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Formal methods at work

Formal methods make it possible to check the consistency of specifications
(satisfiability checking) and to ensure the correct behaviour of a (model of a)
system against a specification (model checking) in an effective way.

In many critical contexts, they are highly desirable.
However, specifying in advance all the relevant properties and building a

complete model of the system against which to check them is often out of reach in
real-world scenarios.
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Pairing monitoring and machine learning

To overcome these limitations, we developed a framework that

¢ supports monitoring, a lightweight runtime verification technique that does
not require an explicit model of the system under consideration, and

e pairs it with a machine learning tool to automatically extend the set of
properties to monitor on the basis of historical trace data. Many systems
have, indeed, such a level of complexity that it is impossible for a system
engineer to specify in advance all properties to be monitored.

Observation. Monitoring does not replace the above-mentioned formal methods;
rather, it integrates satisfiability checking and model checking.
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Early failure detection and predictive maintenance

A failure can be viewed as a deviation between the observed behavior and the
required behavior of the system.

Early failure detection refers to the process of identifying potential issues or faults
in a system before they escalate into major problems or failures.

Such a proactive approach is crucial not only to prevent catastrophic failures, but

also to minimize downtime, thus reducing maintenance costs (predictive
maintenance).
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Outline of the presentation

In the following, I give a short account of

¢ monitoring and monitorability
¢ integration of monitoring and machine learning

e current and future research and development directions
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Monitoring

Monitoring is a runtime verification technique for the formal analysis of systems
that checks a finite prefix of the current execution (trace) of the system under
scrutiny to detect failures or successes expressed by means of temporal formulas.

The verdict of a monitoring algorithm is irrevocable: once a failure (resp., a

success) is detected, all continuations of the execution of the system are
guaranteed to be failures (resp., successes).
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A simple architecture

Monitoring typically consists of the
property following steps:

@ bad/good behaviors to be checked

- verdict are specified by temporal logic
monitor formulas;

® from each temporal formula, an
observe feedback equivalent monitor is built (typically,
a deterministic finite state
Instrumentation automaton);

@© the monitor is used for analysing the
system system in either online or offline
mode.
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Positively and negatively monitorable properties

Negatively monitorable

Property: “The program never enters a deadlock”

event i i i d
® 0o 0 0 0 o
time 0 1 2 3 4 5

i = instruction
d = deadlock

Given a safety property, a prefix of a sequence
suffices to establish whether it does not satisfy
the property.
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Positively monitorable

Property: “The program terminates”

event i i i i i t
o o o o 0 o
time 0 1 2 3 4 5

i = instruction
t = termination

Given a cosafety property, a prefix of
a sequence suffices to establish
whether it does satisfy the property.
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Linear Temporal Logic (LTL)

Let AP = {p,q,r, ...} be aset of atomic propositions. The syntax of LTL is defined
as follows:

d = pl-glodng Boolean Modalities withp € AP
X | pUg Future Temporal Modalities

o X¢is the Next modality: at the next time point (tomorrow), the formula ¢ holds

o ¢1Ug; is the Until modality : there exists a time point in the future where ¢, is
true, and ¢, holds from now until (but not necessarily including) that point.

Shortcuts:

o Eventually Fo: there exists a time point in the future where ¢ holds.
It is defined as Fp = TU¢.

o Globally G¢: for all time points in the future ¢ holds.
It is defined as G = —F—¢.
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Linear Temporal Logic with Past (LTLP)

The syntax of LTLP is defined as follows:

¢ = pl-g|oAd Boolean Modalities with p € AP
Xo | oUg Future Temporal Modalities
Yo | pS¢ Past Temporal Modalities

¢ Y¢is the Yesterday modality: the previous time point exists and it satisfies ¢.

o $1S¢y is the Since modality: there exists a time point in the past where ¢ is true,
and ¢1 holds since (and excluding) that point up to now.

Shortcuts:
o Once O¢: there exists a time point in the past where ¢ holds. O¢p = T S¢.
o Historically H¢: for all time points in the past ¢ holds. Hp = ~O~-¢.
o Weak yesterday Y¢: Y¢ = =Y—¢
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The cosafety fragment of LTL

We say that a temporal logic L is cosafety iff, for any ¢ € L, L(¢) is cosafety.

F(pLIL)

Definition Definition
p:=p|v|oVe|lone|Xp|Fo|oUd ¢ := F(a), where « is a formula of the
pure-past fragment of LTLP (pLTL).

Example: Example:

pUq F(q A YHp)
F(pLTL) is the canonical form of
cosafetyLTL.
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The safety fragment of LTL

We say that a temporal logic L is safety iff, for any ¢ € L, L(¢) is safety.

G(pLIL)

Definition Definition
p:=p|v|oVeloNne|Xp|Go| PR ¢ := G(«), where « is a formula of the
pure-past fragment of LTLP (pLTL).

Example: Example:

G(r— > XXg) G(YYr—>g)
G(pLTL) is the canonical form of
safetyLTL.
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Monitorability behind safety and cosafety fragments / 1

The class of monitorable LTL properties is larger than the union of safety and
cosafety properties.

((pvag)ur) Vv Gp

On the one hand, observe that:

e ppp ... satisfies the formula (but none of its prefixes is good - not a cosafety
property)

* gqq ... does not satisfy the formula (but none of its prefixes is bad - not a
safety property)
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Monitorability behind safety and cosafety fragments / 2

On the other hand:

e ...risagood prefix for the formula, provided that one of p or g holds in
positions denoted by ...

o ...{-p,q,—r} is a bad prefix for the formula
Key point. Any finite prefix that is neither good nor bad can be extended to a

good or a bad prefix: any letter containing r makes the prefix good, while a
continuation with the letter {—p, =g, -7} makes the prefix bad.
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Properties which are not monitorable

There are properties which are neither positively nor negatively monitorable.
This is, for instance, the case with the property (reactivity property):
Every request is sooner or later granted

¢ If a request has not been yet granted, you cannot exclude that it will be
granted in the future.

e If up to now all requests have been granted, you cannot exclude that a future
one will not.
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Limitations of monitoring

Monitoring suffers from some significant limitations.

Among them we would like to mention the following ones:

¢ modern systems have such a level of complexity that it is impossible for a
system engineer to specify in advance all properties to be monitored;

¢ even minor changes to the system can introduce unforeseen bugs.
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Learning what to monitor

How to solve this problem? By pairing monitoring and learning: learn, in an
online, iterative fashion, new formulas to be monitored against the system by
analysing trace prefixes that lead to failure events.

Learning
new
formula

Learning
new
formula

3 . > H >
01 23 45 6 7 8 9tme 01 23 45 6 7 89 time 01 23 456 7 8 9tme

Given a trace, generate a formula that triggers only on the failing prefix, not the
good part (i.e., contrastive fashion).
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Pairing monitoring with machine learning

« system engineers specify only a set of initial properties.

o Warmup (offline) Phase: in a fully automatic fashion, the framework analyzes
the traces of the system that lead to a failure, and derive new relevant
properties, with the objective of anticipate their identification.

¢ Online Phase: the framework monitors the system in real time. If a failure
occurs, it derives new relevant formulas and it iteratively refines the pool of
formulas to be monitored.

A proof of concept with Signal Temporal Logic and Genetic Programming.

18/30 Angelo Montanari IRIS-AI



From LTL to STL (Signal Temporal Logic)

STL (Signal Temporal Logic) extends LTL by pairing its (qualitative) semantics
with a quantitative one.

The qualitative semantics of STL determines whether a signal satisfies a given
formula or not.

The quantitative semantics of assigns a real-valued measure reflecting the degree
of satisfaction or violation (robustness).

Example. Gjg 5375 (water.temperature > 50 N water.pressure < 2.5)

Safety and cosafety fragments of STL can be defined as in the case of LTL, and
they admit similar characterizations.
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Genetic programming task

Input: failure trace prefix tr[: (t — 1)] and good training traces set T,

* Generate augmented traces Ty, from tr e

¢ Evolutionary part:

¢ Each individual is a formula ¢ (represented by its syntax tree) @ @
¢ Mutation and crossover operators act on the syntax trees
¢ Three-fold fitness function: Gx>3 5 y>7)

@ effectiveness of ¢ in recognizing Ty, traces as failing ones

@ while avoiding false positives on Ty

@ award early identification wrt time instant (¢t — 1)
e At the end, get the formula with the highest hypervolume from

the Pareto front

Output: formula ¢ expressed in pSTL, monitorable by construction
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The framework

Start execution with a new Warmup
(possibly empty) pool of | framework
formulas P operation

Process a new, labeled,
training system trace

Monitor incoming system
trace at time instant ¢
based on P

Is the
training trace
finished?

Add
formula

Apply a penalty
to formula f, and
possibly remove
it from the pool

fto
the pool P

Is the
training trace a
failure one?

Is the
training trace a
failure one?

Teacher forcing module

! Yes
Yes

PR A
Extract a new formula
fusing the EA
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Start execution with a

Runtime
framework non-empty pool of
operation formulas P

Monitor incomin
system trace at time
instant { based on P

Does a
formula in P
evaluate
to true?

Add formula fto
the pool P

Extract a new formula
fusing the EA

l Extract a new formula f using the EA

Split currently observed Generate other normal

system trace into a normal behaviour and failure

behavior prefix and failure subtraces via data
suffix augmentation

Optimize a bi-obj fitness
function (qualit/quantit bSTL
semantics) to generate a
formula that discriminates the
two sets of subtraces

Select one of the Pareto-
optimal solutions, i.e., a
computation tree that
represents the formula
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Distinguishing features of the framework

Distinguishing features of the framework:

o interpretability: the machine learning methods manipulate and produce only
formulae, that can be easily inspected by a system engineer;

 formal guarantees on monitorability: every formula produced during the
learning phase is guaranteed to be monitorable (this is done syntactically,
through the grammar used for the generation of the computation tree of each

formula);

o generality: different monitoring and machine learning backends.
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Limitations of "pure" machine learning approaches

The machine learning techniques that are most used in predictive maintenance
and early failure detection are:

o Random Forests
o Artificial Neural Networks
¢ Support Vector Machines

The lack of interpretability is a problem common to all of the above techniques, in
the sense that they fail to provide an explanation of their prediction.

Explanation of the output of a predictive maintenance algorithm is important not
only for humans trying to understand the error but also for implementing the
correct actions for preventing the failure of the asset under consideration.
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Extensions to the framework

The framework can be extended along the following directions:

o automata-less monitoring via trace checking for intentionally safe and cosafe
formulas (from doubly-exponential to polynomial complexity)

« identification of anomalies and drops of performance
« exploitation of unsupervised and self-supervised learning techniques

¢ modularity
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Automata-less monitoring via trace checking

The notions of intentionally safe and intentionally cosafe formulas are based on the
concept of informative models.

A model is informative for a formula ¢ if it contains sufficient information to
determine whether ¢ is true or false.

Example. The word < {p} > is an informative model for the LTL formula F(p),
since p holds at the first position, but it is not informative for F(p A (Xq V X—q)),
because evaluating the formula requires a position satisfying p followed by a
position where either g or —q holds, but < {p} > has no successor.

For all intentionally cosafe (resp., safe) LTL formulas, monitoring can be

performed in an automata-less fashion: it can be reduced to checking whether the
formula is satisfied (resp., violated) by the current trace (trace-checking problem).
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Anomaly detection and self-supervised learning backend

¢ The framework currently works in a supervised fashion

e traces, labeled as failure or good behaviour ones, guide the first (warmup) stage
of formula extraction, following a teacher-forcing like approach

¢ justified as failures are terminating events (always detectable)

¢ The new version shall be self-supervised to deal with anomalies:

e characterizing a priori anomalies in modern complex systems is impractical
 systems evolve continuously over time

 supervised assumption, i.e., existence of complete and exhaustive dataset of
labelled anomalies is unrealistic and unfeasible

¢ Possible solution: use deep learning approaches capable to perform
self-supervised anomaly detection as a source of supervision
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Assumption-based runtime verification

Assumption-Based Runtime Verification (ABRV) has recently been introduced as a
variant of monitoring to deal with systems that are only partially observable

¢ classical monitoring restricts itself to observable parts of the system and treat
the non-observable ones as black boxes

* ABRV exploits the fact that in practice one always knows something about
the internal (non-observable) parts of the system in form of assumptions that
the domain expert can specify before monitoring

¢ ABRV can reach conclusive verdicts with shorter trace prefixes
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Modularity

The new framework shall be modular in at least the following dimensions:
¢ the specification language

o different temporal logics including LTL, STL, and ITL
o qualitative semantics (for tasks like failure detection)
e quantitative semantics (for tasks like anomaly detection), where appropriate

¢ the backend implementing the monitoring algorithm

¢ the backend for the learning of new properties

e move across learning paradigms and tasks

e different solution than GP for formula extraction (which is limited by bloat,
huge search space, tree-based formula representation, etc.), like the integration
with reinforcement learning or generative Al; alternatively, formulas can be
represented as graphs, enabling the usage of Graph Neural Networks
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