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Model checking

• Model checking: the desired properties of a system are checked

against a model of the system

• the model is a (finite) state-transition graph

• system properties are specified by a temporal logic (e.g., LTL, CTL,

CTL*, . . . )

• Distinctive features of model checking:

• exhaustive verification of all the possible behaviours

• fully automatic process

• a counterexample is produced for a violated property
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Point-based vs. interval-based model checking

• Model checking is usually point-based:

• properties express requirements over points (snapshots) of a

computation (states of the state-transition system)

• they are specified by means of point-based temporal logics such as

LTL and CTL and the like

• Interval-based model checking:

• Interval-based properties express conditions on computation

stretches: accomplishments, actions with duration, and temporal

aggregations

• they are specified by means of interval temporal logics such as HS

and its fragments
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The logic HS

HS features a modality for any Allen ordering relation between pairs of

intervals (except for equality)

Allen rel. HS Definition Example

x y

v z

v z

v z

v z

v z

v z

meets 〈A〉 [x , y ]RA[v , z ] ⇐⇒ y = v

before 〈L〉 [x , y ]RL[v , z ] ⇐⇒ y < v

started-by 〈B〉 [x , y ]RB [v , z ] ⇐⇒ x = v ∧ z < y

finished-by 〈E〉 [x , y ]RE [v , z ] ⇐⇒ y = z ∧ x < v

contains 〈D〉 [x , y ]RD [v , z ] ⇐⇒ x < v ∧ z < y

overlaps 〈O〉 [x , y ]RO [v , z ] ⇐⇒ x < v < y < z

All modalities can be expressed by means of 〈A〉, 〈B〉, 〈E〉 and their

transposed modalities only
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Kripke structures
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An example of Kripke structure

• HS formulas are interpreted

over (finite) state-transition

systems whose states are

labelled with sets of proposition

letters (Kripke structures)

• An interval is a track (finite

path/trace) in a Kripke

structure
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HS semantics and model checking

Truth of a formula ψ over a track ρ of a Kripke structure

K = (AP ,W , δ, µ,w0):

• K , ρ |= p iff p ∈ ⋂
w∈states(ρ) µ(w), for any letter p ∈ AP

(homogeneity assumption);

• negation, disjunction, and conjunction are standard;

• K , ρ |= 〈A〉ψ iff there is a track ρ′ s.t. lst(ρ) = fst(ρ′) and

K , ρ′ |= ψ;

• K , ρ |= 〈B〉ψ iff there is a prefix ρ′ of ρ s.t. K , ρ′ |= ψ;

• K , ρ |= 〈E〉ψ iff there is a suffix ρ′ of ρ s.t. K , ρ′ |= ψ;

• the semantic clauses for 〈A〉, 〈B〉, and 〈E〉 are similar

Model Checking

K |= ψ ⇐⇒ for all initial tracks ρ of K , it holds that K , ρ |= ψ

Possibly infinitely many tracks!
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BE -descriptors

v0
p

v1
q

BE2-descriptor for the track ρ = v0v1v
4
0 v1

(only the part for prefixes is shown)

(v0, {v0, v1}, v1)

(v0, ∅, v1)(v0, {v1}, v0)

(v0, ∅, v1)

(v0, {v0, v1}, v0)

(v0, ∅, v1)(v0, {v1}, v0)

(v0, {v0, v1}, v0)

(v0, ∅, v1)(v0, {v1}, v0)(v0, {v0, v1}, v0)

• FACT 1: For any Kripke structure K the number of different

descriptors of bounded depth k is finite

• FACT 2: Two tracks ρ and ρ′ of a Kripke structure K described by

the same BEk -descriptor are k-equivalent
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Decidability of HS model checking

Theorem

The model checking problem for full HS on Kripke structures is decidable

(non-elementary algorithm)

Reference

A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron. Checking

interval properties of computations.

Acta Informatica, 2016

Theorem

The model checking problem for BE on Kripke structures is EXPSPACE-hard

Reference

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Interval

Temporal Logic MC: the Border Between Good and Bad HS Fragments.

In IJCAR, LNAI 9706, pages 389–405. Springer, 2016
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The logic AABBE

In this paper, we focus our attention on the HS fragment AABBE , which

is obtained from full HS (AABEBE ) by removing modality 〈E〉

Some fundamental facts:

• we can restrict our attention on prefixes (Bk -descriptors suffice)

• the size of the tree representation of Bk -descriptors is larger than

necessary (redundancy) and it prevents their efficient exploitation in

model checking algorithms

• a track representative can be chosen to represent a (possibly

infinite) set of tracks with the same Bk -descriptor

• a bound, which depends on both the number |W | of states of the

Kripke structure and the B-nesting depth k, can be given to the

length of track representatives

8



The logic AABBE

In this paper, we focus our attention on the HS fragment AABBE , which

is obtained from full HS (AABEBE ) by removing modality 〈E〉

Some fundamental facts:

• we can restrict our attention on prefixes (Bk -descriptors suffice)

• the size of the tree representation of Bk -descriptors is larger than

necessary (redundancy) and it prevents their efficient exploitation in

model checking algorithms

• a track representative can be chosen to represent a (possibly

infinite) set of tracks with the same Bk -descriptor

• a bound, which depends on both the number |W | of states of the

Kripke structure and the B-nesting depth k, can be given to the

length of track representatives

8



The logic AABBE

In this paper, we focus our attention on the HS fragment AABBE , which

is obtained from full HS (AABEBE ) by removing modality 〈E〉

Some fundamental facts:

• we can restrict our attention on prefixes (Bk -descriptors suffice)

• the size of the tree representation of Bk -descriptors is larger than

necessary (redundancy) and it prevents their efficient exploitation in

model checking algorithms

• a track representative can be chosen to represent a (possibly

infinite) set of tracks with the same Bk -descriptor

• a bound, which depends on both the number |W | of states of the

Kripke structure and the B-nesting depth k, can be given to the

length of track representatives

8



The logic AABBE

In this paper, we focus our attention on the HS fragment AABBE , which

is obtained from full HS (AABEBE ) by removing modality 〈E〉

Some fundamental facts:

• we can restrict our attention on prefixes (Bk -descriptors suffice)

• the size of the tree representation of Bk -descriptors is larger than

necessary (redundancy) and it prevents their efficient exploitation in

model checking algorithms

• a track representative can be chosen to represent a (possibly

infinite) set of tracks with the same Bk -descriptor

• a bound, which depends on both the number |W | of states of the

Kripke structure and the B-nesting depth k, can be given to the

length of track representatives

8



The logic AABBE

In this paper, we focus our attention on the HS fragment AABBE , which

is obtained from full HS (AABEBE ) by removing modality 〈E〉

Some fundamental facts:

• we can restrict our attention on prefixes (Bk -descriptors suffice)

• the size of the tree representation of Bk -descriptors is larger than

necessary (redundancy) and it prevents their efficient exploitation in

model checking algorithms

• a track representative can be chosen to represent a (possibly

infinite) set of tracks with the same Bk -descriptor

• a bound, which depends on both the number |W | of states of the

Kripke structure and the B-nesting depth k , can be given to the

length of track representatives

8



Prefix-bisimilarity

Definition (Prefix-bisimilarity)

The tracks ρ and ρ′ are h-prefix bisimilar if the following conditions

inductively hold:

• for h = 0:

fst(ρ) = fst(ρ′), lst(ρ) = lst(ρ′), and states(ρ) = states(ρ′).

• for h > 0:

ρ and ρ′ are 0-prefix bisimilar and for each proper prefix ν of ρ (resp.,

proper prefix ν′ of ρ′), there exists a proper prefix ν′ of ρ′ (resp.,

proper prefix ν of ρ) such that ν and ν′ are (h − 1)-prefix bisimilar.

• h-prefix bisimilarity is an equivalence relation over TrkK .

• h-prefix bisimilarity propagates downwards.
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h-prefix bisimilarity ⇒ h-equivalence

Proposition

Let h ≥ 0, and ρ and ρ′ be two h-prefix bisimilar tracks of a Kripke

structure K . For each AABBE formula ψ, with B-nesting of ψ less than

or equal to h, it holds that

K , ρ |= ψ ⇐⇒ K , ρ′ |= ψ.
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Induced track

Definition (Induced track)

Let ρ be a track of length n of a Kripke structure K . A track induced

by ρ is a track π of K such that there exists an increasing sequence of

ρ-positions i1 < . . . < ik , where i1 = 1, ik = n, and

π = ρ(i1) · · · ρ(ik).

ρ

π
1 2 3 4 5

1 2 3 4 5 6 7 8 9 10

π = ρ(1)ρ(4)ρ(5)ρ(7)ρ(10)

If π is induced by ρ⇒ fst(π) = fst(ρ), lst(π) = lst(ρ), and |π| ≤ |ρ|.
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Prefix-skeleton sampling

Definition (Prefix-skeleton sampling)

Let ρ be a track of a Kripke structure K = (AP ,W , δ, µ,w0).

Given two ρ-positions i and j , with i ≤ j , the prefix-skeleton sampling of

ρ(i , j) is the minimal set P of ρ-positions in the interval [i , j ] satisfying:

• i , j ∈ P;

• for each state w ∈W occurring along ρ(i + 1, j − 1), the minimal

position k ∈ [i + 1, j − 1] such that ρ(k) = w is in P.

i j

w1 w1 w1 w1 w2 w1 w3 w1 w2 w3 w1 w3

ρ(i, j)

P = {i, i+ 1, i+ 4, i+ 6, j}
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h-prefix sampling

Definition (h-prefix sampling)

For each h ≥ 1, the h-prefix sampling of ρ is the minimal set Ph of

ρ-positions inductively satisfying the following conditions:

• for h = 1: P1 is the prefix-skeleton sampling of ρ;

• for h > 1:

• Ph ⊇ Ph−1 and

• for all pairs of consecutive positions i , j in Ph−1, the prefix-skeleton

sampling of ρ(i , j) is in Ph.

Property

The h-prefix sampling Ph of (any) ρ is such that |Ph| ≤ (|W |+ 2)h.
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Now what?

From a track ρ, we can derive another track ρ′, induced by ρ and h-prefix

bisimilar to ρ, such that |ρ′| ≤ (|W |+ 2)h+2 in this way:

1. we first compute the (h + 1)-prefix sampling Ph+1 of ρ;

2. then for all the pairs of consecutive ρ-positions i , j ∈ Ph+1, we

consider a track induced by ρ(i , j),

with no repeated occurrences of any state,

except at most the first and last ones (hence no longer than

(|W |+ 2));

3. ρ′ is just the ordered concatenation of all these tracks.

ρ and ρ′ can be proved to be h-prefix bisimilar,

⇒ ρ′ is indistinguishable from ρ w.r.t. the fulfilment of any AABBE

formula ψ, with B-nesting of ψ (abbreviated dB(ψ)) less than or equal to

h;

by the previous bound on |Ph|, we have |ρ′| ≤ (|W |+ 2)h+2.
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An EXPSPACE model checking algorithm for AABBE

Algorithm 1 ModCheck(K , ψ)

1: h← dB(ψ)

2: u ← New (Unravelling(K ,w0, h)) / w0 initial state of K

3: while u.hasMoreTracks() do

4: ρ̃← u.getNextTrack()

5: if Check(K , h, ψ, ρ̃) = 0 then

6: return 0: “K , ρ̃ 6|= ψ” / Counterexample foundX
7: return 1: “K |= ψ” / Model checking OK X
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Complexity picture

AABE PSPACE-complete B PSPACE-complete

E PSPACE-complete

AAEE PSPACE-completeAABB PSPACE-complete

AA
PNP[O(log2 n)]

PNP[O(log n)]-hard
A, A

PNP[O(log2 n)]

PNP[O(log n)]-hard
AB, AE

PNP[O(log2 n)]

PNP[O(log n)]-hard

AAB PNP-complete AAE PNP-complete

AB PNP-complete AE PNP-complete

B coNP-complete

E coNP-complete

Prop coNP-complete

AABBE
EXPSPACE

PSPACE-hard

succinct AABBE
EXPSPACE

NEXP-hard
BE

nonELEMENTARY

EXPSPACE-hard

full HS
nonELEMENTARY

EXPSPACE-hard

hardness

hardness

hardness

hardness

upper-bound

hardness

hardness

hardness

hardness
hardness

hardness

upper-bound

hardness

upper-bound
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Current and future work

• Comparison of HS model checking with LTL, CTL, and CTL* one

(to this end, we introduced two semantic variants of the problem

respectively based on the linear-past semantics and the linear

semantics) - DONE

• Application: Planning as Model Checking in Interval Temporal Logic

- IN PROGRESS

• Determining the precise complexity of full HS (and of a little subset

of its fragments)

• Relaxing the homogeneity assumption
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Expressiveness comparison

HSct

HSlin

HSst

finitary CTL∗

LTL

CTL

CTL∗≡

≡
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6=
6=
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