
Interval vs. Point Model Checking Angelo Montanari

Interval vs. Point Temporal
Logic Model Checking

Angelo Montanari
Dept. of Mathematics, Computer Science, and Physics

University of Udine, Italy
(On leave at LaBRI - October/December 2017)

INFINI seminar
Cachan, France

November 30, 2017

Interval vs. Point Model Checking Angelo Montanari

Model checking

Model checking: the desired properties of a system are checked
against a model of it
I the model is usually a (finite) state-transition system
I system properties are specified by a temporal logic (LTL, CTL,

CTL∗ and the like)

Distinctive features of model checking:
I exaustive check of all the possible behaviours
I fully automatic process
I a counterexample is produced for a violated property

Interval vs. Point Model Checking Angelo Montanari

Point-based vs. interval-based model checking

Model checking is usually point-based:
I properties express requirements over points (snapshots) of a

computation (states of the state-transition system)
I they are specified by means of point-based temporal logics

such as LTL, CTL, and CTL∗

Interval properties express conditions on computation stretches
instead of on computation states
A lot of work has been done on interval temporal logic (ITL)
satisfiability checking (an up-to-date survey can be found at:
https : //users.dimi .uniud .it/∼angelo.montanari/Movep2016-
partI.pdf).
ITL model checking entered the research agenda only recently
(Bozzelli, Lomuscio, Michaliszyn, Molinari, Montanari, Murano,
Perelli, Peron, Sala)

Interval vs. Point Model Checking Angelo Montanari

Outline of the talk

I The model checking problem for interval temporal logics

I Complexity results: the general picture

I Interval vs. point temporal logic model checking: an
expressiveness comparison

I Ongoing work and future developments

Interval vs. Point Model Checking Angelo Montanari

The modeling of the system: Kripke structures

v0
∅

v2p2
v1p1

v3p3

v1p1
v2p2

v3p3

r1
r2

r3

u1 u2 u3

r2

r3

r1 r3

r1

r2

An example of Kripke structure

I HS formulas are interpreted
over (finite) state-transition
systems, whose states are
labeled with sets of
proposition letters (Kripke
structures)

I An interval is a trace (finite
path) in a Kripke structure

Interval vs. Point Model Checking Angelo Montanari

HS: the modal logic of Allen’s interval relations
Allen’s interval relations: the 13 binary ordering relations between 2
intervals on a linear order. They give rise to corresponding unary
modalities over frames where intervals are primitive entities:
I HS features a modality for any Allen ordering relation between

pairs of intervals (except for equality)

Allen rel. HS Definition Example
x y

v z
v z

v z
v z
v z

v z

meets 〈A〉 [x , y]RA[v , z] ⇐⇒ y � v
before 〈L〉 [x , y]RL[v , z] ⇐⇒ y < v

started-by 〈B〉 [x , y]RB[v , z] ⇐⇒ x � v ∧ z < y
finished-by 〈E〉 [x , y]RE[v , z] ⇐⇒ y � z ∧ x < v
contains 〈D〉 [x , y]RD[v , z] ⇐⇒ x < v ∧ z < y
overlaps 〈O〉 [x , y]RO[v , z] ⇐⇒ x < v < y < z

All modalities can be expressed by means of 〈A〉, 〈B〉, 〈E〉, and
their transposed modalities only (if point intervals are admitted, 〈B〉,
〈E〉, and their transposed modalities suffice)

Interval vs. Point Model Checking Angelo Montanari

HS semantics and model checking

Truth of a formula ψ over a trace ρ of a Kripke structure K �

(AP ,W , δ, µ,w0) defined by induction on the complexity of ψ:
I K , ρ |� p iff p ∈ ⋂

w∈states(ρ) µ(w), for any letter p ∈ AP
(homogeneity assumption);

I clauses for negation, disjunction, and conjunction are standard;
I K , ρ |� 〈A〉 ψ iff there is a trace ρ′ s.t. lst(ρ) � fst(ρ′) and

K , ρ′ |� ψ;
I K , ρ |� 〈B〉 ψ iff there is a proper prefix ρ′ of ρ s.t. K , ρ′ |� ψ;
I K , ρ |� 〈E〉 ψ iff there is a proper suffix ρ′ of ρ s.t. K , ρ′ |� ψ;
I the semantic clauses for 〈A〉, 〈B〉, and 〈E〉 are similar

Model Checking
K |� ψ ⇐⇒ for all initial traces ρ of K , it holds that K , ρ |� ψ
Possibly infinitely many traces!

Interval vs. Point Model Checking Angelo Montanari

Remark: HS state semantics (HSst)

I According to the given semantics, HS modalities allow one to
branch both in the past and in the future

ϕ1

〈B〉 ϕ1

ϕ1

〈E〉 ϕ1

ϕ1

〈A〉 ϕ1

ϕ2

〈A〉 ϕ2

Interval vs. Point Model Checking Angelo Montanari

The Kripke structure KSched for a simple scheduler

v0
∅

v2p2
v1p1

v3p3

v1p1
v2p2

v3p3

r1
r2

r3

u1 u2 u3

r2

r3

r1 r3

r1

r2

Interval vs. Point Model Checking Angelo Montanari

A short account of KSched

KSched models the behaviour of a scheduler serving 3 processes
which are continuously requesting the use of a common resource (it
can be easily generalised to an arbitrary number of processes)

Initial state: v0 (no process is served in that state)
In vi and v i the i-th process is served (pi holds in those states)
The scheduler cannot serve the same process twice in two
consecutive rounds:
I process i is served in state vi , then, after “some time”, a

transition ui from vi to v i is taken; subsequently, process i
cannot be served again immediately, as vi is not directly
reachable from v i

I a transition rj , with j , i, from v i to vj is then taken and process
j is served

Interval vs. Point Model Checking Angelo Montanari

Some meaningful properties to be checked over KSched
Validity of properties over all legal computation intervals can be
forced by modality [E] (they are suffixes of at least one initial trace)
Property 1: in any computation interval of length at least 4, at least 2
processes are witnessed (YES/no process can be executed twice in a row)

KSched |� [E]
(
〈E〉3> → (χ(p1 , p2) ∨ χ(p1 , p3) ∨ χ(p2 , p3))

)
,

where χ(p, q)� 〈E〉 〈A〉 p ∧ 〈E〉 〈A〉 q
Property 2: in any computation interval of length at least 11, process 3 is
executed at least once (NO/the scheduler can postpone the execution of a
process ad libitum—starvation)

KSched 6 |� [E](〈E〉10> → 〈E〉 〈A〉 p3)

Property 3: in any computation interval of length at least 6, all processes
are witnessed (NO/the scheduler should be forced to execute them in a
strictly periodic manner, which is not the case)

KSched 6 |� [E](〈E〉5 → (〈E〉 〈A〉 p1 ∧ 〈E〉 〈A〉 p2 ∧ 〈E〉 〈A〉 p3))

Interval vs. Point Model Checking Angelo Montanari

Model checking: the key notion of BEk-descriptor
I The BE-nesting depth of an HS formula ψ (NestBE(ψ)) is the

maximum degree of nesting of modalities B and E in ψ
I Two traces ρ and ρ′ of a Kripke structure K are k-equivalent if

and only if K , ρ |� ψ iff K , ρ′ |� ψ for all HS-formulas ψ with
NestBE(ψ) ≤ k

For any given k, we provide a suitable tree representation for a
trace, called a BEk-descriptor
The BEk-descriptor for a trace ρ � v0v1..vm−1 vm, denoted BEk(ρ),
has the following structure:

(v0 , {v1 , .., vm−1}, vm)

. . .

.

BEk−1(ρS2)

.

BEk−1(ρS1)

.

. . .

.

BEk−1(ρP2)

.

BEk−1(ρP1)

.

← descriptor element

↑ ρP1 , ρP2 , . . . prefixes of ρ ↑ ρS1 , ρS2 , . . . suffixes of ρ

Remark: the descriptor does not feature sibling isomorphic subtrees

Interval vs. Point Model Checking Angelo Montanari

Model checking: the key notion of BEk-descriptor
I The BE-nesting depth of an HS formula ψ (NestBE(ψ)) is the

maximum degree of nesting of modalities B and E in ψ
I Two traces ρ and ρ′ of a Kripke structure K are k-equivalent if

and only if K , ρ |� ψ iff K , ρ′ |� ψ for all HS-formulas ψ with
NestBE(ψ) ≤ k

For any given k, we provide a suitable tree representation for a
trace, called a BEk-descriptor
The BEk-descriptor for a trace ρ � v0v1..vm−1 vm, denoted BEk(ρ),
has the following structure:

(v0 , {v1 , .., vm−1}, vm)

. . .

.

BEk−1(ρS2)

.

BEk−1(ρS1)

.

. . .

.

BEk−1(ρP2)

.

BEk−1(ρP1)

.

← descriptor element

↑ ρP1 , ρP2 , . . . prefixes of ρ ↑ ρS1 , ρS2 , . . . suffixes of ρ

Remark: the descriptor does not feature sibling isomorphic subtrees

Interval vs. Point Model Checking Angelo Montanari

An example of a BE2-descriptor

v0p
v1q

The BE2-descriptor for the
trace ρ � v0v1v40v1 (for the
sake of readability, only the
subtrees for prefixes are
displayed and point inter-
vals are excluded)

(v0 , {v0 , v1}, v1)

(v0 , {}, v1)(v0 , {v1}, v0)

(v0 , {}, v1)

(v0 , {v0 , v1}, v0)

(v0 , {}, v1)(v0 , {v1}, v0)

(v0 , {v0 , v1}, v0)

(v0 , {}, v1)(v0 , {v1}, v0)(v0 , {v0 , v1}, v0)

Remark: the subtree to the left is associated with both prefixes
v0v1v30 and v0v1v40 (no sibling isomorphic subtrees in the descriptor)

Interval vs. Point Model Checking Angelo Montanari

An example of a BE2-descriptor

v0p
v1q

The BE2-descriptor for the
trace ρ � v0v1v40v1 (for the
sake of readability, only the
subtrees for prefixes are
displayed and point inter-
vals are excluded)

(v0 , {v0 , v1}, v1)

(v0 , {}, v1)(v0 , {v1}, v0)

(v0 , {}, v1)

(v0 , {v0 , v1}, v0)

(v0 , {}, v1)(v0 , {v1}, v0)

(v0 , {v0 , v1}, v0)

(v0 , {}, v1)(v0 , {v1}, v0)(v0 , {v0 , v1}, v0)

Remark: the subtree to the left is associated with both prefixes
v0v1v30 and v0v1v40 (no sibling isomorphic subtrees in the descriptor)

Interval vs. Point Model Checking Angelo Montanari

Decidability of model checking for full HS

FACT 1: For any Kripke structure K and any BE-nesting depth
k ≥ 0, the number of different BEk-descriptors is finite (and thus at
least one descriptor has to be associated with infinitely many traces)

FACT 2: Two traces ρ and ρ′ of a Kripke structure K described by
the same BEk descriptor are k-equivalent

Theorem
The model checking problem for full HS on finite Kripke structures is
decidable (with a non-elementary algorithm)

A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron, Checking
Interval Properties of Computations, Acta Informatica, Special Issue:
Temporal Representation and Reasoning (TIME’14), Vol. 56, n. 6-8, October
2016, pp. 587-619

What about lower bounds?

Interval vs. Point Model Checking Angelo Montanari

Decidability of model checking for full HS

FACT 1: For any Kripke structure K and any BE-nesting depth
k ≥ 0, the number of different BEk-descriptors is finite (and thus at
least one descriptor has to be associated with infinitely many traces)

FACT 2: Two traces ρ and ρ′ of a Kripke structure K described by
the same BEk descriptor are k-equivalent

Theorem
The model checking problem for full HS on finite Kripke structures is
decidable (with a non-elementary algorithm)

A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron, Checking
Interval Properties of Computations, Acta Informatica, Special Issue:
Temporal Representation and Reasoning (TIME’14), Vol. 56, n. 6-8, October
2016, pp. 587-619

What about lower bounds?

Interval vs. Point Model Checking Angelo Montanari

Decidability of model checking for full HS

FACT 1: For any Kripke structure K and any BE-nesting depth
k ≥ 0, the number of different BEk-descriptors is finite (and thus at
least one descriptor has to be associated with infinitely many traces)

FACT 2: Two traces ρ and ρ′ of a Kripke structure K described by
the same BEk descriptor are k-equivalent

Theorem
The model checking problem for full HS on finite Kripke structures is
decidable (with a non-elementary algorithm)

A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron, Checking
Interval Properties of Computations, Acta Informatica, Special Issue:
Temporal Representation and Reasoning (TIME’14), Vol. 56, n. 6-8, October
2016, pp. 587-619

What about lower bounds?

Interval vs. Point Model Checking Angelo Montanari

Decidability of model checking for full HS

FACT 1: For any Kripke structure K and any BE-nesting depth
k ≥ 0, the number of different BEk-descriptors is finite (and thus at
least one descriptor has to be associated with infinitely many traces)

FACT 2: Two traces ρ and ρ′ of a Kripke structure K described by
the same BEk descriptor are k-equivalent

Theorem
The model checking problem for full HS on finite Kripke structures is
decidable (with a non-elementary algorithm)

A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron, Checking
Interval Properties of Computations, Acta Informatica, Special Issue:
Temporal Representation and Reasoning (TIME’14), Vol. 56, n. 6-8, October
2016, pp. 587-619

What about lower bounds?

Interval vs. Point Model Checking Angelo Montanari

The logic BE

Theorem
The model checking problem for BE, over finite Kripke structures, is
EXPSPACE-hard

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala, Interval
Temporal Logic Model Checking: The Border Between Good and Bad HS
Fragments, IJCAR 2016

Proof: a polynomial-time reduction from a domino-tiling problem for
grids with rows of single exponential length
I for an instance I of the problem, we build a Kripke structure KI and

a BE formula ϕI in polynomial time
I there is an initial trace of KI satisfying ϕI iff there is a tiling of I
I KI |� ¬ϕI iff there exists no tiling of I

Interval vs. Point Model Checking Angelo Montanari

BE hardness: encoding of the domino-tiling problem

Instance of the tiling problem: (C,∆, n, dinit , dfinal), with C a finite set
of colors and ∆ ⊆ C × C × C × C a set of tuples (cB , cL , cT , cR)

dk
0 dk

1 dk
2 dk

2n−2 dk
2n−1

d j+1
i

d j
i

d j−1
i

d j
i−1 d j

i+1

d0
2d0

1d0
0 d0

2n−2 d0
2n−1dInit

dFin

d j
icjiL cjiR

cjiB �

cjiT

d j−1
i

cj−1i T

String (interval) encoding of the problem

d0
0 0 · · · 00 d0

1 1 · · · 00 · · · d0
2n−1 1 · · · 11 $ d1

0 0 · · · 00 d1
1 1 · · · 00 · · · d1

2n−1 1 · · · 11 $
column 0 column 1 column 2n − 1 column 0 column 1 column 2n − 1

row 0 row 1

Interval vs. Point Model Checking Angelo Montanari

The complexity picture
skip

AABE PSPACE-complete B PSPACE-complete

E PSPACE-complete

AAEE PSPACE-completeAABB PSPACE-complete

AA
PNP[O(log2 n)]

PNP[O(log n)]-hard
A, A

PNP[O(log2 n)]

PNP[O(log n)]-hard
AB, AE

PNP[O(log2 n)]

PNP[O(log n)]-hard

AAB PNP-complete AAE PNP-complete

AB PNP-complete AE PNP-complete

B coNP-complete

E coNP-complete
Prop coNP-complete

AABBE, AAEBE
EXPSPACE

PSPACE-hard

BE nonELEMENTARY

EXPSPACE-hard

full HS nonELEMENTARY

EXPSPACE-hard

hardness

hardness

hardness

hardness

upper-bound

hardness

hardness

hardness

hardness
hardness

hardness

upper-bound

hardness

upper-bound

Interval vs. Point Model Checking Angelo Montanari

Hardness results

I EXPSPACE-hardness of BE via a reduction from a
domino-tiling problem

I PSPACE-hardness of B via a reduction from QBF

I PNP-hardness of AB and AE via a reduction from SNSAT (a
logical problem with nested satisfiability questions)

I PNP[O(log n)]-hardness of A and A via a reduction from
Parity-SAT (is the number of satisfiable formulas in a given set
odd or even?)

I co-NP-hardness of Prop via a reduction from SAT to the
not-model problem

Interval vs. Point Model Checking Angelo Montanari

Three main gaps to fill

There are three main gaps to fill:
I full HS and BE are in between nonELEMENTARY and

EXPSPACE

I AABBE,AAEBE,ABBE,AEBE,ABBE, and AEBE are in
between EXPSPACE and PSPACE

I A,A,AA,AB, and AE are in between PNP[O(log2 n)] and
PNP[O(log n)]

Interval vs. Point Model Checking Angelo Montanari

Point vs. interval temporal logic model checking
Question: is there any advantage in replacing points by intervals as
the primary temporal entities, or is it just a matter of taste?

In order to compare the expressiveness of HS in model checking
with those of LTL, CTL, and CTL∗, we consider three semantic
variants of HS:
I HS with state-based semantics (the original one)
I HS with computation-tree-based semantics
I HS with trace-based semantics

These variants are compared with the above-mentioned standard
temporal logics and among themselves

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala, Interval vs. Point
Temporal Logic Model Checking: an Expressiveness Comparison.
Proceedings of the 36th IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS),
December 2016, pp 26:1-14.

Interval vs. Point Model Checking Angelo Montanari

Branching semantic variant of HS

〈B〉ϕ3

ϕ3

State-based semantics of HS (HSst):
I both the future and the past are branching

A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron, Checking
Interval Properties of Computations, Acta Informatica, Special Issue:
Temporal Representation and Reasoning (TIME’14), Vol. 56, n. 6-8, October
2016, pp. 587-619

Interval vs. Point Model Checking Angelo Montanari

Linear-past semantic variant of HS

Computation-tree-based semantics of HS (HSlp):
I the future is branching
I the past is linear, finite and cumulative
I similar to CTL∗ + linear past

A. Lomuscio and J. Michaliszyn, Decidability of model checking multi-agent
systems against a class of EHS specifications, Proc. of the 21st European
Conference on Artificial Intelligence (ECAI), August 2014, pp. 543–548

Interval vs. Point Model Checking Angelo Montanari

Linear semantic variant of HS

Trace-based semantics of HS (HSlin):
I neither the past nor the future is branching
I similar to LTL + past

Interval vs. Point Model Checking Angelo Montanari

The expressiveness picture

HSlp

HSlin

HSst

finitary CTL∗

LTL

CTL

CTL∗≡

≡

<

,

<

,

,

,

,

Interval vs. Point Model Checking Angelo Montanari

Equivalence between LTL and HSlin

Interval vs. Point Model Checking Angelo Montanari

Equivalence between LTL and HSlin: LTL and FO
FO formulas ϕ (first-order fragment of MSO over infinite words):

ϕ :� > | p ∈ x | x ≤ y | x < y | ¬ϕ | ϕ ∧ ϕ | ∃x.ϕ

I we interpret FO formulas ϕ over infinite paths π of Kripke
structures

I a valuation function g assigns to each variable a position i ≥ 0
I the satisfaction relation (π, g) |� ϕ corresponds to the

standard satisfaction relation (µ(π), g) |� ϕ, where µ(π) is the
infinite word over 2AP given by µ(π(0))µ(π(1)) · · ·

Theorem (Kamp’s theorem)
Given a FO sentence ϕ over AP , one can construct an LTL formula
ψ such that for all Kripke structures K over AP and infinite paths π,

π |� ϕ ⇐⇒ π, 0 |� ψ

Interval vs. Point Model Checking Angelo Montanari

Equivalence between LTL and HSlin: LTL and FO
FO formulas ϕ (first-order fragment of MSO over infinite words):

ϕ :� > | p ∈ x | x ≤ y | x < y | ¬ϕ | ϕ ∧ ϕ | ∃x.ϕ

I we interpret FO formulas ϕ over infinite paths π of Kripke
structures

I a valuation function g assigns to each variable a position i ≥ 0
I the satisfaction relation (π, g) |� ϕ corresponds to the

standard satisfaction relation (µ(π), g) |� ϕ, where µ(π) is the
infinite word over 2AP given by µ(π(0))µ(π(1)) · · ·

Theorem (Kamp’s theorem)
Given a FO sentence ϕ over AP , one can construct an LTL formula
ψ such that for all Kripke structures K over AP and infinite paths π,

π |� ϕ ⇐⇒ π, 0 |� ψ

Interval vs. Point Model Checking Angelo Montanari

Equivalence between LTL and HSlin: LTL ≥ HSlin

Given an HSlin formula ψ, one can build an FO sentence ψFO such
that, for all Kripke structures K , it holds that
K |�lin ψ iff for each initial infinite path π of K , K , π |� ψFO

ψFO � ∃x((∀z.z ≥ x) ∧ ∀y .h(ψ, x , y))

h(p, x , y) � ∀z.((z ≥ x ∧ z ≤ y) → p ∈ z)
h(〈E〉ψ, x , y) � ∃z.(z > x ∧ z ≤ y ∧ h(ψ, z, y))
h(〈B〉ψ, x , y) � ∃z.(z ≥ x ∧ z < y ∧ h(ψ, x , z))
h(〈E〉ψ, x , y) � ∃z.(z < x ∧ h(ψ, z, y))
h(〈B〉ψ, x , y) � ∃z.(z > y ∧ h(ψ, x , z))

Theorem
LTL ≥ HSlin

Interval vs. Point Model Checking Angelo Montanari

Equivalence between LTL and HSlin: HSlin ≥ LTL

The converse containment holds as well (HSlin ≥ LTL)

Theorem
Given an LTL formula ϕ, we can construct in linear time an AB
formula ψ such that ϕ in LTL is equivalent to ψ in ABlin

f (p) � p, for each proposition letter p
f (Xψ) � 〈A〉(length2 ∧ 〈A〉(length1 ∧ f (ψ))),

f (ψ1Uψ2) � 〈A〉
(
〈A〉(length1 ∧ f (ψ2)) ∧ [B](〈A〉(length1 ∧ f (ψ1))

)
It holds that K |� ψ iff K |�lin length1 → f (ψ)
Corollary
HSlin and LTL have the same expressive power

Interval vs. Point Model Checking Angelo Montanari

What about succinctness?

Things change if we consider succinctness: while it is possible to
convert any LTL formula into an equivalent HSlin one in linear time,
HSlin is at least exponentially more succinct than LTL

To prove it, it suffices to provide an HSlin formula ψ for which there
exists no LTL equivalent formula whose size is polynomial in |ψ |

We restrict our attention to the fragment BElin: since modalities 〈B〉
and 〈E〉 only allow one to ‘move’ from an interval to its subintervals,
BElin actually coincides with BEst, whose MC is known to be hard
for EXPSPACE

Interval vs. Point Model Checking Angelo Montanari

A characterization of HSlp
skip

Interval vs. Point Model Checking Angelo Montanari

A characterization of HSlp: HSlp ≥ finitary CTL∗ - 1

We first show that finitary CTL∗ is subsumed by HSlp (finitary CTL∗
= path quantification ranges over the traces starting from the
current state)

Preliminary step: when interpreted over finite words, the BE
fragment of HS and LTL define the same class of finitary languages

Action-based semantics of BE (Lact(ϕ)):
I Lact(a) � a+ for each a ∈ Σ;
I Lact(¬ϕ) � Σ+ \ Lact(ϕ);
I Lact(ϕ1 ∧ ϕ2) � Lact(ϕ1) ∩ Lact(ϕ2);
I Lact(〈B〉 ϕ) � {w ∈ Σ+ | Pref(w) ∩ Lact(ϕ) , ∅};
I Lact(〈E〉 ϕ) � {w ∈ Σ+ | Suff(w) ∩ Lact(ϕ) , ∅}.

Easy direction: over finite words, the class of languages defined by
BE is subsumed by that defined by LTL

Interval vs. Point Model Checking Angelo Montanari

A characterization of HSlp: HSlp ≥ finitary CTL∗ - 1

We first show that finitary CTL∗ is subsumed by HSlp (finitary CTL∗
= path quantification ranges over the traces starting from the
current state)

Preliminary step: when interpreted over finite words, the BE
fragment of HS and LTL define the same class of finitary languages

Action-based semantics of BE (Lact(ϕ)):
I Lact(a) � a+ for each a ∈ Σ;
I Lact(¬ϕ) � Σ+ \ Lact(ϕ);
I Lact(ϕ1 ∧ ϕ2) � Lact(ϕ1) ∩ Lact(ϕ2);
I Lact(〈B〉 ϕ) � {w ∈ Σ+ | Pref(w) ∩ Lact(ϕ) , ∅};
I Lact(〈E〉 ϕ) � {w ∈ Σ+ | Suff(w) ∩ Lact(ϕ) , ∅}.

Easy direction: over finite words, the class of languages defined by
BE is subsumed by that defined by LTL

Interval vs. Point Model Checking Angelo Montanari

A characterization of HSlp: HSlp ≥ finitary CTL∗ - 1

We first show that finitary CTL∗ is subsumed by HSlp (finitary CTL∗
= path quantification ranges over the traces starting from the
current state)

Preliminary step: when interpreted over finite words, the BE
fragment of HS and LTL define the same class of finitary languages

Action-based semantics of BE (Lact(ϕ)):
I Lact(a) � a+ for each a ∈ Σ;
I Lact(¬ϕ) � Σ+ \ Lact(ϕ);
I Lact(ϕ1 ∧ ϕ2) � Lact(ϕ1) ∩ Lact(ϕ2);
I Lact(〈B〉 ϕ) � {w ∈ Σ+ | Pref(w) ∩ Lact(ϕ) , ∅};
I Lact(〈E〉 ϕ) � {w ∈ Σ+ | Suff(w) ∩ Lact(ϕ) , ∅}.

Easy direction: over finite words, the class of languages defined by
BE is subsumed by that defined by LTL

Interval vs. Point Model Checking Angelo Montanari

A characterization of HSlp: HSlp ≥ finitary CTL∗ - 2
Converse direction: we exploit a sufficient condition for the inclusion
of the class of LTL-definable languages, called LTL-closure, stating
that any LTL-closed class C of finitary languages includes the class
of LTL-definable finitary languages (Wilke)

Proposition
Let ϕ be an LTL formula over a finite alphabet Σ. Then, there exists
a BE formula ϕHS over Σ such that Lact(ϕHS) � Lact(ϕ)
Proof: the class of BE-definable finitary languages is LTL-closed

Theorem
Let ϕ be a finitary CTL∗ formula over AP . Then, there is an ABE
formula ϕHS over AP such that for all Kripke structures K over AP
and tracks ρ, K , ρ, 0 |� ϕ iff K , ρ |�st ϕHS.
Since for ABE the computation-tree-based and the state-based
semantics coincide, the following corollary holds:

both HSst ≥ finitary CTL∗ and HSlp ≥ finitary CTL∗

Interval vs. Point Model Checking Angelo Montanari

A characterization of HSlp: HSlp ≥ finitary CTL∗ - 2
Converse direction: we exploit a sufficient condition for the inclusion
of the class of LTL-definable languages, called LTL-closure, stating
that any LTL-closed class C of finitary languages includes the class
of LTL-definable finitary languages (Wilke)

Proposition
Let ϕ be an LTL formula over a finite alphabet Σ. Then, there exists
a BE formula ϕHS over Σ such that Lact(ϕHS) � Lact(ϕ)
Proof: the class of BE-definable finitary languages is LTL-closed

Theorem
Let ϕ be a finitary CTL∗ formula over AP . Then, there is an ABE
formula ϕHS over AP such that for all Kripke structures K over AP
and tracks ρ, K , ρ, 0 |� ϕ iff K , ρ |�st ϕHS.
Since for ABE the computation-tree-based and the state-based
semantics coincide, the following corollary holds:

both HSst ≥ finitary CTL∗ and HSlp ≥ finitary CTL∗

Interval vs. Point Model Checking Angelo Montanari

A characterization of HSlp: HSlp ≥ finitary CTL∗ - 2
Converse direction: we exploit a sufficient condition for the inclusion
of the class of LTL-definable languages, called LTL-closure, stating
that any LTL-closed class C of finitary languages includes the class
of LTL-definable finitary languages (Wilke)

Proposition
Let ϕ be an LTL formula over a finite alphabet Σ. Then, there exists
a BE formula ϕHS over Σ such that Lact(ϕHS) � Lact(ϕ)
Proof: the class of BE-definable finitary languages is LTL-closed

Theorem
Let ϕ be a finitary CTL∗ formula over AP . Then, there is an ABE
formula ϕHS over AP such that for all Kripke structures K over AP
and tracks ρ, K , ρ, 0 |� ϕ iff K , ρ |�st ϕHS.

Since for ABE the computation-tree-based and the state-based
semantics coincide, the following corollary holds:

both HSst ≥ finitary CTL∗ and HSlp ≥ finitary CTL∗

Interval vs. Point Model Checking Angelo Montanari

A characterization of HSlp: HSlp ≥ finitary CTL∗ - 2
Converse direction: we exploit a sufficient condition for the inclusion
of the class of LTL-definable languages, called LTL-closure, stating
that any LTL-closed class C of finitary languages includes the class
of LTL-definable finitary languages (Wilke)

Proposition
Let ϕ be an LTL formula over a finite alphabet Σ. Then, there exists
a BE formula ϕHS over Σ such that Lact(ϕHS) � Lact(ϕ)
Proof: the class of BE-definable finitary languages is LTL-closed

Theorem
Let ϕ be a finitary CTL∗ formula over AP . Then, there is an ABE
formula ϕHS over AP such that for all Kripke structures K over AP
and tracks ρ, K , ρ, 0 |� ϕ iff K , ρ |�st ϕHS.
Since for ABE the computation-tree-based and the state-based
semantics coincide, the following corollary holds:

both HSst ≥ finitary CTL∗ and HSlp ≥ finitary CTL∗

Interval vs. Point Model Checking Angelo Montanari

A characterization of HSlp: (finitary) CTL∗ ≥ HSlp - 1

Then, we show that HSlp is subsumed by finitary CTL∗ and CTL∗

Hybrid CTL∗lp (hybrid and linear past extension of CTL∗):
ϕ ::� > | p | x | ¬ϕ | ϕ ∨ ϕ | ↓x.ϕ | Xϕ | ϕUϕ | X−ϕ | ϕU−ϕ | ∃ϕ
I π, g, i |� x ⇔ g(x) � i
I π, g, i |� ↓x.ϕ⇔ π, g[x ← i], i |� ϕ
I path quantification is “memoryful”: it ranges over infinite paths

that start at the root and visit the current node of the
computation tree.

Well-formed hybrid CTL∗lp:
I each subformula ∃ψ has at most one free variable
I each subformula ∃ψ(x) of ϕ having x as free variable occurs

in ϕ in the context (F−x) ∧ ∃ψ(x)
Intuitively, for each state subformula ∃ψ, the unique free variable (if
any) refers to ancestors of the current node in the computation tree

Interval vs. Point Model Checking Angelo Montanari

A characterization of HSlp: (finitary) CTL∗ ≥ HSlp - 1

Then, we show that HSlp is subsumed by finitary CTL∗ and CTL∗

Hybrid CTL∗lp (hybrid and linear past extension of CTL∗):
ϕ ::� > | p | x | ¬ϕ | ϕ ∨ ϕ | ↓x.ϕ | Xϕ | ϕUϕ | X−ϕ | ϕU−ϕ | ∃ϕ
I π, g, i |� x ⇔ g(x) � i
I π, g, i |� ↓x.ϕ⇔ π, g[x ← i], i |� ϕ
I path quantification is “memoryful”: it ranges over infinite paths

that start at the root and visit the current node of the
computation tree.

Well-formed hybrid CTL∗lp:
I each subformula ∃ψ has at most one free variable
I each subformula ∃ψ(x) of ϕ having x as free variable occurs

in ϕ in the context (F−x) ∧ ∃ψ(x)
Intuitively, for each state subformula ∃ψ, the unique free variable (if
any) refers to ancestors of the current node in the computation tree

Interval vs. Point Model Checking Angelo Montanari

A characterization of HSlp: (finitary) CTL∗ ≥ HSlp - 1

Then, we show that HSlp is subsumed by finitary CTL∗ and CTL∗

Hybrid CTL∗lp (hybrid and linear past extension of CTL∗):
ϕ ::� > | p | x | ¬ϕ | ϕ ∨ ϕ | ↓x.ϕ | Xϕ | ϕUϕ | X−ϕ | ϕU−ϕ | ∃ϕ
I π, g, i |� x ⇔ g(x) � i
I π, g, i |� ↓x.ϕ⇔ π, g[x ← i], i |� ϕ
I path quantification is “memoryful”: it ranges over infinite paths

that start at the root and visit the current node of the
computation tree.

Well-formed hybrid CTL∗lp:
I each subformula ∃ψ has at most one free variable
I each subformula ∃ψ(x) of ϕ having x as free variable occurs

in ϕ in the context (F−x) ∧ ∃ψ(x)
Intuitively, for each state subformula ∃ψ, the unique free variable (if
any) refers to ancestors of the current node in the computation tree

Interval vs. Point Model Checking Angelo Montanari

A characterization of HSlp: (finitary) CTL∗ ≥ HSlp - 2

Proposition
Given a HSlp formula ϕ, one can construct an equivalent
well-formed sentence of hybrid CTL∗lp (resp., finitary hybrid CTL∗lp)
(Not that difficult)

Proposition
Well-formed hybrid CTL∗lp (resp., finitary hybrid CTL∗lp) has the same
expressiveness as CTL∗ (resp., finitary CTL∗)
(Difficult!—It exploits the separation theorem for LTL + past)

Theorem
CTL∗ ≥ HSlp. Moreover, HSlp is as expressive as finitary CTL∗

Interval vs. Point Model Checking Angelo Montanari

A characterization of HSlp: (finitary) CTL∗ ≥ HSlp - 2

Proposition
Given a HSlp formula ϕ, one can construct an equivalent
well-formed sentence of hybrid CTL∗lp (resp., finitary hybrid CTL∗lp)
(Not that difficult)

Proposition
Well-formed hybrid CTL∗lp (resp., finitary hybrid CTL∗lp) has the same
expressiveness as CTL∗ (resp., finitary CTL∗)
(Difficult!—It exploits the separation theorem for LTL + past)

Theorem
CTL∗ ≥ HSlp. Moreover, HSlp is as expressive as finitary CTL∗

Interval vs. Point Model Checking Angelo Montanari

A characterization of HSlp: (finitary) CTL∗ ≥ HSlp - 2

Proposition
Given a HSlp formula ϕ, one can construct an equivalent
well-formed sentence of hybrid CTL∗lp (resp., finitary hybrid CTL∗lp)
(Not that difficult)

Proposition
Well-formed hybrid CTL∗lp (resp., finitary hybrid CTL∗lp) has the same
expressiveness as CTL∗ (resp., finitary CTL∗)
(Difficult!—It exploits the separation theorem for LTL + past)

Theorem
CTL∗ ≥ HSlp. Moreover, HSlp is as expressive as finitary CTL∗

Interval vs. Point Model Checking Angelo Montanari

A comparison of HSlin,HSlp, and HSst - 1

I The reachability condition ∀G∃Fp (from each state reachable
from the initial one, it is possible to reach a state where p
holds) is not LTL-definable, but it is easily definable in HSlp and
HSst by the formula 〈B〉 〈E〉 p

I The LTL formula Fp cannot be expressed in HSlp or HSst (Not
immediate!)

Interval vs. Point Model Checking Angelo Montanari

A comparison of HSlin,HSlp, and HSst - 1

I The reachability condition ∀G∃Fp (from each state reachable
from the initial one, it is possible to reach a state where p
holds) is not LTL-definable, but it is easily definable in HSlp and
HSst by the formula 〈B〉 〈E〉 p

I The LTL formula Fp cannot be expressed in HSlp or HSst (Not
immediate!)

Interval vs. Point Model Checking Angelo Montanari

A comparison of HSlin,HSlp, and HSst - 2

I We have already proved that CTL∗ ≥ HSlp, HSst ≥ HSlp

I HSlp, CTL, CTL∗ are not sensitive to unwinding, HSst is
I The CTL formula ∀Fp cannot be expressed in HSlp or HSst

I The finitary CTL∗ formula ∃(
((p1Up2) ∨ (q1Uq2))U r

)
cannot

be expressed in CTL

Interval vs. Point Model Checking Angelo Montanari

Ongoing work and future developments - 1

Ongoing work: to determine the exact complexity of the satisfiability
/ model checking problems for BE over finite linear orders, under
the homogeneity assumption (the three semantic variants of HS
coincide over BE)

We know that the satisfiability/model checking problems for D over
finite linear orders, under the homogeneity assumption, are
PSPACE-complete (we exploit a spatial encoding of the models for
D and a suitable contraction technique)

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala, Satisfiability and
Model Checking for the Logic of Sub-Intervals under the Homogeneity
Assumption, Proc. of the 44th International Colloquium on Automata,
Languages, and Programming(ICALP), LIPIcs 80, July 2017, pp.
120:1–120:14

Interval vs. Point Model Checking Angelo Montanari

Ongoing work and future developments - 2

I To fill the expressiveness gap between HSlp and CTL∗ by
considering abstract interval models, induced by Kripke
structures, featuring worlds also for infinite traces/intervals, and
extending the semantics of HS modalities to infinite intervals

I To replace of Kripke structures by more expressive models
I visibly pushdown systems, that can encode recursive programs

and infinite state systems
I inherently interval-based models, that allows one to directly

describe systems on the basis of their interval
behavior/properties, such as, for instance, those involving
actions with duration, accomplishments, or temporal
aggregations (no restriction on the evaluation of proposition
letters)

I Application: planning as satisfiability checking / model
checking in interval temporal logic

