
Dagstuhl 24031 - January 16, 2024

Learning what to monitor:
pairing monitoring and learning

Angelo Montanari
(with A. Brunello, D. Della Monica, L. Geatti, and N. Saccomanno)

January 16, 2024

Monitoring is a runtime verification technique for the formal analysis of systems
that checks a finite prefix of the current execution (trace) of the system under
scrutiny to detect failures or successes expressed by means of temporal formulas.

The verdict of a monitoring algorithm is irrevocable: once a failure (resp., a
success) is detected, all continuations of the execution of the system are
guaranteed to be failures (resp., successes).

Monitoring

2/20 A. Montanari Dagstuhl 24031

Monitoring typically consists of the
following steps:

1 bad/good behaviors to be checked
are specified by temporal logic
formulas;

2 from each temporal formula, an
equivalent monitor is built (typically,
a deterministic finite state
automaton);

3 the monitor is used for analysing the
system in either online or offline
mode.

A simple architecture

3/20 A. Montanari Dagstuhl 24031

Negatively monitorable

Property: ”The program never enters a deadlock”

event

time

i i i d

0 1 2 3 4 5

i = instruction
d = deadlock

Given a safety property, a prefix of a sequence
suffices to establish whether it does not satisfy
the property.

Positively monitorable

Property: ”The program terminates”

event

time

i i i i i t

0 1 2 3 4 5

i = instruction
t = termination

Given a cosafety property, a prefix of
a sequence suffices to establish
whether it does satisfy the property.

Positively and negatively monitorable properties

4/20 A. Montanari Dagstuhl 24031

We say that a temporal logic L is cosafety iff, for any φ ∈ L, L(φ) is cosafety.

cosafetyLTL

Definition
φ := p | ¬p | φ ∨ φ | φ ∧ φ | Xφ | Fφ | φUφ

Example:

pUq

F(pLTL)

Definition
φ := F(α), where α is a pure-past LTL
formula.

Example:

F(q ∧ ỸHp)

F(pLTL) is the canonical form of
cosafetyLTL.

The cosafety fragment of LTL

5/20 A. Montanari Dagstuhl 24031

We say that a temporal logic L is safety iff, for any φ ∈ L, L(φ) is safety.

safetyLTL

Definition
φ := p | ¬p | φ ∨ φ | φ ∧ φ | Xφ | Gφ | φRφ

Example:

G(r− > XXg)

G(pLTL)

Definition
φ := G(α), where α is a pure-past LTL
formula.

Example:

G(ỸỸr− > g)

G(pLTL) is the canonical form of
safetyLTL.

The safety fragment of LTL

6/20 A. Montanari Dagstuhl 24031

The class of monitorable LTL properties is larger than the union of safety and
cosafety properties.

((p ∨ q)Ur) ∨ Gp

On the one hand, observe that:

• ppp . . . satisfies the formula (but none of its prefixes is good - not a cosafety
property)

• qqq . . . does not satisfy the formula (but none of its prefixes is bad - not a
safety property)

Monitorability behind safety and cosafety fragments

7/20 A. Montanari Dagstuhl 24031

On the other hand:
• . . . r is a good prefix for the formula, provided that one of p or q holds in

positions denoted by . . .
• . . . {¬p,¬q,¬r} is a bad prefix for the formula

Key point. Any finite prefix that is neither good nor bad can be extended to a
good or a bad prefix: any letter containing r makes the prefix good, while a
continuation with the letter {¬p,¬q,¬r}makes the prefix bad.

Monitorability behind safety and cosafety fragments (contn’d)

8/20 A. Montanari Dagstuhl 24031

There are properties which are neither positively nor negatively monitorable.

This is, for instance, the case with the property (reactivity property):

Every request is sooner or later granted

• If a request has not been yet granted, you cannot exclude that it will be
granted in the future.

• If up to now all requests have been granted, you cannot exclude that a future
one will not.

Properties which are not monitorable

9/20 A. Montanari Dagstuhl 24031

Monitoring suffers from some significant limitations.

Among them we would like to mention the following ones:

• modern systems have such a level of complexity that it is impossible for a
system engineer to specify in advance all properties to be monitored;

• even minor changes to the system can introduce unforeseen bugs.

Limitation of monitoring

10/20 A. Montanari Dagstuhl 24031

How to solve this problem? By pairing monitoring and learning.

Main idea
Machine learning is used to learn in an online, iterative fashion, new formulas to
monitor by analysing trace prefixes that lead to failure events.

Learning what to monitor

11/20 A. Montanari Dagstuhl 24031

• The system engineering specifies only a set of initial properties.

• Warmup (offline) Phase: In a fully automatic fashion, the framework analyzes
the traces of the system that lead to a failure, and derive new relevant
properties, with the objective of anticipate their identification.

• Online Phase: the framework monitors the system in real time. If a failure
occurs, it derives new relevant formulas and it iteratively refines the pool of
formulas to be monitored.

A proof of concept with Signal Temporal Logic and Genetic Programming for
early failure detection and predictive maintenance.

Pairing monitoring with machine learning

12/20 A. Montanari Dagstuhl 24031

Monitor incoming
system trace at time
instant t based on P

Yes

No

Does a
formula in P

evaluate
to true?

Extract a new formula
f using the EA

Runtime
framework
operation

Add formula f to
the pool P

Start execution with a
non-empty pool of

formulas P

t = t +1 t = t +1

Extract a new formula f using the EA

 Split currently observed
system trace into a normal
behavior prefix and failure

suffix

Generate other normal
behaviour and failure

subtraces via data
augmentation

Optimize a bi-obj fitness
function (qualit/quantit bSTL

semantics) to generate a
formula that discriminates the

two sets of subtraces

Select one of the Pareto-
optimal solutions, i.e., a
computation tree that

represents the formula

Yes

No

Does a
formula f in P

predict a
failure?

Extract a new formula
f using the EA

Warmup
framework
operation

Add
formula

f to
the pool P

Process a new, labeled,
training system trace

Yes

No
Is the

training trace a
failure one?

Yes

No
Is the

training trace a
failure one?

Teacher forcing module

Apply a penalty
to formula f, and
possibly remove
it from the pool

Yes

No
Is the

training trace
finished?

Monitor incoming system
trace at time instant t

based on P
t = t +1

Start execution with a new
(possibly empty) pool of

formulas P

The framework

13/20 A. Montanari Dagstuhl 24031

Distinguishing features of the framework:

• interpretability: the machine learning methods manipulate and produce only
formulae, that can be easily inspected by a system engineer;

• formal guarantees on monitorability: every formula produced during the
learning phase is guaranteed to be monitorable (this is done syntactically,
through the grammar used for the generation of the computation tree of each
formula – from bounded future STL to safety and cosafety fragments of STL);

• generality: different monitoring and machine learning backends.

Distinguishing features of the framework

14/20 A. Montanari Dagstuhl 24031

The machine learning techniques that are most used in predictive maintenance
and early failure detection are:
• Random Forests
• Artificial Neural Networks
• Support Vector Machines

The lack of interpretability is a problem common to all of the above techniques, in
the sense that they fail to provide an explanation of their prediction.

Explanation of the output of a predictive maintenance algorithm is important not
only for humans trying to understand the error but also for implementing the
correct actions for preventing the failure of the asset under consideration.

Limitations of "pure" machine learning approaches

15/20 A. Montanari Dagstuhl 24031

The framework can be extended along the following directions:

• identification of anomalies and drops of performance

• exploitation of unsupervised and self-supervised learning techniques

• modularity

Extensions to the framework

16/20 A. Montanari Dagstuhl 24031

• The framework currently works in a supervised fashion
• traces, labeled as failure or good behaviour ones, guide the first (warmup) stage

of formula extraction, following a teacher-forcing like approach
• justified as failures are terminating events (always detectable)

• The new version shall be self-supervised to deal with anomalies:
• characterizing a priori anomalies in modern complex systems is impractical
• systems evolve continuously over time
• supervised assumption, i.e., existence of complete and exhaustive dataset of

labelled anomalies is unrealistic and unfeasible

• Possible solution: use deep learning based SOTA approaches capable to
perform self-supervised anomaly detection as a source of supervision

Anomaly detection and self-supervised learning backend

17/20 A. Montanari Dagstuhl 24031

Assumption-Based Runtime Verification (ABRV) has recently been introduced as a
variant of monitoring to deal with systems that are only partially observable

• classical monitoring restricts itself to observable parts of the system and treat
the non-observable ones as black boxes

• ABRV exploits the fact that in practice one always knows something about
the internal (non-observable) parts of the system in form of assumptions that
the domain expert can specify before monitoring

• ABRV can reach conclusive verdicts with shorter trace prefixes

Assumption-based runtime verification

18/20 A. Montanari Dagstuhl 24031

The new framework shall be modular in at least the following dimensions:
• the specification language

• different temporal logics including LTL, STL, and ITL
• qualitative semantics (for tasks like failure detection)
• quantitative semantics (for tasks like anomaly detection), where appropriate

• the backend implementing the monitoring algorithm

• the backend for the learning of new properties
• move across learning paradigms and tasks
• different solution than GP for formula extraction (which is limited by bloat,

huge search space, tree-based formula representation, etc.), like the integration
with reinforcement learning or generative AI; alternatively, formulas can be
represented as graphs, enabling the usage of Graph Neural Networks

Modularity

19/20 A. Montanari Dagstuhl 24031

• Bauer, A., Leucker, M., & Schallhart, C. (2011). Runtime verification for LTL
and TLTL. ACM Transactions on Software Engineering and Methodology.

• Cimatti, A., Tian, C., & Tonetta, S. (2022). Assumption-based Runtime
Verification. Formal Methods in System Design.

• Geatti L. & Montanari, A. (2023). The Safety Fragment of Temporal Logics of
Infinite Sequences . ESSLLI Summer School

• Brunello, A., Della Monica, D., Montanari, A., Saccomanno, N., & Urgolo, A.
(2023). Monitors that Learn from Failures: Pairing STL and Genetic
Programming. IEEE Access.

• Geatti L., Montanari, A., & Saccomanno, N. (2023). Towards Machine
Learning Enhanced LTL Monitoring. OVERLAY workshop

Some references

20/20 A. Montanari Dagstuhl 24031

