checking multi-agent
systems against a class of EHS specifications, ECAI 2014
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Epistemic HS (Lomuscio and Michaliszyn) - cont’d

In their most recent contribution, Lomuscio and Michaliszyn
generalized the labeling function by allowing it to be given by any
regular expression on the states of intervals

Such a generalization results in a considerable increase in the
expressiveness of the specifications at no computational cost in
terms of the corresponding model checking problem

A. Lomuscio and J. Michaliszyn, Model Checking Multi-Agent Systems
against Epistemic HS Specifications with Regular Expressions, KR 2016
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Mid- and long-term research agenda

I Systematic application of game-theoretic techniques in
interval-based synthesis

I Quest for automaton-based techniques for interval temporal
logic satisfiability and model checking

I Application of interval temporal logics to
(i) system specification, verification, and
synthesis
(ii) planning and plan validation (to represent and
to reason about actions/events with duration,
accomplishments, and interval constraints)
(iii) temporal databases (to deal with temporal
aggregation) and workflow systems (to cope with
additional temporal constraints)

I Application of interval temporal logic model checking to infinite
state systems
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