Dagstuhl 24031 - January 16, 2024

Learning what to monitor:
pairing monitoring and learning

Angelo Montanari
(with A. Brunello, D. Della Monica, L. Geatti, and N. Saccomanno)

January 16, 2024

Monitoring

Monitoring is a runtime verification technique for the formal analysis of systems
that checks a finite prefix of the current execution (trace) of the system under
scrutiny to detect failures or successes expressed by means of temporal formulas.

The verdict of a monitoring algorithm is irrevocable: once a failure (resp., a

success) is detected, all continuations of the execution of the system are
guaranteed to be failures (resp., successes).

2/20 A. Montanari Dagstuhl 24031

A simple architecture

Monitoring typically consists of the
property following steps:

@ bad/good behaviors to be checked

- verdict are specified by temporal logic
monitor formulas;

® from each temporal formula, an
observe feedback equivalent monitor is built (typically,
a deterministic finite state
Instrumentation automaton);

@© the monitor is used for analysing the
system system in either online or offline
mode.

3/20 A. Montanari Dagstuhl 24031

Positively and negatively monitorable properties

Negatively monitorable

Property: “The program never enters a deadlock”

event i i i d
® 0o 0 0 0 o
time 0 1 2 3 4 5

i = instruction
d = deadlock

Given a safety property, a prefix of a sequence
suffices to establish whether it does not satisfy
the property.

4/20 A. Montanari

Positively monitorable

Property: “The program terminates”

event i i i i i t
o o o o 0 o
time 0 1 2 3 4 5

i = instruction
t = termination

Given a cosafety property, a prefix of
a sequence suffices to establish
whether it does satisfy the property.

Dagstuhl 24031

The cosafety fragment of LTL

We say that a temporal logic L is cosafety iff, for any ¢ € L, L(¢) is cosafety.

F(pLTL)

Definition Definition

p:=p|v|oVe|lone|Xp|Fo|oUd ¢ := F(a), where a is a pure-past LTL
formula.

Example; Example:

pUg F(q A YHp)
F(pLTL) is the canonical form of
cosafetyLTL.

5/20 A. Montanari Dagstuhl 24031

The safety fragment of LTL

We say that a temporal logic L is safety iff, for any ¢ € L, L(¢) is safety.

safetyLTL G(pLTL)

Definition Definition

p:=p|v|oVeloNne|Xp|Go| PR ¢ := G(a), where «a is a pure-past LTL
formula.

Example: Example:

G(r— > XXg) G(YYr—>g)
G(pLTL) is the canonical form of
safety L TL.

6/20 A. Montanari Dagstuhl 24031

Monitorability behind safety and cosafety fragments

The class of monitorable LTL properties is larger than the union of safety and
cosafety properties.

((pvag)ur) Vv Gp

On the one hand, observe that:

e ppp ... satisfies the formula (but none of its prefixes is good - not a cosafety
property)

* gqq ... does not satisfy the formula (but none of its prefixes is bad - not a
safety property)

7/20 A. Montanari Dagstuhl 24031

Monitorability behind safety and cosafety fragments (contn’d

On the other hand:

e ...risagood prefix for the formula, provided that one of p or g holds in
positions denoted by ...

o ...{-p,q,—r} is a bad prefix for the formula
Key point. Any finite prefix that is neither good nor bad can be extended to a

good or a bad prefix: any letter containing r makes the prefix good, while a
continuation with the letter {—p, =g, -7} makes the prefix bad.

8/20 A. Montanari Dagstuhl 24031

Properties which are not monitorable

There are properties which are neither positively nor negatively monitorable.
This is, for instance, the case with the property (reactivity property):
Every request is sooner or later granted

¢ If a request has not been yet granted, you cannot exclude that it will be
granted in the future.

e If up to now all requests have been granted, you cannot exclude that a future
one will not.

9/20 A. Montanari Dagstuhl 24031

Limitation of monitoring

Monitoring suffers from some significant limitations.

Among them we would like to mention the following ones:

¢ modern systems have such a level of complexity that it is impossible for a
system engineer to specify in advance all properties to be monitored;

¢ even minor changes to the system can introduce unforeseen bugs.

10/20 A. Montanari Dagstuhl 24031

Learning what to monitor

How to solve this problem? By pairing monitoring and learning.

Main idea

Machine learning is used to learn in an online, iterative fashion, new formulas to
monitor by analysing trace prefixes that lead to failure events.

11/20 A. Montanari Dagstuhl 24031

Pairing monitoring with machine learning

» The system engineering specifies only a set of initial properties.

o Warmup (offline) Phase: In a fully automatic fashion, the framework analyzes
the traces of the system that lead to a failure, and derive new relevant
properties, with the objective of anticipate their identification.

¢ Online Phase: the framework monitors the system in real time. If a failure

occurs, it derives new relevant formulas and it iteratively refines the pool of
formulas to be monitored.

A proof of concept with Signal Temporal Logic and Genetic Programming for
early failure detection and predictive maintenance.

12/20 A. Montanari Dagstuhl 24031

13/20

The framework

Start execution with a new Warmup
(possibly empty) pool of | framework
formulas P operation

Process a new, labeled,
training system trace

Monitor incoming system
trace at time instant ¢
based on P

Is the
training trace
finished?

Add
formula

Apply a penalty
to formula f, and
possibly remove
it from the pool

fto
the pool P

Is the
training trace a
failure one?

Is the
training trace a
failure one?

Teacher forcing module

! Yes
Yes

PR A
Extract a new formula
fusing the EA

A. Montanari

Start execution with a

Runtime
framework non-empty pool of
operation formulas P

Monitor incomin
system trace at time
instant { based on P

Does a
formula in P
evaluate
to true?

Add formula fto
the pool P

Extract a new formula
fusing the EA

l Extract a new formula f using the EA

Split currently observed Generate other normal

system trace into a normal behaviour and failure

behavior prefix and failure subtraces via data
suffix augmentation

Optimize a bi-obj fitness
function (qualit/quantit bSTL
semantics) to generate a
formula that discriminates the
two sets of subtraces

Select one of the Pareto-
optimal solutions, i.e., a
computation tree that
represents the formula

Dagstuhl 24031

Distinguishing features of the framework

Distinguishing features of the framework:

o interpretability: the machine learning methods manipulate and produce only
formulae, that can be easily inspected by a system engineer;

 formal guarantees on monitorability: every formula produced during the
learning phase is guaranteed to be monitorable (this is done syntactically,
through the grammar used for the generation of the computation tree of each
formula - from bounded future STL to safety and cosafety fragments of STL);

o generality: different monitoring and machine learning backends.

14/20 A. Montanari Dagstuhl 24031

Limitations of "pure" machine learning approaches

The machine learning techniques that are most used in predictive maintenance
and early failure detection are:

o Random Forests
o Artificial Neural Networks
¢ Support Vector Machines

The lack of interpretability is a problem common to all of the above techniques, in
the sense that they fail to provide an explanation of their prediction.

Explanation of the output of a predictive maintenance algorithm is important not
only for humans trying to understand the error but also for implementing the
correct actions for preventing the failure of the asset under consideration.

15/20 A. Montanari Dagstuhl 24031

Extensions to the framework

The framework can be extended along the following directions:
« identification of anomalies and drops of performance
« exploitation of unsupervised and self-supervised learning techniques

¢ modularity

16/20 A. Montanari Dagstuhl 24031

Anomaly detection and self-supervised learning backend

¢ The framework currently works in a supervised fashion

e traces, labeled as failure or good behaviour ones, guide the first (warmup) stage
of formula extraction, following a teacher-forcing like approach

¢ justified as failures are terminating events (always detectable)

¢ The new version shall be self-supervised to deal with anomalies:

e characterizing a priori anomalies in modern complex systems is impractical
 systems evolve continuously over time

 supervised assumption, i.e., existence of complete and exhaustive dataset of
labelled anomalies is unrealistic and unfeasible

¢ Possible solution: use deep learning based SOTA approaches capable to
perform self-supervised anomaly detection as a source of supervision

17/20 A. Montanari Dagstuhl 24031

Assumption-based runtime verification

Assumption-Based Runtime Verification (ABRV) has recently been introduced as a
variant of monitoring to deal with systems that are only partially observable

¢ classical monitoring restricts itself to observable parts of the system and treat
the non-observable ones as black boxes

* ABRV exploits the fact that in practice one always knows something about
the internal (non-observable) parts of the system in form of assumptions that
the domain expert can specify before monitoring

¢ ABRV can reach conclusive verdicts with shorter trace prefixes

18/20 A. Montanari Dagstuhl 24031

Modularity

The new framework shall be modular in at least the following dimensions:
¢ the specification language

o different temporal logics including LTL, STL, and ITL
o qualitative semantics (for tasks like failure detection)
e quantitative semantics (for tasks like anomaly detection), where appropriate

¢ the backend implementing the monitoring algorithm

¢ the backend for the learning of new properties

e move across learning paradigms and tasks

e different solution than GP for formula extraction (which is limited by bloat,
huge search space, tree-based formula representation, etc.), like the integration
with reinforcement learning or generative Al; alternatively, formulas can be
represented as graphs, enabling the usage of Graph Neural Networks

19/20 A. Montanari Dagstuhl 24031

Some references

o Bauer, A., Leucker, M., & Schallhart, C. (2011). Runtime verification for LTL
and TLTL. ACM Transactions on Software Engineering and Methodology.

¢ Cimatti, A., Tian, C., & Tonetta, S. (2022). Assumption-based Runtime
Verification. Formal Methods in System Design.

¢ Geatti L. & Montanari, A. (2023). The Safety Fragment of Temporal Logics of
Infinite Sequences . ESSLLI Summer School

¢ Brunello, A., Della Monica, D., Montanari, A., Saccomanno, N., & Urgolo, A.
(2023). Monitors that Learn from Failures: Pairing STL and Genetic
Programming. IEEE Access.

o Geatti L., Montanari, A., & Saccomanno, N. (2023). Towards Machine
Learning Enhanced LTL Monitoring. OVERLAY workshop

20/20 A. Montanari Dagstuhl 24031

