
On modeling planning problems in tabled logic programming

Roman Barták Agostino Dovier Neng-Fa Zhou

June 12, 2015

Abstract

Current research in planning focuses mainly on so called domain independent models using the Plan-
ning Domain Description Language (PDDL) as the domain modeling language. This declarative modeling
approach embraces the idea of a physics-only model describing how actions change the world. However,
PDDL omits information about why and when the actions should be applied to reach the goal, which
significantly decreases the practical applicability of PDDL. There exist approaches such as Hierarchical
Task Networks (HTN) and control rules that add this type of information to the model with the pay-off of
increased efficiency but also with the downside of increased complexity and code sizes.

In this paper we propose a modeling framework for planning problems based on tabled logic program-
ming that exploits a planner module in the Picat language. This modeling framework supports structured
description of world states as well as inclusion of control knowledge and heuristics in the action model.
By using problems from the International Planning Competition, we experimentally demonstrate that this
modeling framework achieves results comparable to planners with control rules and HTN while keeping the
size of the domain model much smaller. We also show that it gives much better solving efficiency than the
state-of-the-art domain-independent PDDL planners.

1 Introduction

Shakey the robot [20] brought significant advancement to Artificial Intelligence (AI). It was the first robot
that was able to reason about its own actions. It used the STRIPS (Stanford Research Institute Problem
Solver) automated planner [6] to plan its actions based on a given goal. STRIPS is now referred as the
formal specification language for the STRIPS planner and it is the base for most modern modeling languages
for expressing automated planning problems. Its core idea is describing actions via pre-conditions and post-
conditions (effects) that are sets of predicates used in the description of world states. The most famous AI
modeling language based on STRIPS is the Planning Domain Definition Language (PDDL) [18], which was
popularized thanks to its usage in the International Planning Competitions (IPC) [11]. Separating the planning
domain model from the planning algorithm brought a lot of research in the area of so-called domain independent
planners. However, almost no research was done in the area on how to actually describe planning domains.
Moreover, despite intensive research the cutting-edge PDDL domain-independent planners still suffer from
efficiency issues, which is the main reason why PDDL planners are rarely used in practice.

In this paper, we propose a declarative planning-domain modeling framework based on tabled logic pro-
gramming, and we argue that modeling should play a much stronger role in automated planning. Planning and
logic programming are two closely related areas. PLANNER [10], which was designed as a language for proving
theorems and manipulating models in a robot, is perceived as the first logic programming language. Despite
the amenability of Prolog to planning, Prolog is no longer a competitive tool for planning. Recently, tabling has
been successfully used to solve specific planning problems such as Sokoban [26], the Petrobras planning problem
[3], and several planning problems used in ASP competitions [27]. Tabling [24, 25] is a technique used in logic
and functional programming systems, which caches the results of certain calculations in memory and reuses
them in subsequent calculations through a quick table lookup. Like state marking used in search algorithms,
tabling can prevent the same state from being expanded more than once during search. Based on experience
with the ad-hoc planners we propose a generic approach for planning domain modeling in tabled logic program-
ming. This approach utilizes the concept of state transitions and it is more flexible than PDDL by supporting
structured representation of states and including control knowledge in the action model. By experimental
comparison with the state-of-the-art optimal domain-independent planner SymbA [Torralba et al., 2014] and
also with planners exploiting domain information via control rules [1] and hierarchical task networks [19] we
demonstrate practical efficiency of the modeling framework.

1

The major contributions of this paper are: a novel planning domain modeling framework based on state
transitions, guidelines for domain modeling, and experimental justification of efficiency of the modeling frame-
work. As far as we know, no guidelines have been given before for domain modeling.

The paper is organized as follows. We first give some background information on planning. Then we
describe the Picat programming language and its planner module, which is behind our modeling framework,
and the syntax needed by the proposed modeling framework. After that, we focus on general principles of
modeling planning domains in the proposed framework. We then apply these principles to model a specific
planning domain, namely Cave Diving, from the International Planning Competition 2014 [11]. The paper is
concluded by experimental comparison of the proposed Picat models with encodings for other state-of-the-art
planning systems.

2 Background and Related Works

Classical AI planning deals with finding a sequence of actions that transfer the world from some initial state
to a desired state. Typically, the world state is described as a set of predicates that hold in the state, such
as at(truck, loc) saying that truck is located at loc. Actions are described using a triple (Prec,Eff +,Eff −),
where Prec is a set of predicates that must hold for the action to be applicable (preconditions), Eff + is a set
of predicates that will hold after performing the action (positive effects), and finally Eff − is a set of predicates
that will not hold after performing the action (negative effects). We assume that Eff + ∩ Eff − = ∅. Formally,
action a is applicable to state s if Prec(a) ⊆ s. The result of applying action a to state s is a new state
γ(s, a) = (s \Eff −(a))∪Eff +(a). The set of predicates together with the set of actions – both sets are finite –
is called a planning domain. The goal is specified as a set of predicates that must hold in the goal state, that is,
if g is a goal then any state s that satisfies g ⊆ s is a goal state. A planning problem is defined by the planning
domain, the initial state s0 and the goal g. The planning task is to find a sequence of actions 〈a1, a2, . . . , an〉
called a plan such that, for i ∈ {1, . . . , n}, ai is applicable to the state si−1, where s0 is the initial state and
si = γ(si−1, ai), and, furthermore, g ⊆ sn.

The above view of planning is reflected in the most widely used domain-modeling language PDDL (Planning
Domain Definition Language) [18]. This is a LISP-based language for encoding planning domains and problems
(see Appendix A for an example). This language inherently uses the factored representation of states, which are
represented as sets of values that might change. In the above description, we model states as sets of predicates
that are true in these states. Modern planners are usually based on multi-valued state variables [2], but this
is still a factored representation. A nice property of the factored representation of states is that the transition
function γ as described above naturally covers the frame problem – values (predicates) that are not explicitly
changed by the action remain the same. In this paper, we argue that a structured representation of states
together with an explicit description of state transitions bring efficiency advantage to the planners.

2.1 Control Structures

It is a known fact that domain-dependent information can significantly improve efficiency of planning [9]. There
are two attempts to add domain-dependent information to PDDL models: control rules and hierarchical task
networks. Control rules [1] use linear temporal logic to formally describe constraints over a sequence of states
visited during execution of the plan. This information can then be used during planning to forbid or to force
certain actions in certain states. For example, in the famous Blockworld domain one may express a control rule
that a given block can be put on top of an existing tower only if this tower is “good” in the sense that it is not
necessary to take off any block from the tower later on. The idea of control rules was implemented in planners
such as TLPlan [1] and TALPlanner [15] that proved to be much more efficient than so call domain-independent
PDDL planners. The downside of control rules is that they are very complicated to express and the size of
models increases significantly in comparison to PDDL models.

Hierarchical task networks (HTN) is another approach to include information about typical sequences of
actions to reach a goal. In fact, rather than a goal state, HTN uses the concept of a task to be solved. The
task can be solved by decomposing it into subtasks and this process is repeated until primitive tasks – actions
– are obtained. There could be alternative ways for task decomposition. The most prominent HTN planner is
SHOP2 [19], which also proved to be very efficient for planning in IPC 2002. The downside of HTN is again
that the domain modeler needs to put a lot of information about how to actually solve the problem. Briefly
speaking, the HTN structure can be seen as a set of recipes on how to reach the goal and the planner selects
one of them such that its pieces are compatible.

2

2.2 Action Languages

Though prevailing in the planning community, PDDL is not the only modeling approach for describing planning
problems or more generally to model and reason about dynamic domains. Reasoning about dynamic domains
deals with states (or situations) represented by sets of values that might change, called fluents, and of actions
that can be applied (action application is an event) if some properties (preconditions) hold and that modify,
directly or indirectly, the values of fluents (effects). In this context three calculi have been devised, according to
the focus on one of the entities reported above: the situation calculus [17], the event calculus [14], and finally the
fluent calculus [22]. Based on them a plethora of modeling languages have been proposed. Gelfond and Lifschitz
[8] surveyed the various proposals of languages used since the sixties for modeling planning problems, called
them action (description) languages, reorganized them and provide their precise semantics based on Kripke
Structures. For some of these languages it has been shown how to encode them systematically in constraint
(logic) programming and in Answer Set Programming [5]. However, planners based on action languages suffer
even more from efficiency issues and cannot compete with PDDL-based planners.

3 Picat and its Planner

Picat is a logic-based multi-paradigm programming language aimed for general-purpose applications. Picat is a
rule-based language, in which predicates, functions, and actors are defined with pattern-matching rules. Picat
incorporates many declarative language features for better productivity of software development, including
explicit non-determinism, explicit unification, functions, list comprehensions, constraints, and tabling.

In Picat, predicates and functions are defined with pattern-matching rules. Picat has two types of rules:
the non-backtrackable rule (also called a commitment rule) Head,Cond => Body, and the backtrackable rule
Head,Cond ?=> Body. In a predicate definition, the Head takes the form p(t1, . . . , tn), where p is called the
predicate name, and n is called the arity. The condition Cond, which is an optional goal, specifies a condition
under which the rule is applicable. For a call C, if C matches Head and Cond succeeds, then the rule is
said to be applicable to C. When applying a rule to call C, Picat rewrites C into Body. If the used rule is
non-backtrackable, then the rewriting is a commitment, and the program can never backtrack to C. However,
if the used rule is backtrackable, then the program will backtrack to C once Body fails, meaning that Body
will be rewritten back to C, and the next applicable rule will be tried on C.

Briefly speaking, Picat programming is very similar to Prolog programming. By providing features like
functions, list comprehensions etc., Picat programs are even more compact and declarative than equivalent
Prolog programs. Moreover, the possibility of explicit non-determinism and unification gives the programmer
better control of program execution to make the code even more efficient. Last but not least, the built-it tabling
mechanism [25] simplifies coding of search algorithms. The power of tabling is in memorizing answers to calls
which implicitly prevents loops and brings properties of graph search (not exploring the same state more than
once) to classical depth-first search used by Prolog-like languages. The tabling mechanism is the driving force
behind the Picat planner that will be described next. More details about the Picat language can be found in
the Picat documentation [21].

3.1 Planning Domain Model

In general, planning problems can be specified as state transition systems, where actions are used to describe
state transitions symbolically. To be more precise, the planning-domain model is a compact abstract description
of the state transition system usually focusing on modeling state transitions (that implicitly include a model of
states). The planning problem then consists of specification of an initial state, a description of objects in state
representations, a set of actions for transforming states, and a goal condition characterizing the goal state.

Picat’s planner module was designed to directly support this state-transition approach to domain modeling.
The domain modeler firsts needs to decide the abstract model of states. As Picat is a logic programming system,
a state can be any term. We will discuss state representations later in the text. Then the domain modeler
needs to specify the state transitions – actions – and also the goal condition in the domain model.

The goal condition and state transitions are described as specific Picat rules. To specify the goal condition
the domain modeler shall define the following Picat rule:

final(+State) =>

goal_condition.

3

where goal condition can be any Picat goal that checks whether State is a goal state.
To specify an (abstract) state transition the domain modeler shall define the following Picat rule:

action(+State,-NextState,-Action,-Cost),

precondition,

[control_knowledge]

?=>

description_of_next_state,

action_cost_calculation,

[heuristic_and_deadend_verification].

This rule gets some State as its input and should produce NextState as its output together with some
description of Action used for the transition and non-negative Cost of that action. If the plan’s length is
the only interest, then this cost equals one. The above pseudo-code gives the typical action rule, where
precondition is evaluated first together with optional control knowledge telling when the rule should be
applied. These are arbitrary Picat calls. Then the effect of the action is described when building the NextState
together with setting the action Cost. Optionally, the modeler can add calls to verify that the NextState is not
a dead-end and how far it is to reach the goal state (heuristic). The heuristic is basically a function computing
(a lower-bound for) the distance from the NextState to a goal state as in classical A* search. This function can
be domain dependent or independent; the choice is up to the domain modeler. In the action rule, the heuristic
is applied in the following call:

heuristic(NextState) < current_resource(),

where the current resource() is a built-in function of the planner giving the maximal allowed cost-distance
to the goal. In the next section we will describe how this information is used during planning.

Note finally, that in the above pseudo-code we used a non-deterministic version of the state-transition rule
(?=>). Like in Prolog, the domain model consists of a set of rules that are tried in the top-down order (hence
the order of rules matters). It means that during backtracking the next applicable rule (action) is explored
provided that it is backtrackable. The domain modeler can specify that a given action should be applied to a
given state and if its application does not lead to a (best) plan then the other actions are not tried. This is
done by using deterministic rules (=>).

In summary, the planning domain model consists of the description of state transitions – actions – and the
specification of a goal condition. Picat rules are used for this description; they only have specific predicates
in their heads. This model is separated from the planning algorithm (computational mechanism) that will be
described next. It means that the domain models are problem independent and can be applied to any problem
in the domain. Hence the Picat approach to planning is similar to other automated planning systems consisting
of the planner that takes as input a planning-domain model and a planning-problem description.

3.2 Planning Approaches

The planning-domain model is specified as a set of Picat rules that are explored by the Picat planner. This
planner uses basically two search approaches to find optimal plans. Both of them are based on depth-first search
with tabling [25] and in some sense they correspond to classical forward planning. It means that they start in
the initial state, select an action rule that is applicable to the current state, apply the rule to generate the next
state, and continue until they find a state satisfying the goal condition (or the resource limit is exceeded).

The first approach starts with finding any plan first (in the depth-first-search manner). The initial limit for
plan cost can (optionally) be imposed. Then the planner tries to find a plan with smaller cost so a stricter
cost limit is imposed. This process is repeated until no plan is found so the last plan found is an optimal plan.
This approach is very close to branch-and-bound [16]. Note that tabling is used there – the underlying solver
remembers the best plans found for all visited states so when visiting the state next time, the plan from it can
be reused rather than looked for again. More precisely, a state is expanded only if it is new and its resource
limit is non-negative, or if the state has previously failed but the current occurrence has a higher resource limit
than before. This planning algorithm is evoked using the following call:

best_plan_upward(+InitState,+CostLimit,-Plan,-PlanCost)

4

This is where the user specifies the initial state and (optionally) the initial cost limit. The algorithm re-
turns a cost-optimal plan and its cost. This approach can be also used to find the first plan using the call
plan(+S,+L,-P,-C).

Despite using tabling that prevents re-opening the same state, this approach still requires good control
knowledge to find the initial plan (otherwise, it may be lost in a huge state space) or alternatively some good
initial cost limit should be used to prevent exploring long plans.

The second approach exploits the idea of iteratively extending the plan length as proposed first for SAT-based
planners [12]. It first tries to find a plan with cost zero. If no plan is found, then it increases the cost by 1. In
this way, the first plan that is found is guaranteed to be optimal. Unlike the IDA* search algorithm [13], which
starts a new round from scratch, Picat also reuses the states that were tabled in the previous rounds.

best_plan(+InitState,+CostLimit,-Plan,-PlanCost)

This approach is more robust to weak control knowledge, but it has the disadvantage that it can only find the
optimal plan, which could be more time consuming than finding any plan.

Note that the cost limit in the above calls is used to define the function current resource() mentioned in
the action rules. Briefly speaking the cost of the partial plan is subtracted from the cost limit to get the value
of current resource() that can be utilized to compare with the heuristic distance to the goal.

4 Modelling Principles

In the previous section, we described the Picat planning domain model in an abstract way. We will now discuss
some typical modeling approaches used in this abstract state-transition model. The motivation is to provide
some general guidelines for domain modeling in Picat based on experience with modeling specific planning
domains. We are not aware of any such guidelines for other planning modeling formalism such as PDDL,
though some ideas discussed further are known in the planning community.

4.1 Structured State Representation

Before describing state representations in Picat, let us look at the current widespread representation of states
in planning. Since the Shakey project and its STRIPS planner [6] a logical model of states is used. In this
model, a state is represented as a set (a conjunction) of atoms that are true in that state. For instance, this is
a model of a state in the world with one crate and one truck moving between two locations:

{at(truck, loc1), at(crate, loc2), connected(loc1, loc2)}.

This approach was adopted in a so-called classical planning representation and it is used by the PDDL language
[18]. Briefly speaking, each atom represents some primitive property of the world that can be true or not. Some
atoms are not changing their truthfulness, they are called rigid, while other atoms – fluents – hold or do not hold
in different states. If P is the set of of all atoms then S ⊆ P is a model of a state describing which atoms hold
at that state. Obviously, not every subset of P is a valid state, for example {at(truck, loc1), at(truck, loc2)} is
not a valid state as the truck must be at exactly one location. Such mutex relations between sets of atoms can
be represented using multi-valued state variables [2], for example loc(truck) = loc1, that naturally models that
exactly one atom from a given set of pairwise mutex atoms holds in any state. Then the state is represented as
an assignment of values to these state variables (plus rigid atoms). Most current planners use this state-variable
representation, but this is still a form of a so called factored representation of states. In Picat one can naturally
represent sets of atoms as an ordered list of atoms (or similarly the assignment of values to state variables):

[at(crate,loc2), at(truck,loc1), connected(loc1,loc2)].

Obviously, the ordering is used here to have a unique representation of a single set. Consequently, the PDDL
model of states can be directly (automatically) translated to a Picat model. However, this is usually not the
best way as Picat offers a richer representation of states that is known as a structured representation.

Representation of states is critical in the Picat domain model. As the Picat planner is based on tabling and
states are memorized, two aspects of the state representation should be considered.

First, the state representation should be small so it consumes less memory (all of the visited states are stored
in memory). Recall that Picat can use any term to represent a state. As known from implementations of logic
programming systems, if two or more terms share a common subterm (for example f(g(a), b) and h(c, g(a))

5

share a subterm g(a)) it is possible to store this common subterm just once, which not only decreases memory
consumption but also makes unification tests faster. The Picat tabling mechanism can exploit this property
via the hash-consing technique [25].

Second, two identical (or more general, two equivalent) states should be represented in the same way so
the tabling mechanism can recognize them as such. For example, assume a world where identical trucks are
moving between locations. One can identify each truck by its name (as done in PDDL) but if we swap two
trucks then we get different states, though from the planning perspective, these states are equivalent – if there
is a plan from one state then there is a plan from the other state. A more convenient model is identifying the
trucks by their locations.

As we mentioned above, the world state in Picat is represented as a term. To give an example of such
representation, let us consider a problem, where a truck is moving between different locations with the goal to
transport cargo items from their current locations to some goal locations. This is known as a Nomystery domain
and it was used for example in the International Planning Competition in 2011 and in the ASP Competition
2013 (for simplicity we ignore fuel consumption in our example). For this domain, we need to represent the
location of truck and locations of cargo items. In PDDL (and also for ASP planners), the truck and cargo
items have names and their location is represented using atoms at(what, where). As we discussed above, this
model contains redundant information that is not necessary for planning. To identify the truck, its location is
enough. Similarly each cargo item can be fully identified by its current location and its goal location. When
the cargo item is loaded on the truck, then the goal location is enough to identify the cargo item. Then the
state can be modeled as a term:

s(TruckLoc,TruckLoad,Cargo)

where TruckLoad is an ordered list of constants describing goal locations of cargo items loaded on the truck
and Cargo is an ordered list of pairs (From,To) modeling cargo items via their current and goal locations. For
example, the following state (taken from the ASP competition model):

{at(t0, a), at(p0, a), at(p1, b), goal(p0, b), goal(p1, a)}

is represented as follows

s(a, [], [(a,b),(b,a)])

Note that the movement of each cargo item can be reconstructed easily from the plan so the names are not
really necessary there. For example, if the cargo item p0 is loaded on the truck then we get a state:

s(a, [b], [(b,a)])

In particular, it is no longer necessary to represent the cargo location explicitly as it is identical to the truck
location. Moreover, the state model also contains information that the cargo item is loaded on the truck.
If more cargo items with identical goal locations are loaded on the truck then these cargo items become
indistinguishable. It means that they are handled identically.

If there are more trucks then the state model can be modified to:

s(Trucks,Cargo)

where Trucks is an ordered list of elements t(TruckLoc,TruckLoad). Still, the truck is enough to be identified
by its location and its loaded cargo.

In summary, the state representation must contain state features that are changing, such as location of
objects. If there are several objects with identical properties then their names are usually not necessary for
planning. By ignoring the names of objects, these objects can be handled interchangeably during planning if
their other properties (such as location) are identical. A collection of such objects can be represented as an
ordered list of object models, where the object model describes changing properties of the object.

4.2 Control Knowledge

The idea of control knowledge is to suggest the planner which state transitions are good and which are bad. For
example, in the above Nomystery problem, simple control knowledge is that the loaded cargo item is unloaded
only when the truck is located in the cargo destination. Another control knowledge can be that if the truck
is at location where some cargo item is located (and should be transported elsewhere) then this cargo item

6

should be loaded on the truck. PDDL domain models focus on the description of “physics only” and do not
contain any control knowledge. Control rules and hierarchical task networks may be used to restrict allowed
sequences of actions (states), but they are quite complicated for modeling.

In the Picat domain model, there is a simple mechanism to influence action sequencing by adding control
knowledge in the action description. In fact there are three basic ways of expressing control knowledge in Picat
domain models. The simplest control knowledge is expressed by making the action description deterministic.
It means that the planner will apply only that single action, if it is applicable to the current state, ignoring
alternative actions. For example, to express that the cargo item should be unloaded at its destination, we can
use the following action description:1

action(s(TruckLoc,TruckLoad,Cargo),

NextState, Action, Cost),

select(TruckLoc,TruckLoad,TruckLoadRest)

=>

NextState = $s(TruckLoc,TruckLoadRest,Cargo),

Action = $unload(TruckLoc),

Cost = 1.

We use the Picat built-in call select/3 to select an element from a list and to return the rest of the list. In
this specific example, we verify that some cargo item with the destination equal to truck location is loaded on
the truck. Notice that another “hidden” control knowledge is that cargo items delivered to their destinations
can be ignored from the rest of planning, which is represented by not including them in the following states.
One may notice that the action unload does not contain information about which item is being unloaded. As
we mentioned in the previous section, the name of the item can be easily reconstructed from the sequence
of actions preceding the unload action. In particular, there must be some action for loading the item whose
destination is the current location. Moreover, as the action is deterministic (notice =>), all items belonging to
the current location will be unloaded before another action will be tried.

Similarly, we can express the above-mentioned control knowledge that any item at the current location of
the truck should be loaded on the truck:

action(s(TruckLoc,TruckLoad,Cargo),

NextState, Action, Cost),

select((TruckLoc,Dest),Cargo,CargoRest)

=>

NewTruckLoad = insert_ordered(TruckLoad,Dest),

NextState = $s(TruckLoc,NewTruckLoad,CargoRest),

Action = $load(TruckLoc),

Cost = 1.

Now we use the Picat built-in function insert ordered/3 to insert an item to a list so that the obtained list
is still ordered (see the discussion on state representation). Notice also that by adding the cargo item among
loaded items, we use just the destination location to identify that cargo item. This is fine because all cargo
items for the same destination are indistinguishable since all of them will be unloaded at the destination.

Assume now that we are in the state where some cargo items should be unloaded and some other cargo
items should be loaded. We have two deterministic actions so their order in the domain model will differentiate
the order of these actions in the plan. For example, if the rule for unload is before the rule for load then in any
generated plan all items (for that destination) will be unloaded first. Then the condition of the action rule for
unloading will not be satisfied so the planner will explore the next applicable action rule that will add (one by
one) all loading actions to the plan. This way we restrict the possible plans to those where unloading always
precedes loading in a given location. This is actually a desirable behavior as it is a form of symmetry breaking
[7] (discussed in the next section).

Finally, we can include the control knowledge within the condition of the rule (but going beyond the
classical precondition from PDDL). For simplicity, assume that all locations are interconnected in the above
transportation problem. Hence the truck can go to any location (different from the current one). However, it
is useless to go just somewhere, but there should be a reason to go there. The reason could be that some cargo
item is waiting at that location for delivery or that some loaded cargo item should be delivered there. This can
be expressed as an extra condition in the action rule:

1Action rules correspond to operations in PDDL and they can contain variables – starting with the capital letter. As Picat
supports functions, to differentiate the function call from a term, the prefix $ is used in front of the term.

7

action(s(TruckLoc,TruckLoad,Cargo),

NextState, Action, Cost),

(member(NextLoc,TruckLoad) ;

member((NextLoc,_),Cargo))

?=>

NextState = $s(NextLoc,TruckLoad,Cargo),

Action = $move(TruckLoc,NextLoc),

Cost = 1.

We use the Picat built-in call member/2 to check membership of element in the list and semicolon to express
the disjunctive condition (as in Prolog). Note that behind this control knowledge we use information about
the goal in this planning domain, which is delivering cargo items. This particular control knowledge could be
expressed in PDDL too but as the condition can be any call in Picat, our model can contain more complex
conditions. For example, in the famous Blockworld domain, where the task is to build towers from given blocks,
there is a known control rule saying that a block can be placed only to a so called good tower (the tower not
violating the goal condition). The procedure for verifying whether a given tower is good can be defined in the
model, and then the action rule can use this call:

action(s(A,Towers),

NextState, Action, Cost),

A != nil,

select([Top|T],Towers,TowersRest),

good_tower([A,Top|T])

=>

NewTowers = insert_ordered(TowersRest,[A,Top|T]),

NextState = $s(nil,NewTowers),

Action = $stack(A,Top),

Cost = 1.

In the above action rule we expect a state representing the block being hold by a crane (or nil if the crane
is empty) and a list of towers, where each tower is an ordered list of its blocks (top-down). This example
demonstrates that any external procedure can be used as a condition for action applicability.

In summary, the Picat domain model allows expressing control knowledge within the action rules by using

• deterministic rules and specific order of action rules to force specific actions and action sequences starting
at a given state,

• stronger conditions for action applicability ensuring that useless actions are ignored.

4.3 Symmetry Breaking

One of the known issues in planning and other search algorithms is presence of symmetries [7]. The problem
with symmetries is that during search “symmetrical” branches are re-explored even if the solution of them is
known. For example, if we know that some search branch leads to a failure then any symmetrical search branch
will also lead to a failure and it is a waste of time to explore such a branch. In the previous text we have
already mentioned two types of symmetries appearing in planning.

The first type of symmetry is object symmetry, where different objects are treated as unique entities even if
they are fully interchangeable. For example, two cargo items at the same location with identical destinations are
fully symmetrical. We have proposed to remove this symmetry via a compact state representation, where these
objects are represented identically (still both of them need to be included in the model). It means that name
(id) of the object is not included in the representation, only the properties of the object that can change with
time, for example location of cargo item, are used to identify the object. Consequently, actions manipulating
these objects are identical and hence also fully interchangeable. Note that tabling plays an important role
there. For example, if we unload one cargo item at a given location then unloading another cargo item at
the same location is not an alternative action (during search) as it would lead to the same state (the call
select/3 is backtrackable so it selects all items from the list that correspond to a given pattern, for example
select(a,[a,a,b,c],Rest) succeeds two times with Rest=[a,b,c]). So if the planner generates three unload
actions at the same location then because ignoring the cargo ids in the model this sub-plan basically represents
all (six) possible sequences of unload actions for these cargo items. Note finally, that the symmetrical objects
must really be interchangeable. For example, if the cargo items have different weights and the truck has limited

8

capacity, then we cannot ignore the cargo weight in the model. Still, some symmetry can be broken for example
by forcing a specific order of loading (and unloading) actions by always loading (unloading) the items in the
increasing weight. This approach was used in the Petrobras domain model [3].

The second type of symmetry is action symmetry, whose specific form we already mentioned in the previous
paragraph. In general, action symmetry means that the order of actions can be changed without influencing the
final state. For example, two independent actions can be used in any order while reaching the same state after
applying both of them. In classical planning techniques these symmetries can be broken by allowing actions to
run in parallel (the Graphplan algorithm [4] was probably the first one to use this concept) or by using so called
partial order planning, where the plan is a partial order of actions rather than a linear order. The Picat planner
is a sequential planner so we cannot exploit these techniques. Nevertheless, the Picat domain model allows
other forms to break these symmetrical orders of actions. We already mentioned the possibility to force a given
sequence of actions by combining deterministic action rules and their specific order (unloading before loading at
a given location). Assume now a more general situation with more trucks, cranes used to load and unload cargo
to trucks, and drivers that can walk between locations and that must be in the truck to drive trucks between
locations (this is known as the Driverlog domain in International Planning Competitions). In this domain, we
have load and unload actions, pickup and drop-off actions, walk and drive actions, and board and disembark
actions. There are many symmetries between these actions, for example the crane can pickup cargo, then a
driver boards a truck, drives it to the location with the crane, and finally the crane loads cargo to the truck.
Obviously, the pickup action can be used anywhere in this sequence before loading. The situation is even more
complicated as there might be another truck at another location and the plan for this truck can interleave with
the previous plan, meaning that operations for this second truck can be placed inside the sequence of actions
for the first truck. A similar behavior was observed in the Petrobras domain [3], where a model using a finite
state automaton was suggested to solve these symmetries. The idea is that the modeler defines a continuous
sequence of allowed actions that must be performed before trying another sequence of actions. For example,
we may require the sequence to be as follows: the driver walks to the location of a truck, then boards the truck
and optionally drives the truck to some location. After that the crane at that location (optionally) unloads the
truck by performing a sequence of unload and drop-off actions. Then the crane loads the truck by performing
actions pick-up and load. After that, the truck can drive somewhere else and the process with unloading and
loading repeats. Finally, the driver debarks and walks somewhere. Obviously by forcing specific subsequences
of actions the domain modeler restricts the possible plans so it must be done carefully such that at least one
valid plan is still allowed. This concept is similar to modeling the problems as hierarchical task networks [19],
where tasks are decomposed into valid sequences of subtasks until primitive tasks – actions – are obtained (we
sketched above just one such decomposition).

Thanks to the flexibility of the state representation in the Picat domain model, the finite state automaton
restricting sequences of actions can naturally be encoded in states and action rules. For demonstration purposes,
assume a simplified version of the Driverlog domain where drivers can walk between locations, can board a
truck, drive it, and finally debark. For simplicity, no goals are assumed. We only want to restrict that when
one driver is acting no actions of another driver interleaves. The allowed sequence of actions can be encoded
using a finite state automaton as in Figure 1.

wa
lk	

board	 drive	

drive	

debark	

Figure 1: Finite state automaton describing allowed/required sequences of actions per driver.

The regular state of the world can be modeled as a term s(Drivers,Trucks), where Drivers is an ordered
list of locations of drivers and Trucks is an ordered list of truck locations. We will use intermediate states
describing that some driver is walking, boarding a truck, or driving. The following action rules describe the
FSA from Figure 1.

action(s(Drivers,Trucks), NextState, Action, Cost),

select(DLoc,Drivers,DriversRest), % driver at Dloc

9

link(DLoc,DLoc1) % can walk from DLoc to DLoc1

?=>

NextState = $walking(DLoc1,s(DriversRest,Trucks)),

Action = $walk(DLoc,DLoc1),

Cost = 1.

action(s(Drivers,Trucks),

NextState, Action, Cost),

select(Loc,Drivers,DriversRest), % driver at Loc

select(Loc,Trucks,TrucksRest) % truck at Loc

?=>

NextState = $boarded(Loc,s(DriversRest,TrucksRest)),

Action = $board(Loc),

Cost = 1.

action(walking(DLoc,S),

NextState, Action, Cost),

link(DLoc,DLoc1) % can walk from DLoc to DLoc1

?=>

NextState = $walking(DLoc1,S),

Action = $walk(DLoc,DLoc1),

Cost = 1.

action(walking(DLoc,s(Drivers,Trucks)),

NextState, Action, Cost),

select(DLoc,Trucks,TrucksRest) % truck at DLoc

?=>

NextState = $boarded(DLoc,s(Drivers,TrucksRest)),

Action = $board(DLoc),

Cost = 1.

action(boarded(Loc,S),

NextState, Action, Cost),

connect(Loc,Loc1) % can drive from Loc to Loc1

?=>

NextState = $driving(Loc1,S),

Action = $drive(Loc,Loc1),

Cost = 1.

action(driving(Loc,S),

NextState, Action, Cost),

connect(Loc,Loc1) % can drive from Loc to Loc1

?=>

NextState = $driving(Loc1,S),

Action = $drive(Loc,Loc1),

Cost = 1.

action(driving(Loc,s(Drivers,Trucks)),

NextState, Action, Cost)

?=>

NewDrivers = insert_ordered(Drivers,Loc),

NewTrucks = insert_ordered(Trucks,Loc),

NextState = $s(NewDrivers,NewTrucks),

Action = $debark(Loc),

Cost = 1.

The above action model contains several action rules for the same action. We can join these rules into one
rule by joining their conditions using a disjunction. Also, the order of actions can be changed, for example to
prefer boarding before walking. Note also that the model with an FSA naturally describes some preconditions,
for example that driving requires a driver aboard.

10

5 Cave Diving Domain Model

In the previous section we described basic principles of domain modeling with some particular examples. To
give a more global view we shall now present a complete domain model. In the last International Planning
Competition in 2014 [11] several new planning domains were introduced. To demonstrate a complete domain
model we selected the Cave Diving domain, because this domain intrinsically requires planning capabilities.
Moreover, based on the results of IPC 2014 this domain is very hard for current state-of-the-art planners (no
competing planner solved more than 8 problems out of 20). Last but not least, a frequent critique of modeling
approaches supporting domain dependent information is that if the modeler does not know how to solve the
problem then neither the automated planner dependent on control knowledge can solve the problem. In this
domain model we shall demonstrate that it is enough to include some common-sense information and still
significantly beat the best domain-independent planners.

Let us first describe the planning domain (taken from the competition web site [11]). There is a set of
divers, each can carry a given number of tanks of air. These divers must be hired to go into an underwater
cave and either take photos or prepare the way for other divers by dropping full tanks of air. The cave is too
narrow for more than one diver to enter at a time. The cave system is represented by an undirected acyclic
graph. Divers have a single point of entry. Certain leaf nodes of the cave branches are objectives that the
divers must photograph. Swimming and photographing both consume air tanks. Divers must exit the cave
and decompress at the end. They can therefore only make a single trip into the cave. Certain divers have no
confidence in other divers and will refuse to work if someone they have no confidence in has already worked.
Divers have hiring costs inversely proportional to how hard they are to work with.

The goal is specified by a set of locations where pictures must be taken and a set of divers that must
be decompressed at the end. In the model we use predicates defined in the PDDL problem data. In partic-
ular, PDDL does not support numbers2 – predicates next/2 are used for counting the tanks and predicate
zero quantity/1 defines the number zero. Similarly, the available tanks are ordered using the predicate
next tank/2 in PDDL data so there is no symmetry between the tanks. The other predicates define the cave
system (cave entrance/1, connected/2), the costs of actions (other cost/1, hiring cost/2), and properties
of divers (decompressing/1, precludes/2).

As we mentioned above the most critical modeling decision is the representation of states. A simple hint is
that the state must represent every property of the world that can be changed by actions. In the Cave Diving
domain the following properties can change:

• the set of available divers (when a diver is hired, he is no longer available),

• the set of locations where pictures need to be taken (after taking the picture it is no more required to
take another picture at that location),

• the set of available tanks (actually, knowing the first available tank is enough as the tanks are ordered
via next tank/2),

• the location and the number of full tanks placed in the cave system,

• the location of the diver in the cave system (if any diver is in water),

• the numbers of full and empty tanks carried by the diver (if the diver is in water).

Taking in account the above specification, we can define a reasonable part of the plan as follows. First,
a diver is hired, then air tanks are prepared for that diver, after that the diver enters the cave and does in
some order actions of swimming, taking pictures, picking up or dropping off the air tanks, and finally, the diver
decompresses. After that another diver can do a similar sequence of actions which is repeated until all pictures
are taken and all divers, that must be decompressed, are indeed decompressed. As we described above, to force
a given sequence of actions, the modeler can define a finite state automaton that is then encoded in states. For
the Cave Diving domain we can use the automaton depicted in Figure 2.

Note also, that we need to know some identification of divers to ensure that divers precluded by the current
diver are excluded from further consideration and also to know the capacity of the diver regarding the number
of air tanks he can carry. Nevertheless, as soon as the diver is hired his name is no more important, only his
location and the composition of tanks he carries need to be represented in the state. In summary, the main
state representation can be:

2Picat can use numbers, but to make the model as close as possible to the PDDL model we use the logical encoding of numbers
from PDDL.

11

hire_diver	 enter_water	

decompress	

photograph,	 drop_tank,	

swim,	 pickup_tank	

prepare_tank	

su
rfa
ce
	

re
ad
y	

in_
wa
te
r	

Figure 2: Finite state automaton for the Cave Diving domain

surface(Divers,T,Cave,Pictures)

where Divers is an ordered list of divers’ names, Pictures is an ordered list of locations, where some pictures
should be taken, T is a name of the first available tank, and finally Cave is an ordered list with elements (Loc,
Num), where Loc is a location in cave and Num is a positive number indicating the number of full air tanks at
that location. In the initial state, the list Cave is empty. In the final state, the list Pictures should be empty
(all pictures are taken) and there is no available diver that should be decompressed. The following rule defines
the final state:

final(surface(Divers,_,[],[])),

not (member(D,Divers), decompressing(D))

=> true.

After hiring any diver, we change the state to the following one:

ready(Cap,FullTanks,EmptyTanks,Divers,T,Cave,Pictures)

where we represent the free capacity of that diver and how many empty and full tanks of air he currently carries
(initially zero). The following action rule does the transition:

action(surface(Divers,T,Cave,Pictures),

NextState,Action,ActionCost),

select(D,Divers,RDivers), % select next diver

not (precludes(D,DD),

decompressing(DD), member(DD,RDivers))

=>

Action = $hire_diver(D),

hiring_cost(D, ActionCost),

NextDivers = [D2 : D2 in RDivers, not precludes(D,D2)],

capacity(D,Cap), zero_quantity(Zero),

NextState =

$ready(Cap,Zero,Zero,NextDivers,T,Cave,Pictures).

In this rule we use simple control knowledge forbidding hiring a diver who precludes another available diver
that must decompress. Obviously, if such a diver is selected than no plan can reach the goal state as the
precluded divers are removed from further consideration and hence cannot decompress.

In the state ready some number of tanks can be added to the diver while respecting his capacity limits.

action(ready(Cap,Loaded,Empty,Divers,T,Cave,Pictures),

NextState,Action,ActionCost),

next_quantity(RCap,Cap),

next_quantity(Loaded,NLoaded),

next_tank(T,NT)

?=>

Action = $prepare_tank(T),

other_cost(ActionCost),

NextState =

$ready(RCap,NLoaded,Empty,Divers,NT,Cave,Pictures).

12

After the tanks are added to the diver, the diver enters in water, which means another change of state.
Notice that the action rule for preparing tanks precedes the rule for entering in water which means that during
planning the actions for preparing tanks are tried before the action for entering in water. The following rule is
used for this second transition

action(ready(Cap,Loaded,Empty,Divers,T,Cave,Pict),

NextState,Action,ActionCost),

cave_entrance(Loc)

=>

Action = $enter_water,

other_cost(ActionCost),

NextState =

$in_water(Loc,Cap,Loaded,Empty,Divers,T,Cave,Pict).

The rule again changes the state according to the FSA from Figure 2. The meaning of attributes is identical
to the state ready:

in_water(Cap,FullTanks,EmptyTanks,Divers,T,Cave,Pictures)

When the diver is in water, he can take pictures, if he is at proper location, he can drop off some full tank,
to prepare it for future dives, he can drop off an empty tank, if he needs to pick up a full tank, and finally
he can swim between locations. In the domain model, we just describe these actions with some simple control
knowledge such as no dropping of full tank at cave entrance (it is not necessary there) and dropping off an
empty tank only when some full tank can be picked up.

action(

in_water(Loc,Cap,Loaded,Empty,Divers,T,Cave,Pictures),

NextState,Action,ActionCost),

select(Loc,Pictures,RPict),

next_quantity(RLoaded,Loaded),

next_quantity(Empty,NEmpty)

?=>

Action = $photograph(Loc),

other_cost(ActionCost),

NextState =

$in_water(Loc,Cap,RLoaded,NEmpty,Divers,T,Cave,RPict).

action(in_water(Loc,Cap,Loaded,Empty,Divers,T,Cave,Pict),

NextState,Action,ActionCost),

not cave_entrance(Loc), % do not drop tanks

next_quantity(Cap,NCap), % at cave entrance

next_quantity(RLoaded,Loaded)

?=>

Action = $drop_tank(Loc), % drop full tank

other_cost(ActionCost),

(select((Loc,Tanks),Cave,RCave) ->

NTanks = Tanks+1

; % some tanks are at location Loc or

RCave = Cave,

NTanks = 1

),

NCave = insert_ordered(RCave,(Loc,NTanks)),

NextState =

$in_water(Loc,NCap,RLoaded,Empty,Divers,T,NCave,Pict).

action(in_water(Loc,Cap,Loaded,Empty,Divers,T,Cave,Pict),

NextState,Action,ActionCost),

connected(Loc,NLoc),

next_quantity(RLoaded,Loaded),

next_quantity(Empty,NEmpty)

?=>

Action = $swim(Loc,NLoc),

other_cost(ActionCost),

13

NextState =

$in_water(NLoc,Cap,RLoaded,NEmpty,Divers,T,Cave,Pict).

action(in_water(Loc,Cap,Loaded,Empty,Divers,T,Cave,Pict),

NextState,Action,ActionCost),

select((Loc,Tanks),Cave,RCave),

RTanks = Tanks-1,

next_quantity(RCap,Cap),

next_quantity(Loaded,NLoaded)

?=>

Action = $pickup_tank(Loc),

other_cost(ActionCost),

(RTanks=0 ->

NCave = RCave

;

NCave = insert_ordered(RCave,(Loc,RTanks))

),

NextState =

$in_water(Loc,RCap,NLoaded,Empty,Divers,T,NCave,Pict).

action(in_water(Loc,Cap,Loaded,Empty,Divers,T,Cave,Pict),

NextState,Action,ActionCost),

zero_quantity(Cap), % when missing capacity and

member((Loc,_Tanks),Cave), % full tank available

next_quantity(Cap,NCap),

next_quantity(REmpty,Empty)

?=>

Action = $drop_tank(Loc), % drop empty tank

other_cost(ActionCost),

NextState =

$in_water(Loc,NCap,Loaded,REmpty,Divers,T,Cave,Pict).

The final action rule is for decompressing the diver. In this case the diver is no longer retained (recall, that
each diver can dive at most once) and we switch back to the state ready. We only use simple control knowledge
saying that the diver should not return with any full tank. This is just to generate good plans – if the diver
returns with a full tank then this tank was not necessary and hence should never be picked up.

action(

in_water(Loc,_Cap,Loaded,_Empty,Divers,T,Cave,Pictures),

NextState,Action,ActionCost),

zero_quantity(Loaded), % the diver should return

cave_entrance(Loc) % with no full tank

=>

Action = $decompress,

other_cost(ActionCost),

NextState = $surface(Divers,T,Cave,Pictures).

For the sake of completeness, we enclose a full description of the Cave Diving domain in PDDL in Appendix
A. As the reader can verify, we use exactly the same actions. The Picat domain model can exploit ad-hoc
structured representation of states and some control knowledge. We did not use any heuristics in the model;
only common-sense control knowledge is included. With this model, we can solve optimally all instances from
IPC 2014 as shown in the next section.

6 Experimental Evaluation

To evaluate the efficiency of the proposed modeling framework we compared it experimentally with the state-
of-the-art planning systems using the benchmark domains from International Planning Competitions [11].
We did the comparison in two different settings. First, we compared with planners that use some form of
control knowledge, namely TLPlan [1] and TALPlanner [15] exploiting control rules and SHOP2 [19] based on
hierarchical task networks. TLPlan and SHOP2 were winners of IPC 2002. Second, we compared with the
state-of-art optimal PDDL planner SymbA, the winner of IPC 2014 deterministic optimal track.

14

For the comparison, we developed an encoding in Picat for each domain; some examples were given earlier in
the text. The particular planning problem instances were translated automatically from their PDDL encodings.

6.1 Planners with Domain Knowledge

The expressive power of the proposed modeling framework is similar to exploiting control rules and hierarchical
structures of tasks. Hence, it is natural to compare the framework to planners using these structures. We
compared with TLPlan [1], the best hand-coded planner of IPC 2002, TALPlanner [15] another good planner
based on control rules, and SHOP2 [19], the distinguished hand-coded planner of IPC 2002. Obviously, efficiency
of planning depends on the quality of encoding so we took the existing domain encodings rather than encoding
the domains for the other planners ourselves. In particular, we took the following domains: Depots, Zenotravel,
Driverlog, Satellite, and Rovers from International Planning Competition 2002. The Picat encodings are
available at: picat-lang.org/aips02/. The reason for taking benchmark models from a quite old competition
is that this was the last time when these planners were allowed to compete so we can use the competition
domains and results for direct comparison.

All planners found plans for all benchmark problems and the runtime to generate plans is negligible; every
planner found a plan in a matter of milliseconds. Hence we focus on comparing the quality of obtained plans.
We measure the quality of a plan as the sum of costs of all actions in the plan. Frequently, the cost of action
is one so the quality of a plan corresponds to its length. Obviously, the smaller cost means a better plan. In
recent IPCs, a so called quality score was introduced to compare quality of planners over a set of problems.
For each problem, the quality number between 0 and 1 is assigned to a plan as follows. If the planner cannot
find a plan then 0 is used as the plan quality. Let BCp be the cost of the best plan obtained by any planner for

problem p and let Cp be the cost of some plan for problem p. Then the score for this plan is
BCp

Cp
. Hence, if the

score of the plan is 1 then the plan is the best plan found. Otherwise, the score is smaller than 1. The quality
score for a set of problems P is then

∑
p∈P

BCp

Cp
. The higher quality score means an overall better planning

system.
For TLPlan, TALPlanner, and SHOP2 we took the best plans reported in the results of IPC 2002. We first

compare them to the first plans obtained by the Picat planner (via plan/4); the quality scores are reported in
Table 1.

Table 1: Comparison of quality scores for the first plan found
Domain # insts Picat TLPlan TALPlanner SHOP2

Depots 22 20.87 20.60 21.23 19.27

Zenotravel 20 16.30 19.15 19.55 17.84

Driverlog 20 10.39 19.08 19.24 15.37

Satellite 20 19.73 19.64 17.77 18.39

Rovers 20 17.79 19.04 15.63 18.88

Total 102 85.08 97.52 93.41 89.75

The results show that the encoding of control rules for the TLPlan is really the best one for finding the
first plan, while the Picat model does not excel. Nevertheless, this first experiment tells more about the
craft of the domain modeler rather than giving a whole picture about the overall capabilities of the planner.
Recall that the Picat planner has the possibility to improve the first plan found by looking for better plans in
the branch-and-bound style. In the second experiment, we let the Picat planner improve the plan using the
best plan upward/4 planning algorithm. Table 2 shows the quality scores when we gave five minutes to the
Picat planner to improve the plan (running under MacOS X 10.10 on 1.7 GHz Intel Core i7 with 8 GB RAM).

Table 2: Comparison of quality scores for the best plan (5 minutes)
Domain # insts Picat TLPlan TALPlanner SHOP2

Depots 22 21.94 19.93 20.52 18.63

Zenotravel 20 19.86 18.40 18.79 17.14

Driverlog 20 17.21 17.68 17.87 14.16

Satellite 20 20.00 18.33 16.58 17.16

Rovers 20 20.00 17.67 14.61 17.57

Total 102 99.01 92.00 88.37 84.65

15

Now the situation is completely different and the Picat planner produces plans of much better quality. In
fact, out of 102 problems, the Picat planner found best plans for 91 problems, while TLPlan for 23 problems,
TALPlanner for 22 problems, and SHOP2 for 9 problems. Table 3 shows the number of best plans found per
domain.

Table 3: The number of best plans found
Domain # insts Picat TLPlan TALPlanner SHOP2

Depots 22 19 7 3 0

Zenotravel 20 17 6 7 3

Driverlog 20 15 5 6 1

Satellite 20 20 5 3 2

Rovers 20 20 0 3 3

Total 102 91 23 22 9

According to the initial experiments, the Picat models show promising efficiency both in terms of runtime
and plan quality. The open question is how much effort is required to model the domains. This would require
a sociological study with a large number of participants so we opted to demonstrate the modeling effort by
comparing the sizes of domain models. The domain encodings are publicly available for the TLPlan [23] only
so we can compare only with them and with the PDDL models. This was also the reason why we selected the
above specific domains for experimental comparison. Table 4 shows the number of lines of domain models for
Picat, TLPlan, and PDDL.

Table 4: The number of lines in domain models
Domain Picat TLPlan PDDL

Depots 156 933 42

Zenotravel 109 308 61

Driverlog 190 1395 79

Satellite 132 186 75

Rovers 223 914 119

Total 810 3736 376

We are aware that the above comparison is only informative and not fully conclusive. TLPlan uses Lisp as
the underlying language (similarly to PDDL) while Picat is a logic programming language with syntax close to
Prolog. Taking into account the syntax differences between Lisp and Prolog, we still believe that the numbers
of lines of the models provide an interesting comparison. Moreover, the Picat domain models also include code
for transforming the initial states from PDDL to Picat. The comparison shows that Picat models are much
closer to PDDL with respect to size than the TLPlan models. This also justifies why we compared the Picat
planner with a PDDL-based planner in the next section.

6.2 Domain-Independent Planners

The Picat modeling approach is more expressive than STRIPS models in PDDL. More precisely any PDDL
model can be translated to an equivalent Picat planning model. The Picat planning model is also separated
from the solving mechanism as we mentioned earlier. However, Picat models are more expressive than PDDL
in supporting a structured representation of states and control knowledge in action description. Hence one may
tend to say that the comparison of PDDL-based planners to the Picat planner is not fully fair because Picat
can exploit more information. Still, it is important to show that this extra information is useful for efficient
planning. In particular, we argue that flexible modeling capabilities of Picat are more important for efficiency
of planning than advanced domain-independent planning algorithms.

We have encoded in Picat several other domains used in the deterministic sequential track of IPC 2014 [11].
All of the encodings are available at: picat-lang.org/ipc14/. We have compared Picat encodings with the
PDDL encodings solved with SymbA [Torralba et al., 2014], a domain-independent bidirectional A* planner
which won the optimal sequential track of IPC 2014.

Table 5 shows the number of instances (#insts) in the domains used in IPC 2014 and the number of
(optimally) solved instances by each planner. The results were obtained on a Cygwin notebook computer with
2.4GHz Intel i5 and 4GB RAM. Both Picat and SymbA were compiled using g++ version 4.8.3. For SymbA,

16

Table 5: The number of problems solved optimally.
Domain # insts Picat SymbA

Barman 14 14 6

Cave Diving 20 20 3

Childsnack 20 20 3

Citycar 20 20 17

Floortile 20 20 20

GED 20 20 19

Parking 20 11 1

Tetris 17 13 10

Transport 20 10 8

a setting suggested by one of SymbA’s developers was used. A time limit of 30 minutes was used for each
instance as in IPC. For every instance that was solved by both SymbA and Picat, the plan quality is the same.

Picat solved more instances than SymbA for every domain except for Floortile, for which both systems
solved all of the instances. The running times of the instances are not given, but the total runs for Picat
were finished within 24 hours, while the total runs for SymbA took more than 72 hours. This demonstrates
that planning models in Picat are much more efficient for planning than the PDDL models solved by winning
planning systems. As we demonstrated before, the modeling effort necessary for Picat does not put significant
burden in comparison to PDDL.

7 Conclusions

Tabled logic programming has been proved to work extremely well for specific problems such as Sokoban [26] and
Petrobras planning problem [3]. In this paper we presented a declarative modeling framework for describing
general planning domains. This framework sits on top of the Picat programming language and exploits its
planning module based on tabling. The domain modeler only needs to specify actions as state transitions and
the underlying planning algorithm automatically looks for plans. It is a similar concept to PDDL models, but
the Picat domain models support richer concepts such as structured representations of states and inclusion
of control knowledge in action rules to exploit determinism and symmetries. The initial experiments showed
that this mechanism is very efficient in comparison with domain-independent planners, and achieves with less
efforts comparable efficiency to planners that exploit domain knowledge via control rules and hierarchical task
networks.

In the paper we described some modeling concepts based on our experience with modeling planning domains
for International Planning Competitions. A deeper study of the influence of these concepts on efficiency of
planning is necessary to understand better the modeling principles. A big open question is whether PDDL
models can be automatically translated into Picat. A straightforward translation is obviously possible, but it
does not lead to efficiently solvable models.

The approach proposed in this paper is somehow orthogonal to current research in automated planning that
focuses on improving the domain-independent planning algorithms. We propose to put more effort on domain
modeling by providing richer modeling capabilities. Our initial experiments have shown promising results in
this direction.

Acknowledgments

Roman Barták was supported by the Czech Science Foundation under the project P103-15-19877S. Agostino
Dovier was partially supported by INdAM 2014 and 2015 projects. Neng-Fa Zhou was supported in part by
the NSF under grant number CCF1018006.

References

[1] Fahiem Bacchus and Froduald Kabanza. Using temporal logics to express search control knowledge for
planning. Artificial Intelligence, 116(1-2):123–191, 2000.

[2] Christer Bäckström and Bernhard Nebel. Complexity results for SAS+ planning. Computational Intelli-
gence, 11(4), 625–655, 1995.

17

[3] Roman Barták and Neng-Fa Zhou. Using tabled logic programming to solve the Petrobras planning problem.
Theory and Practice of Logic Programming, 14(4-5):697–710, 2014.

[4] Avrim Blum and Merrick Furst. Fast Planning Through Planning Graph Analysis. Artificial Intelligence,
90:281–300, 1997.

[5] Agostino Dovier, Andrea Formisano, and Enrico Pontelli. Multi-valued Action Languages with Constraints
in CLP(FD). Theory and Practice of Logic Programming,10(2):167–235, 2010.

[6] Richard E. Fikes and Nils J. Nilsson. STRIPS: A New Approach to the Application of Theorem Proving to
Problem Solving. Artificial Intelligence, 2 (3-4): 189–208, 1971

[7] Maria Fox and Derek Long. The detection and exploitation of symmetry in planning problems. In IJCAI,
pages 956–961, 1999.

[8] Michael Gelfond and Vladimir Lifschitz. Action languages. Electronic Transactions on AI, 3(16),193–210,
1998.

[9] Patrik Haslum and Ulrich Scholz. Domain knowledge in planning: Representation and use. In ICAPS
Workshop on PDDL, 2003.

[10] Carl Hewitt. Planner: A language for proving theorems in robots. In IJCAI, pages 295–302, 1969.

[11] International Planning Competitions web site, http://ipc.icaps-conference.org/, Accessed April 5,
2015.

[12] Henry Kautz and Bart Selman. Planning as satisfiability. Proceedings of ECAI, 359–363, 1992.

[13] Richard E. Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artificial Intelligence,
27(1):97–109, 1985.

[14] Robert Kowalski and Marek Sergot. A Logic-based Calculus of Events, New Generation Computing, 4,
67–94, 1986.

[15] Jonas Kvarnström and Martin Magnusson. Talplanner in the third international planning competition:
Extensions and control rules. J. Artificial Intelligence Research (JAIR), 20:343–377, 2003.

[16] A. H. Land and A. G. Doig. An automatic method of solving discrete programming problems. Econometrica
28(3), 497–520, 1960.

[17] John McCarthy. Situations, actions and causal laws. Technical Report Memo 2, Stanford University Artifi-
cial Intelligence Laboratory, Stanford, CA, 1963. Reprinted in: Marvin Minsky, editor. Semantic information
processing. MIT Press, 1968

[18] Drew McDermott. The planning domain definition language manual. CVC Report 98-003, Yale Computer
Science Report 1165, 1998.

[19] Dana S. Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J. William Murdock, Dan Wu, and Fusun
Yaman. SHOP2: an HTN planning system. J. Artificial Intelligence Research (JAIR), 20:379–404, 2003.

[20] Nils J. Nilsson. Shakey The Robot, Technical Note 323. AI Center, SRI International, 333 Ravenswood
Ave., Menlo Park, CA 94025, Apr 1984.

[21] Picat web site, http://picat-lang.org/, Accessed April 5, 2015.

[22] Michael Thielscher. Introduction to the Fluent Calculus. Electronic Transactions on Artificial Intelligence,
2: 179–192, 1998.

[23] TLPlan web site, http://www.cs.toronto.edu/tlplan/, Accessed April 5, 2015.

[Torralba et al., 2014] Alvaro Torralba, Vidal Alcazar, and Daniel Borrajo. Symba: A symbolic bidirectional
a planner. In The 2014 International Planning Competition, pages 105–109, 2014.

[24] David S. Warren. Memoing for logic programs. Comm. of the ACM, Special Section on Logic Programming,
35:93–111, 1992.

18

[25] Neng-Fa Zhou and Christian Theil Have. Efficient tabling of structured data with enhanced hash-consing.
Theory and Practice of Logic Programming, 12(4-5):547–563, 2012.

[26] Neng-Fa Zhou and Agostino Dovier. A tabled Prolog program for solving Sokoban. Fundamenta Informat-
icae, 124(4):561–575, 2013.

[27] Neng-Fa Zhou. Combinatorial Search With Picat. http://arxiv.org/abs/1405.2538, 2014.

19

A Cave Diving domain in PDDL

(define (domain cave-diving-adl)

(:requirements :typing :action-costs :adl)

(:types location diver tank quantity)

(:predicates

(at-tank ?t - tank ?l - location)

(in-storage ?t - tank)

(full ?t - tank)

(next-tank ?t1 - tank ?t2 - tank)

(at-diver ?d - diver ?l - location)

(available ?d - diver)

(at-surface ?d - diver)

(decompressing ?d - diver)

(precludes ?d1 - diver ?d2 - diver)

(cave-entrance ?l - location)

(connected ?l1 - location ?l2 - location)

(next-quantity ?q1 - quantity ?q2 - quantity)

(holding ?d - diver ?t - tank)

(capacity ?d - diver ?q - quantity)

(have-photo ?l - location)

(in-water)

)

(:functions

(hiring-cost ?d - diver) - number

(other-cost) - number

(total-cost) - number

)

(:action hire-diver

:parameters (?d1 - diver)

:precondition (and (available ?d1)

(not (in-water))

)

:effect (and (at-surface ?d1)

(not (available ?d1))

(forall (?d2 - diver)

(when (precludes ?d1 ?d2)

(not (available ?d2))))

(in-water)

(increase (total-cost) (hiring-cost ?d1))

)

)

(:action prepare-tank

:parameters (?d - diver ?t1 ?t2 - tank ?q1 ?q2 - quantity)

:precondition (and (at-surface ?d)

(in-storage ?t1)

(next-quantity ?q1 ?q2)

(capacity ?d ?q2)

(next-tank ?t1 ?t2)

)

:effect (and (not (in-storage ?t1))

(not (capacity ?d ?q2))

(in-storage ?t2)

(full ?t1)

(capacity ?d ?q1)

(holding ?d ?t1)

(increase (total-cost) (other-cost))

)

)

20

(:action enter-water

:parameters (?d - diver ?l - location)

:precondition (and (at-surface ?d)

(cave-entrance ?l)

)

:effect (and (not (at-surface ?d))

(at-diver ?d ?l)

(increase (total-cost) (other-cost))

)

)

(:action pickup-tank

:parameters (?d - diver ?t - tank ?l - location

?q1 ?q2 - quantity)

:precondition (and (at-diver ?d ?l)

(at-tank ?t ?l)

(next-quantity ?q1 ?q2)

(capacity ?d ?q2)

)

:effect (and (not (at-tank ?t ?l))

(not (capacity ?d ?q2))

(holding ?d ?t)

(capacity ?d ?q1)

(increase (total-cost) (other-cost))

)

)

(:action drop-tank

:parameters (?d - diver ?t - tank ?l - location

?q1 ?q2 - quantity)

:precondition (and (at-diver ?d ?l)

(holding ?d ?t)

(next-quantity ?q1 ?q2)

(capacity ?d ?q1)

)

:effect (and (not (holding ?d ?t))

(not (capacity ?d ?q1))

(at-tank ?t ?l)

(capacity ?d ?q2)

(increase (total-cost) (other-cost))

)

)

(:action swim

:parameters (?d - diver ?t - tank ?l1 ?l2 - location)

:precondition (and (at-diver ?d ?l1)

(holding ?d ?t)

(full ?t)

(connected ?l1 ?l2)

)

:effect (and (not (at-diver ?d ?l1))

(not (full ?t))

(at-diver ?d ?l2)

(increase (total-cost) (other-cost))

)

)

(:action photograph

:parameters (?d - diver ?l - location ?t - tank)

:precondition (and (at-diver ?d ?l)

(holding ?d ?t)

21

(full ?t)

)

:effect (and (not (full ?t))

(have-photo ?l)

(increase (total-cost) (other-cost))

)

)

(:action decompress

:parameters (?d - diver ?l - location)

:precondition (and (at-diver ?d ?l)

(cave-entrance ?l)

)

:effect (and (not (at-diver ?d ?l))

(decompressing ?d)

(not (in-water))

(increase (total-cost) (other-cost))

)

)

)

22

