
Montefiascone - August 2, 2025

Pairing monitoring and machine
learning for early failure detection and
predictive maintenance

Angelo Montanari
(with A. Brunello, L. Geatti, and N. Saccomanno)

IRIS-AI

Formal methods make it possible to check the consistency of specifications
(satisfiability checking) and to ensure the correct behaviour of a (model of a)
system against a specification (model checking) in an effective way.

In many critical contexts, they are highly desirable.

However, specifying in advance all the relevant properties and building a
complete model of the system against which to check them is often out of reach in
real-world scenarios.

Formal methods at work

2/30 Angelo Montanari IRIS-AI

To overcome these limitations, we developed a framework that

• supports monitoring, a lightweight runtime verification technique that does
not require an explicit model of the system under consideration, and

• pairs it with a machine learning tool to automatically extend the set of
properties to monitor on the basis of historical trace data. Many systems
have, indeed, such a level of complexity that it is impossible for a system
engineer to specify in advance all properties to be monitored.

Observation. Monitoring does not replace the above-mentioned formal methods;
rather, it integrates satisfiability checking and model checking.

Pairing monitoring and machine learning

3/30 Angelo Montanari IRIS-AI

A failure can be viewed as a deviation between the observed behavior and the
required behavior of the system.

Early failure detection refers to the process of identifying potential issues or faults
in a system before they escalate into major problems or failures.

Such a proactive approach is crucial not only to prevent catastrophic failures, but
also to minimize downtime, thus reducing maintenance costs (predictive
maintenance).

Early failure detection and predictive maintenance

4/30 Angelo Montanari IRIS-AI

In the following, I give a short account of

• monitoring and monitorability

• integration of monitoring and machine learning

• current and future research and development directions

Outline of the presentation

5/30 Angelo Montanari IRIS-AI

Monitoring is a runtime verification technique for the formal analysis of systems
that checks a finite prefix of the current execution (trace) of the system under
scrutiny to detect failures or successes expressed by means of temporal formulas.

The verdict of a monitoring algorithm is irrevocable: once a failure (resp., a
success) is detected, all continuations of the execution of the system are
guaranteed to be failures (resp., successes).

Monitoring

6/30 Angelo Montanari IRIS-AI

Monitoring typically consists of the
following steps:

1 bad/good behaviors to be checked
are specified by temporal logic
formulas;

2 from each temporal formula, an
equivalent monitor is built (typically,
a deterministic finite state
automaton);

3 the monitor is used for analysing the
system in either online or offline
mode.

A simple architecture

7/30 Angelo Montanari IRIS-AI

Negatively monitorable

Property: ”The program never enters a deadlock”

event

time

i i i d

0 1 2 3 4 5

i = instruction
d = deadlock

Given a safety property, a prefix of a sequence
suffices to establish whether it does not satisfy
the property.

Positively monitorable

Property: ”The program terminates”

event

time

i i i i i t

0 1 2 3 4 5

i = instruction
t = termination

Given a cosafety property, a prefix of
a sequence suffices to establish
whether it does satisfy the property.

Positively and negatively monitorable properties

8/30 Angelo Montanari IRIS-AI

Let AP = {p, q, r, . . . } be a set of atomic propositions. The syntax of LTL is defined
as follows:

φ = p | ¬φ | φ ∧ φ Boolean Modalities with p ∈ AP
Xφ | φUφ Future Temporal Modalities

• Xφ is the Next modality: at the next time point (tomorrow), the formula φ holds
• φ1Uφ2 is the Until modality : there exists a time point in the future where φ2 is

true, and φ1 holds from now until (but not necessarily including) that point.
Shortcuts:
• Eventually Fφ: there exists a time point in the future where φ holds.

It is defined as Fφ = >Uφ.
• Globally Gφ: for all time points in the future φ holds.

It is defined as Gφ = ¬F¬φ.

Linear Temporal Logic (LTL)

9/30 Angelo Montanari IRIS-AI

The syntax of LTLP is defined as follows:

φ = p | ¬φ | φ ∧ φ Boolean Modalities with p ∈ AP
Xφ | φUφ Future Temporal Modalities
Yφ | φSφ Past Temporal Modalities

• Yφ is the Yesterday modality: the previous time point exists and it satisfies φ.
• φ1Sφ2 is the Since modality: there exists a time point in the past where φ2 is true,

and φ1 holds since (and excluding) that point up to now.
Shortcuts:
• Once Oφ: there exists a time point in the past where φ holds. Oφ = >Sφ.
• Historically Hφ: for all time points in the past φ holds. Hφ = ¬O¬φ.
• Weak yesterday Ỹφ: Ỹφ = ¬Y¬φ

Linear Temporal Logic with Past (LTLP)

10/30 Angelo Montanari IRIS-AI

We say that a temporal logic L is cosafety iff, for any φ ∈ L, L(φ) is cosafety.

cosafetyLTL

Definition
φ := p | ¬p | φ ∨ φ | φ ∧ φ | Xφ | Fφ | φUφ

Example:

pUq

F(pLTL)

Definition
φ := F(α), where α is a formula of the
pure-past fragment of LTLP (pLTL).

Example:

F(q ∧ ỸHp)

F(pLTL) is the canonical form of
cosafetyLTL.

The cosafety fragment of LTL

11/30 Angelo Montanari IRIS-AI

We say that a temporal logic L is safety iff, for any φ ∈ L, L(φ) is safety.

safetyLTL

Definition
φ := p | ¬p | φ ∨ φ | φ ∧ φ | Xφ | Gφ | φRφ

Example:

G(r− > XXg)

G(pLTL)

Definition
φ := G(α), where α is a formula of the
pure-past fragment of LTLP (pLTL).

Example:

G(ỸỸr− > g)

G(pLTL) is the canonical form of
safetyLTL.

The safety fragment of LTL

12/30 Angelo Montanari IRIS-AI

The class of monitorable LTL properties is larger than the union of safety and
cosafety properties.

((p ∨ q)Ur) ∨ Gp

On the one hand, observe that:

• ppp . . . satisfies the formula (but none of its prefixes is good - not a cosafety
property)

• qqq . . . does not satisfy the formula (but none of its prefixes is bad - not a
safety property)

Monitorability behind safety and cosafety fragments / 1

13/30 Angelo Montanari IRIS-AI

On the other hand:
• . . . r is a good prefix for the formula, provided that one of p or q holds in

positions denoted by . . .
• . . . {¬p,¬q,¬r} is a bad prefix for the formula

Key point. Any finite prefix that is neither good nor bad can be extended to a
good or a bad prefix: any letter containing r makes the prefix good, while a
continuation with the letter {¬p,¬q,¬r}makes the prefix bad.

Monitorability behind safety and cosafety fragments / 2

14/30 Angelo Montanari IRIS-AI

There are properties which are neither positively nor negatively monitorable.

This is, for instance, the case with the property (reactivity property):

Every request is sooner or later granted

• If a request has not been yet granted, you cannot exclude that it will be
granted in the future.

• If up to now all requests have been granted, you cannot exclude that a future
one will not.

Properties which are not monitorable

15/30 Angelo Montanari IRIS-AI

Monitoring suffers from some significant limitations.

Among them we would like to mention the following ones:

• modern systems have such a level of complexity that it is impossible for a
system engineer to specify in advance all properties to be monitored;

• even minor changes to the system can introduce unforeseen bugs.

Limitations of monitoring

16/30 Angelo Montanari IRIS-AI

How to solve this problem? By pairing monitoring and learning: learn, in an
online, iterative fashion, new formulas to be monitored against the system by
analysing trace prefixes that lead to failure events.

0 1 2 3 4 5 6

3
5
9

3
5
9

time7 8

Learning
new

formula

0 1 2 3 4 5 6 time7 8 90 1 2 3 4 5 6

3
5
9

time7 8 9

Learning
new

formula

9

Given a trace, generate a formula that triggers only on the failing prefix, not the
good part (i.e., contrastive fashion).

Learning what to monitor

17/30 Angelo Montanari IRIS-AI

• system engineers specify only a set of initial properties.

• Warmup (offline) Phase: in a fully automatic fashion, the framework analyzes
the traces of the system that lead to a failure, and derive new relevant
properties, with the objective of anticipate their identification.

• Online Phase: the framework monitors the system in real time. If a failure
occurs, it derives new relevant formulas and it iteratively refines the pool of
formulas to be monitored.

A proof of concept with Signal Temporal Logic and Genetic Programming.

Pairing monitoring with machine learning

18/30 Angelo Montanari IRIS-AI

STL (Signal Temporal Logic) extends LTL by pairing its (qualitative) semantics
with a quantitative one.

The qualitative semantics of STL determines whether a signal satisfies a given
formula or not.

The quantitative semantics of assigns a real-valued measure reflecting the degree
of satisfaction or violation (robustness).

Example. G[0.5,3.75](water.temperature > 50 ∧ water.pressure ≤ 2.5)

Safety and cosafety fragments of STL can be defined as in the case of LTL, and
they admit similar characterizations.

From LTL to STL (Signal Temporal Logic)

19/30 Angelo Montanari IRIS-AI

Input: failure trace prefix tr[: (t− 1)] and good training traces set Tg

• Generate augmented traces Taug from tr

• Evolutionary part:
• Each individual is a formula φ (represented by its syntax tree)
• Mutation and crossover operators act on the syntax trees
• Three-fold fitness function:

1 effectiveness of φ in recognizing Taug traces as failing ones

2 while avoiding false positives on Tg

3 award early identification wrt time instant (t − 1)

• At the end, get the formula with the highest hypervolume from
the Pareto front

Output: formula φ expressed in pSTL, monitorable by construction

G

x > 3 y > 7

S

G(x>3 S y>7)

Genetic programming task

20/30 Angelo Montanari IRIS-AI

Monitor incoming
system trace at time
instant t based on P

Yes

No

Does a
formula in P

evaluate
to true?

Extract a new formula
f using the EA

Runtime
framework
operation

Add formula f to
the pool P

Start execution with a
non-empty pool of

formulas P

t = t +1 t = t +1

Extract a new formula f using the EA

 Split currently observed
system trace into a normal
behavior prefix and failure

suffix

Generate other normal
behaviour and failure

subtraces via data
augmentation

Optimize a bi-obj fitness
function (qualit/quantit bSTL

semantics) to generate a
formula that discriminates the

two sets of subtraces

Select one of the Pareto-
optimal solutions, i.e., a
computation tree that

represents the formula

Yes

No

Does a
formula f in P

predict a
failure?

Extract a new formula
f using the EA

Warmup
framework
operation

Add
formula

f to
the pool P

Process a new, labeled,
training system trace

Yes

No
Is the

training trace a
failure one?

Yes

No
Is the

training trace a
failure one?

Teacher forcing module

Apply a penalty
to formula f, and
possibly remove
it from the pool

Yes

No
Is the

training trace
finished?

Monitor incoming system
trace at time instant t

based on P
t = t +1

Start execution with a new
(possibly empty) pool of

formulas P

The framework

21/30 Angelo Montanari IRIS-AI

Distinguishing features of the framework:

• interpretability: the machine learning methods manipulate and produce only
formulae, that can be easily inspected by a system engineer;

• formal guarantees on monitorability: every formula produced during the
learning phase is guaranteed to be monitorable (this is done syntactically,
through the grammar used for the generation of the computation tree of each
formula);

• generality: different monitoring and machine learning backends.

Distinguishing features of the framework

22/30 Angelo Montanari IRIS-AI

The machine learning techniques that are most used in predictive maintenance
and early failure detection are:
• Random Forests
• Artificial Neural Networks
• Support Vector Machines

The lack of interpretability is a problem common to all of the above techniques, in
the sense that they fail to provide an explanation of their prediction.

Explanation of the output of a predictive maintenance algorithm is important not
only for humans trying to understand the error but also for implementing the
correct actions for preventing the failure of the asset under consideration.

Limitations of "pure" machine learning approaches

23/30 Angelo Montanari IRIS-AI

The framework can be extended along the following directions:

• automata-less monitoring via trace checking for intentionally safe and cosafe
formulas (from doubly-exponential to polynomial complexity)

• identification of anomalies and drops of performance

• exploitation of unsupervised and self-supervised learning techniques

• modularity

Extensions to the framework

24/30 Angelo Montanari IRIS-AI

The notions of intentionally safe and intentionally cosafe formulas are based on the
concept of informative models.

A model is informative for a formula φ if it contains sufficient information to
determine whether φ is true or false.

Example. The word < {p} > is an informative model for the LTL formula F(p),
since p holds at the first position, but it is not informative for F(p ∧ (Xq ∨ X¬q)),
because evaluating the formula requires a position satisfying p followed by a
position where either q or ¬q holds, but < {p} > has no successor.

For all intentionally cosafe (resp., safe) LTL formulas, monitoring can be
performed in an automata-less fashion: it can be reduced to checking whether the
formula is satisfied (resp., violated) by the current trace (trace-checking problem).

Automata-less monitoring via trace checking

25/30 Angelo Montanari IRIS-AI

• The framework currently works in a supervised fashion
• traces, labeled as failure or good behaviour ones, guide the first (warmup) stage

of formula extraction, following a teacher-forcing like approach
• justified as failures are terminating events (always detectable)

• The new version shall be self-supervised to deal with anomalies:
• characterizing a priori anomalies in modern complex systems is impractical
• systems evolve continuously over time
• supervised assumption, i.e., existence of complete and exhaustive dataset of

labelled anomalies is unrealistic and unfeasible

• Possible solution: use deep learning approaches capable to perform
self-supervised anomaly detection as a source of supervision

Anomaly detection and self-supervised learning backend

26/30 Angelo Montanari IRIS-AI

Assumption-Based Runtime Verification (ABRV) has recently been introduced as a
variant of monitoring to deal with systems that are only partially observable

• classical monitoring restricts itself to observable parts of the system and treat
the non-observable ones as black boxes

• ABRV exploits the fact that in practice one always knows something about
the internal (non-observable) parts of the system in form of assumptions that
the domain expert can specify before monitoring

• ABRV can reach conclusive verdicts with shorter trace prefixes

Assumption-based runtime verification

27/30 Angelo Montanari IRIS-AI

The new framework shall be modular in at least the following dimensions:
• the specification language

• different temporal logics including LTL, STL, and ITL
• qualitative semantics (for tasks like failure detection)
• quantitative semantics (for tasks like anomaly detection), where appropriate

• the backend implementing the monitoring algorithm

• the backend for the learning of new properties
• move across learning paradigms and tasks
• different solution than GP for formula extraction (which is limited by bloat,

huge search space, tree-based formula representation, etc.), like the integration
with reinforcement learning or generative AI; alternatively, formulas can be
represented as graphs, enabling the usage of Graph Neural Networks

Modularity

28/30 Angelo Montanari IRIS-AI

• Bauer, A., Leucker, M., & Schallhart, C. (2011). Runtime verification for LTL
and TLTL. ACM Transactions on Software Engineering and Methodology.

• Cimatti, A., Tian, C., & Tonetta, S. (2022). Assumption-based Runtime
Verification. Formal Methods in System Design.

• Geatti L. & Montanari, A. (2023). The Safety Fragment of Temporal Logics of
Infinite Sequences . ESSLLI Summer School

• Brunello, A., Della Monica, D., Montanari, A., Saccomanno, N., & Urgolo, A.
(2023). Monitors that Learn from Failures: Pairing STL and Genetic
Programming. IEEE Access.

• Geatti L., Montanari, A., & Saccomanno, N. (2023). Towards Machine
Learning Enhanced LTL Monitoring. OVERLAY workshop

Some references - 1

29/30 Angelo Montanari IRIS-AI

• Brunello, A., Geatti, L, Montanari, A., & Saccomanno, N., (2024). Learning
what to Monitor: using Machine Learning to Improve Past STL Monitoring.
Proceedings of the 33rd International Joint Conference on Artificial
Intelligence (IJCAI), Jeju Island, South Korea.

• Brunello, A., Geatti, L, Montanari, A., & Saccomanno, N. (2025). Interpretable
Early Failure Detection via Machine Learning and Trace Checking-based
Monitoring. Proceedings of the 28th European Conference on Artificial
Intelligence (ECAI), Bologna, Italy.

• Brunello, A., Geatti, L, Montanari, A., & Saccomanno, N. (2025).
Automata-less Monitoring via Trace-Checking. Submitted for publication.

Some references - 2

30/30 Angelo Montanari IRIS-AI

