Interval vs. Point Temporal Logic Model Checking

Angelo Montanari

Dept. of Mathematics, Computer Science, and Physics University of Udine, Italy

(On leave at LaBRI - October/December 2017)

INFINI seminar Cachan, France November 30, 2017

Angelo Montanar

ション・ 山 ・ 山 ・ 山 ・ 山 ・ シック・

Model checking

Model checking: the desired properties of a system are checked against a model of it

- the model is usually a (finite) state-transition system
- system properties are specified by a temporal logic (LTL, CTL, CTL* and the like)

・ロット 御マ キョット きょう

.

Distinctive features of model checking:

- exaustive check of all the possible behaviours
- fully automatic process
- a counterexample is produced for a violated property

Point-based vs. interval-based model checking

Model checking is usually point-based:

- properties express requirements over points (snapshots) of a computation (states of the state-transition system)
- they are specified by means of point-based temporal logics such as LTL, CTL, and CTL*

Interval properties express conditions on computation stretches instead of on computation states

A lot of work has been done on interval temporal logic (ITL) satisfiability checking (an up-to-date survey can be found at: *https* : //users.dimi.uniud.it/~angelo.montanari/Movep2016-partl.pdf).

ITL model checking entered the research agenda only recently (Bozzelli, Lomuscio, Michaliszyn, Molinari, Montanari, Murano, Perelli, Peron, Sala)

・ロット 御マット マリン

3

Interval vs. Point Model Checking

Outline of the talk

- The model checking problem for interval temporal logics
- Complexity results: the general picture
- Interval vs. point temporal logic model checking: an expressiveness comparison
- Ongoing work and future developments

The modeling of the system: Kripke structures

- HS formulas are interpreted over (finite) state-transition systems, whose states are labeled with sets of proposition letters (Kripke structures)
- An interval is a trace (finite path) in a Kripke structure

イロト 不得 トイヨト イヨト

An example of Kripke structure

HS: the modal logic of Allen's interval relations

Allen's interval relations: the 13 binary ordering relations between 2 intervals on a linear order. They give rise to corresponding unary modalities over frames where intervals are primitive entities:

 HS features a modality for any Allen ordering relation between pairs of intervals (except for equality)

All modalities can be expressed by means of $\langle A \rangle$, $\langle B \rangle$, $\langle E \rangle$, and their transposed modalities only (if point intervals are admitted, $\langle B \rangle$, $\langle E \rangle$, and their transposed modalities suffice)

HS semantics and model checking

Truth of a formula ψ over a trace ρ of a Kripke structure $\mathcal{K} = (\mathcal{AP}, \mathbf{W}, \delta, \mu, \mathbf{w}_0)$ defined by induction on the complexity of ψ :

- ► $\mathcal{K}, \rho \models p$ iff $p \in \bigcap_{w \in \text{states}(\rho)} \mu(w)$, for any letter $p \in \mathcal{AP}$ (homogeneity assumption);
- clauses for negation, disjunction, and conjunction are standard;
- $\mathcal{K}, \rho \models \langle A \rangle \psi$ iff there is a trace ρ' s.t. $lst(\rho) = fst(\rho')$ and $\mathcal{K}, \rho' \models \psi$;
- $\mathcal{K}, \rho \models \langle \mathsf{B} \rangle \psi$ iff there is a proper prefix ρ' of ρ s.t. $\mathcal{K}, \rho' \models \psi$;
- $\mathcal{K}, \rho \models \langle \mathsf{E} \rangle \psi$ iff there is a proper suffix ρ' of ρ s.t. $\mathcal{K}, \rho' \models \psi$;

(日)(四)(日)(日)(日)

• the semantic clauses for $\langle \overline{A} \rangle$, $\langle \overline{B} \rangle$, and $\langle \overline{E} \rangle$ are similar

Model Checking

 $\mathcal{K} \models \psi \iff$ for all *initial* traces ρ of \mathcal{K} , it holds that $\mathcal{K}, \rho \models \psi$ Possibly infinitely many traces!

Interval vs. Point Model Checking

Remark: HS state semantics (HS_{st})

According to the given semantics, HS modalities allow one to branch both in the past and in the future

(日)

The Kripke structure \mathcal{K}_{Sched} for a simple scheduler

Angelo Montanari

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

A short account of Ksched

 \mathcal{K}_{Sched} models the behaviour of a scheduler serving 3 processes which are continuously requesting the use of a common resource (it can be easily generalised to an arbitrary number of processes)

Initial state: v_0 (no process is served in that state)

In v_i and \overline{v}_i the *i*-th process is served (p_i holds in those states) The scheduler cannot serve the same process twice in two consecutive rounds:

- ▶ process *i* is served in state v_i , then, after "some time", a transition u_i from v_i to \overline{v}_i is taken; subsequently, process *i* cannot be served again immediately, as v_i is not directly reachable from \overline{v}_i
- ▶ a transition r_j , with $j \neq i$, from \overline{v}_i to v_j is then taken and process *j* is served

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Some meaningful properties to be checked over KSched

Validity of properties over all legal computation intervals can be forced by modality [E] (they are suffixes of at least one initial trace)

Property 1: in any computation interval of length at least 4, at least 2 processes are witnessed (YES/no process can be executed twice in a row)

$$\mathscr{K}_{\mathcal{S}ched} \models [E] \big(\langle \mathsf{E} \rangle^3 \top \to (\chi(p_1, p_2) \lor \chi(p_1, p_3) \lor \chi(p_2, p_3)) \big),$$

where $\chi(p,q) = \langle \mathsf{E} \rangle \langle \overline{\mathsf{A}} \rangle p \land \langle \mathsf{E} \rangle \langle \overline{\mathsf{A}} \rangle q$

Property 2: in any computation interval of length at least 11, process 3 is executed at least once (NO/the scheduler can postpone the execution of a process ad libitum—starvation)

$$\mathcal{K}_{Sched} \not\models [E](\langle \mathsf{E} \rangle^{10} \top \to \langle \mathsf{E} \rangle \langle \overline{\mathsf{A}} \rangle p_3)$$

Property 3: in any computation interval of length at least 6, all processes are witnessed (NO/the scheduler should be forced to execute them in a strictly periodic manner, which is not the case)

$$\mathscr{K}_{Sched} \not\models [E](\langle E \rangle^5 \to (\langle E \rangle \langle \overline{A} \rangle p_1 \land \langle E \rangle \langle \overline{A} \rangle p_2 \land \langle E \rangle \langle \overline{A} \rangle p_3))$$

Interval vs. Point Model Checking

Model checking: the key notion of BE_k -descriptor

- The BE-nesting depth of an HS formula ψ (Nest_{BE}(ψ)) is the maximum degree of nesting of modalities B and E in ψ
- Two traces ρ and ρ' of a Kripke structure 𝔆 are k-equivalent if and only if 𝔅, ρ ⊨ ψ iff 𝔅, ρ' ⊨ ψ for all HS-formulas ψ with Nest_{BE}(ψ) ≤ k

Model checking: the key notion of BE_k -descriptor

- The BE-nesting depth of an HS formula ψ (Nest_{BE}(ψ)) is the maximum degree of nesting of modalities B and E in ψ
- Two traces ρ and ρ' of a Kripke structure 𝔆 are k-equivalent if and only if 𝔅, ρ ⊨ ψ iff 𝔅, ρ' ⊨ ψ for all HS-formulas ψ with Nest_{BE}(ψ) ≤ k

For any given k, we provide a suitable tree representation for a trace, called a BE_k -descriptor

The *BE*_k-descriptor for a trace $\rho = v_0 v_1 .. v_{m-1} v_m$, denoted *BE*_k(ρ), has the following structure:

Remark: the descriptor does not feature sibling isomorphic subtrees

Interval vs. Point Model Checking

Angelo Montanari

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

An example of a *BE*₂-descriptor

The *BE*₂-descriptor for the trace $\rho = v_0 v_1 v_0^4 v_1$ (for the sake of readability, only the subtrees for prefixes are displayed and point intervals are excluded)

イロト 不得 トイヨト イヨト

An example of a *BE*₂-descriptor

The *BE*₂-descriptor for the trace $\rho = v_0 v_1 v_0^4 v_1$ (for the sake of readability, only the subtrees for prefixes are displayed and point intervals are excluded)

(日)

Remark: the subtree to the left is associated with both prefixes $v_0v_1v_0^3$ and $v_0v_1v_0^4$ (no sibling isomorphic subtrees in the descriptor)

Interval vs. Point Model Checking

FACT 1: For any Kripke structure \mathcal{K} and any BE-nesting depth $k \ge 0$, the number of different BE_k -descriptors is finite (and thus at least one descriptor has to be associated with infinitely many traces)

FACT 1: For any Kripke structure \mathcal{K} and any BE-nesting depth $k \ge 0$, the number of different BE_k -descriptors is finite (and thus at least one descriptor has to be associated with infinitely many traces)

FACT 2: Two traces ρ and ρ' of a Kripke structure \mathcal{K} described by the same BE_k descriptor are *k*-equivalent

FACT 1: For any Kripke structure \mathcal{K} and any BE-nesting depth $k \ge 0$, the number of different BE_k -descriptors is finite (and thus at least one descriptor has to be associated with infinitely many traces)

FACT 2: Two traces ρ and ρ' of a Kripke structure \mathcal{K} described by the same BE_k descriptor are *k*-equivalent

Theorem

The model checking problem for full HS on finite Kripke structures is decidable (with a non-elementary algorithm)

A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron, Checking Interval Properties of Computations, Acta Informatica, Special Issue: Temporal Representation and Reasoning (TIME'14), Vol. 56, n. 6-8, October 2016, pp. 587-619

・ロット 御マット マリン

3

FACT 1: For any Kripke structure \mathcal{K} and any BE-nesting depth $k \ge 0$, the number of different BE_k -descriptors is finite (and thus at least one descriptor has to be associated with infinitely many traces)

FACT 2: Two traces ρ and ρ' of a Kripke structure \mathcal{K} described by the same BE_k descriptor are *k*-equivalent

Theorem

The model checking problem for full HS on finite Kripke structures is decidable (with a non-elementary algorithm)

A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron, Checking Interval Properties of Computations, Acta Informatica, Special Issue: Temporal Representation and Reasoning (TIME'14), Vol. 56, n. 6-8, October 2016, pp. 587-619

・ ロ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

What about lower bounds?

Interval vs. Point Model Checking

The logic BE

Theorem

The model checking problem for BE, over finite Kripke structures, is **EXPSPACE-hard**

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala, Interval Temporal Logic Model Checking: The Border Between Good and Bad HS Fragments, IJCAR 2016

Proof: a polynomial-time reduction from a domino-tiling problem for grids with rows of single exponential length

 for an instance *I* of the problem, we build a Kripke structure *K_I* and a BE formula φ_I in polynomial time

・ロット 御マット マリン

3

- there is an initial trace of \mathcal{K}_I satisfying φ_I iff there is a tiling of I
- $\mathcal{K}_{I} \models \neg \varphi_{I}$ iff there exists no tiling of I

BE hardness: encoding of the domino-tiling problem

Instance of the tiling problem: $(C, \Delta, n, d_{init}, d_{final})$, with *C* a finite set of colors and $\Delta \subseteq C \times C \times C \times C$ a set of tuples (c_B, c_L, c_T, c_R)

String (interval) encoding of the problem

イロト 不得 トイヨト イヨト

The complexity picture

Hardness results

- EXPSPACE-hardness of BE via a reduction from a domino-tiling problem
- PSPACE-hardness of B via a reduction from QBF
- *P^{NP}*-hardness of AB and AE via a reduction from SNSAT (a logical problem with nested satisfiability questions)
- P^{NP[O(log n)]}-hardness of A and A via a reduction from Parity-SAT (is the number of satisfiable formulas in a given set odd or even?)

 co-NP-hardness of Prop via a reduction from SAT to the not-model problem

Three main gaps to fill

There are three main gaps to fill:

- full HS and BE are in between nonELEMENTARY and EXPSPACE
- ► AABBE, AAEBE, ABBE, AEBE, ABBE, and AEBE are in between EXPSPACE and PSPACE
- ► A, Ā, AĀ, ĀB, and AE are in between P^{NP[O(log² n)]} and P^{NP[O(log n)]}

Point vs. interval temporal logic model checking

Question: is there any advantage in replacing points by intervals as the primary temporal entities, or is it just a matter of taste?

In order to compare the expressiveness of HS in model checking with those of LTL, CTL, and CTL*, we consider three semantic variants of HS:

- HS with state-based semantics (the original one)
- HS with computation-tree-based semantics
- HS with trace-based semantics

These variants are compared with the above-mentioned standard temporal logics and among themselves

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala, Interval vs. Point Temporal Logic Model Checking: an Expressiveness Comparison. Proceedings of the 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), December 2016, pp 26:1-14.

・ ロ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

э.

Interval vs. Point Model Checking

Branching semantic variant of HS

State-based semantics of HS (HS_{st}):

- both the future and the past are branching
- A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron, Checking Interval Properties of Computations, Acta Informatica, Special Issue: Temporal Representation and Reasoning (TIME'14), Vol. 56, n. 6-8, October 2016, pp. 587-619

(日)

Linear-past semantic variant of HS

Computation-tree-based semantics of HS (HS_{lp}):

- the future is branching
- the past is linear, finite and cumulative
- similar to CTL* + linear past

A. Lomuscio and J. Michaliszyn, Decidability of model checking multi-agent systems against a class of EHS specifications, Proc. of the 21st European Conference on Artificial Intelligence (ECAI), August 2014, pp. 543–548

Interval vs. Point Model Checking

イロト 不得 トイヨト イヨト

Linear semantic variant of HS

Trace-based semantics of HS (HS_{lin}):

- neither the past nor the future is branching
- similar to LTL + past

The expressiveness picture

Angelo Montanari

(日)

Equivalence between LTL and HS_{lin}

イロト イヨト イヨト イヨト

Equivalence between LTL and HS_{lin}: LTL and FO

FO formulas φ (first-order fragment of MSO over infinite words):

$$\varphi := \top \mid p \in x \mid x \le y \mid x < y \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x.\varphi$$

- we interpret FO formulas φ over infinite paths π of Kripke structures
- a valuation function g assigns to each variable a position $i \ge 0$
- the satisfaction relation (π, g) ⊨ φ corresponds to the standard satisfaction relation (μ(π), g) ⊨ φ, where μ(π) is the infinite word over 2^{AP} given by μ(π(0))μ(π(1))···

Equivalence between LTL and HS_{lin}: LTL and FO

FO formulas φ (first-order fragment of MSO over infinite words):

$$\varphi := \top | p \in x | x \le y | x < y | \neg \varphi | \varphi \land \varphi | \exists x.\varphi$$

- we interpret FO formulas φ over infinite paths π of Kripke structures
- a valuation function g assigns to each variable a position $i \ge 0$
- the satisfaction relation (π, g) ⊨ φ corresponds to the standard satisfaction relation (μ(π), g) ⊨ φ, where μ(π) is the infinite word over 2^{AP} given by μ(π(0))μ(π(1))···

Theorem (Kamp's theorem)

Given a FO sentence φ over \mathcal{AP} , one can construct an LTL formula ψ such that for all Kripke structures \mathcal{K} over \mathcal{AP} and infinite paths π ,

$$\pi \models \varphi \iff \pi, \mathbf{0} \models \psi$$

Interval vs. Point Model Checking

Equivalence between LTL and HS_{lin} : LTL $\geq HS_{lin}$

Given an HS_{lin} formula ψ , one can build an FO sentence $\psi_{\rm FO}$ such that, for all Kripke structures \mathcal{K} , it holds that

 $\mathcal{K} \models_{\mathsf{lin}} \psi$ iff for each initial infinite path π of $\mathcal{K}, \mathcal{K}, \pi \models \psi_{\mathsf{FO}}$

$$\psi_{\mathsf{FO}} = \exists x ((\forall z.z \ge x) \land \forall y.h(\psi, x, y))$$

$$\begin{split} h(p,x,y) &= \forall z.((z \geq x \land z \leq y) \rightarrow p \in z) \\ h(\langle E \rangle \psi, x, y) &= \exists z.(z > x \land z \leq y \land h(\psi, z, y)) \\ h(\langle B \rangle \psi, x, y) &= \exists z.(z \geq x \land z < y \land h(\psi, x, z)) \\ h(\langle \overline{E} \rangle \psi, x, y) &= \exists z.(z < x \land h(\psi, z, y)) \\ h(\langle \overline{B} \rangle \psi, x, y) &= \exists z.(z > y \land h(\psi, x, z)) \end{split}$$

・ロット 御マット マリン

3

Theorem $LTL \ge HS_{lin}$

Equivalence between LTL and HS_{lin}: HS_{lin} \geq LTL

The converse containment holds as well ($HS_{lin} \ge LTL$)

Theorem

Given an LTL formula φ , we can construct in linear time an AB formula ψ such that φ in LTL is equivalent to ψ in AB_{lin}

$$\begin{split} f(p) &= p, \text{ for each proposition letter } p \\ f(X\psi) &= \langle A \rangle (\textit{length}_2 \land \langle A \rangle (\textit{length}_1 \land f(\psi))), \\ f(\psi_1 U\psi_2) &= \langle A \rangle \Big(\langle A \rangle (\textit{length}_1 \land f(\psi_2)) \land [B](\langle A \rangle (\textit{length}_1 \land f(\psi_1)) \Big) \end{split}$$

A D A A B A A B A

3

It holds that $\mathcal{K} \models \psi$ iff $\mathcal{K} \models_{\mathsf{lin}} \mathsf{length}_1 \to f(\psi)$

Corollary

HS_{lin} and LTL have the same expressive power

What about succinctness?

Things change if we consider succinctness: while it is possible to convert any LTL formula into an equivalent HS_{lin} one in linear time, HS_{lin} is at least exponentially more succinct than LTL

To prove it, it suffices to provide an HS_{lin} formula ψ for which there exists no LTL equivalent formula whose size is polynomial in $|\psi|$

We restrict our attention to the fragment BE_{lin}: since modalities $\langle B \rangle$ and $\langle E \rangle$ only allow one to 'move' from an interval to its subintervals, BE_{lin} actually coincides with BE_{st}, whose MC is known to be hard for EXPSPACE

- 日本 - 4 日本 - 4 日本 - 日本

A characterization of HS_{lp}

→ skip

イロト イヨト イヨト イヨト

We first show that finitary CTL* is subsumed by HS_{lp} (finitary CTL* = path quantification ranges over the traces starting from the current state)

We first show that finitary CTL* is subsumed by HS_{lp} (finitary CTL* = path quantification ranges over the traces starting from the current state)

Preliminary step: when interpreted over finite words, the BE fragment of HS and LTL define the same class of finitary languages

Action-based semantics of BE ($L_{act}(\varphi)$):

• $L_{act}(a) = a^+$ for each $a \in \Sigma$;

•
$$L_{act}(\neg \varphi) = \Sigma^+ \setminus L_{act}(\varphi);$$

•
$$L_{act}(\varphi_1 \land \varphi_2) = L_{act}(\varphi_1) \cap L_{act}(\varphi_2);$$

► $L_{act}(\langle \mathsf{B} \rangle \varphi) = \{ \mathsf{w} \in \Sigma^+ \mid \mathsf{Pref}(\mathsf{w}) \cap L_{act}(\varphi) \neq \emptyset \};$

►
$$L_{act}(\langle \mathsf{E} \rangle \varphi) = \{ \mathsf{w} \in \Sigma^+ \mid \mathsf{Suff}(\mathsf{w}) \cap L_{act}(\varphi) \neq \emptyset \}.$$

We first show that finitary CTL* is subsumed by HS_{lp} (finitary CTL* = path quantification ranges over the traces starting from the current state)

Preliminary step: when interpreted over finite words, the BE fragment of HS and LTL define the same class of finitary languages

Action-based semantics of BE ($L_{act}(\varphi)$):

• $L_{act}(a) = a^+$ for each $a \in \Sigma$;

•
$$L_{act}(\neg \varphi) = \Sigma^+ \setminus L_{act}(\varphi);$$

•
$$L_{act}(\varphi_1 \land \varphi_2) = L_{act}(\varphi_1) \cap L_{act}(\varphi_2);$$

- ► $L_{act}(\langle \mathsf{B} \rangle \varphi) = \{ \mathsf{w} \in \Sigma^+ \mid \mathsf{Pref}(\mathsf{w}) \cap L_{act}(\varphi) \neq \emptyset \};$
- ► $L_{act}(\langle \mathsf{E} \rangle \varphi) = \{ w \in \Sigma^+ \mid \mathsf{Suff}(w) \cap L_{act}(\varphi) \neq \emptyset \}.$

Easy direction: over finite words, the class of languages defined by BE is subsumed by that defined by LTL

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Interval vs. Point Model Checking

Converse direction: we exploit a sufficient condition for the inclusion of the class of LTL-definable languages, called LTL-closure, stating that any LTL-closed class C of finitary languages includes the class of LTL-definable finitary languages (Wilke)

Converse direction: we exploit a sufficient condition for the inclusion of the class of LTL-definable languages, called LTL-closure, stating that any LTL-closed class C of finitary languages includes the class of LTL-definable finitary languages (Wilke)

Proposition

Let φ be an LTL formula over a finite alphabet Σ . Then, there exists a BE formula φ_{HS} over Σ such that $L_{act}(\varphi_{HS}) = L_{act}(\varphi)$

Proof: the class of BE-definable finitary languages is LTL-closed

Converse direction: we exploit a sufficient condition for the inclusion of the class of LTL-definable languages, called LTL-closure, stating that any LTL-closed class C of finitary languages includes the class of LTL-definable finitary languages (Wilke)

Proposition

Let φ be an LTL formula over a finite alphabet Σ . Then, there exists a BE formula φ_{HS} over Σ such that $L_{act}(\varphi_{HS}) = L_{act}(\varphi)$

Proof: the class of BE-definable finitary languages is LTL-closed

Theorem

Let φ be a finitary CTL^{*} formula over \mathcal{AP} . Then, there is an ABE formula φ_{HS} over \mathcal{AP} such that for all Kripke structures \mathcal{K} over \mathcal{AP} and tracks ρ , $\mathcal{K}, \rho, 0 \models \varphi$ iff $\mathcal{K}, \rho \models_{st} \varphi_{HS}$.

(日)(四)(日)(日)(日)

Converse direction: we exploit a sufficient condition for the inclusion of the class of LTL-definable languages, called LTL-closure, stating that any LTL-closed class C of finitary languages includes the class of LTL-definable finitary languages (Wilke)

Proposition

Let φ be an LTL formula over a finite alphabet Σ . Then, there exists a BE formula φ_{HS} over Σ such that $L_{act}(\varphi_{HS}) = L_{act}(\varphi)$

Proof: the class of BE-definable finitary languages is LTL-closed

Theorem

Let φ be a finitary CTL^{*} formula over \mathcal{AP} . Then, there is an ABE formula φ_{HS} over \mathcal{AP} such that for all Kripke structures \mathcal{K} over \mathcal{AP} and tracks ρ , $\mathcal{K}, \rho, \mathbf{0} \models \varphi$ iff $\mathcal{K}, \rho \models_{st} \varphi_{HS}$.

Since for ABE the computation-tree-based and the state-based semantics coincide, the following corollary holds:

both $HS_{st} \ge finitary CTL^*$ and $HS_{lp} \ge finitary CTL^*$

Interval vs. Point Model Checking

Angelo Montanar

・ ロ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Then, we show that HS_{lp} is subsumed by finitary CTL* and CTL*

Then, we show that HS_{lp} is subsumed by finitary CTL^* and CTL^* Hybrid CTL_{lp}^* (hybrid and linear past extension of CTL^*): $\varphi ::= \top |p| x | \neg \varphi | \varphi \lor \varphi | \downarrow x.\varphi | X\varphi | \varphi U\varphi | X^-\varphi | \varphi U^-\varphi | \exists \varphi$

- $\pi, g, i \models x \Leftrightarrow g(x) = i$
- $\blacktriangleright \ \pi, g, i \models {\downarrow} x. \varphi \Leftrightarrow \pi, g[x \leftarrow i], i \models \varphi$
- path quantification is "memoryful": it ranges over infinite paths that start at the root and visit the current node of the computation tree.

Then, we show that HS_{lp} is subsumed by finitary CTL* and CTL* Hybrid CTL^{*}_{lp} (hybrid and linear past extension of CTL*): $\varphi ::= \top |p| x | \neg \varphi | \varphi \lor \varphi | \downarrow x.\varphi | X\varphi | \varphi U\varphi | X^{-}\varphi | \varphi U^{-}\varphi | \exists \varphi$

•
$$\pi, g, i \models x \Leftrightarrow g(x) = i$$

- $\blacktriangleright \ \pi, g, i \models {\downarrow} x. \varphi \Leftrightarrow \pi, g[x \leftarrow i], i \models \varphi$
- path quantification is "memoryful": it ranges over infinite paths that start at the root and visit the current node of the computation tree.

Well-formed hybrid CTL^{*}_{lp}:

- each subformula $\exists \psi$ has at most one free variable
- each subformula ∃ψ(x) of φ having x as free variable occurs in φ in the context (F⁻x) ∧ ∃ψ(x)

Intuitively, for each state subformula $\exists \psi$, the unique free variable (if any) refers to ancestors of the current node in the computation tree

Interval vs. Point Model Checking

・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition

Given a HS_{lp} formula φ , one can construct an equivalent well-formed sentence of hybrid CTL_{lp}^* (resp., finitary hybrid CTL_{lp}^*) (Not that difficult)

Proposition

Given a HS_{lp} formula φ , one can construct an equivalent well-formed sentence of hybrid CTL_{lp}^* (resp., finitary hybrid CTL_{lp}^*) (Not that difficult)

Proposition

Well-formed hybrid CTL_{lp}^* (resp., finitary hybrid CTL_{lp}^*) has the same expressiveness as CTL^* (resp., finitary CTL^*)

(Difficult!—It exploits the separation theorem for LTL + past)

Proposition

Given a HS_{lp} formula φ , one can construct an equivalent well-formed sentence of hybrid CTL_{lp}^* (resp., finitary hybrid CTL_{lp}^*) (Not that difficult)

Proposition

Well-formed hybrid CTL_{lp}^* (resp., finitary hybrid CTL_{lp}^*) has the same expressiveness as CTL^* (resp., finitary CTL^*)

(Difficult!—It exploits the separation theorem for LTL + past)

Theorem $CTL^* \ge HS_{lp}$. Moreover, HS_{lp} is as expressive as finitary CTL^*

A comparison of HS_{lin} , HS_{lp} , and HS_{st} - 1

- The reachability condition ∀G∃Fp (from each state reachable from the initial one, it is possible to reach a state where p holds) is not LTL-definable, but it is easily definable in HS_{Ip} and HS_{st} by the formula ⟨B⟩⟨E⟩p
- The LTL formula Fp cannot be expressed in HS_{Ip} or HS_{st} (Not immediate!)

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A comparison of HS_{lin} , HS_{lp} , and HS_{st} - 1

- The reachability condition ∀G∃Fp (from each state reachable from the initial one, it is possible to reach a state where p holds) is not LTL-definable, but it is easily definable in HS_{Ip} and HS_{st} by the formula ⟨B⟩⟨E⟩p
- The LTL formula Fp cannot be expressed in HS_{Ip} or HS_{st} (Not immediate!)

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A comparison of HS_{lin}, HS_{lp} , and HS_{st} - 2

- We have already proved that CTL^{*} ≥ HS_{lp}, HS_{st} ≥ HS_{lp}
- ► HS_{lp}, CTL, CTL* are not sensitive to unwinding, HS_{st} is
- The CTL formula ∀Fp cannot be expressed in HS_{lp} or HS_{st}
- The finitary CTL* formula ∃(((p₁Up₂) ∨ (q₁Uq₂)) Ur) cannot be expressed in CTL

(日)

Interval vs. Point Model Checking

Ongoing work and future developments - 1

Ongoing work: to determine the exact complexity of the satisfiability / model checking problems for BE over finite linear orders, under the homogeneity assumption (the three semantic variants of HS coincide over BE)

We know that the satisfiability/model checking problems for D over finite linear orders, under the homogeneity assumption, are PSPACE-complete (we exploit a spatial encoding of the models for D and a suitable contraction technique)

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala, Satisfiability and Model Checking for the Logic of Sub-Intervals under the Homogeneity Assumption, Proc. of the 44th International Colloquium on Automata, Languages, and Programming(ICALP), LIPIcs 80, July 2017, pp. 120:1–120:14

・ロット 御マット マリン

3

Ongoing work and future developments - 2

- To fill the expressiveness gap between HS_{Ip} and CTL* by considering abstract interval models, induced by Kripke structures, featuring worlds also for infinite traces/intervals, and extending the semantics of HS modalities to infinite intervals
- To replace of Kripke structures by more expressive models
 - visibly pushdown systems, that can encode recursive programs and infinite state systems
 - inherently interval-based models, that allows one to directly describe systems on the basis of their interval behavior/properties, such as, for instance, those involving actions with duration, accomplishments, or temporal aggregations (no restriction on the evaluation of proposition letters)
- Application: planning as satisfiability checking / model checking in interval temporal logic

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・