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A point of view: the development of mathematics is driven by a
search for completion.

The integers are developed for completing the natural numbers
under substraction.

The rationals are developed for completing the integers under
division.

The reals are developed for completing the rationals under Cauchy
sequences.

The complex numbers are developed for completing the reals under
square roots.
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What about counting?

0 1 2 3 4 5 . . . ∞ ∞+ 1

There are some psychological studies that indicates that the
concept of ”infinity plus one” is natural for children

Monaghan, John (2001). ”Young Peoples’ Ideas of Infinity”.
Educational Studies in Mathematics 48 (2): 239–257

In mathematics: uniqueness of an expansion of a function in a
trigonometric series.
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Theorem (Cantor, 1870)

Suppose

a0/2 +
+∞∑
n=1

(an cos nx + bn sin nx) = 0 for any x ∈ R.

Then an = bn = 0.

In trying to extend this results (weakening the hypothesis from
∀x), Cantor arrived to this definition:
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Definition (Cantor, 1872)

Let S be a set of reals. Then S ′ = {x ∈ S : x is a limit point of S}.
Define by induction:

• S (0) = S ′;

• S (n+1) = S (n)′;

• S (∞) =
⋂

n∈N S (n).

But maybe S (∞) has some isolated points...

• S (∞+1) = S (∞)′. . .
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Definition (Cantor, 1883)

Two ordered sets (S ,≤S) and (T ,≤T ) have the same order type
if there is an order isomorphism between them, i.e., ∃f : S → T
bijective such that x ≤S y iff f (x) ≤T f (y).

α is an ordinal number if it’s the order type of a well-ordered
set (i.e., linear without infinite descending chains).
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1
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2
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3
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∞
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ω
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ω + 1
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ω + 2
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ω + ω = ω · 2
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ω + ω + ω = ω · 3
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ω · ω
(the order type of the Sieve of Eratosthenes)
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ω · ω
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But wait a minute...

ω + 1 is after ω, but it’s not bigger!

Definition(Cantor, 1874-1884)

Two sets have the same cardinality if there is a bijection between
them.
κ is a cardinal number if it is the cardinality of an ordinal number.

ω is both a cardinal and an ordinal number. When we use it as a
cardinal, we call it ℵ0.

There is a bijection between ω + 1 and ω (Hilbert’s Paradox of the
Grand Hotel). Is there an ordinal really bigger?
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Theorem(Cantor, 1874)

|P(ω)| > ℵ0.

The smallest cardinal bigger than ℵ0 is ℵ1, then ℵ2, ℵ3, . . .ℵω,
ℵω+1, . . .ℵωω . . .

Operations are defined, like sum, multiplications...

Definition

κγ = |{f : γ → κ}|.

For example 2κ = |P(κ)|.
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Main Problems in Set Theory #2

Suppose for any n, 2ℵn < ℵω. How big is 2ℵω?
Best result: 2ℵω < ℵω4 .

But wait a minute...

ℵ1 is still too close to ℵ0: 2ℵ0 ≥ ℵ1, but 2n < ℵ0 for all n!

Definition(Sierpiński, Tarski, Zermelo, 1930)

κ is an inaccessible cardinal iff

• κ > ℵ0;

• for any γ, η < κ, γη < κ;

• for any A ⊆ κ, |A| < κ→ sup(A) < κ.
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inaccessible
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Mathematics works through theorems.

They are logical derivations of the form if. . . then. . . .

It is clear that there needs to be a starting point, i.e., an axiomatic
system.

ZFC is now the favourite axiomatic system for mathematics. We
can say it’s the mathematics.
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Theorem(Gödel, 1931)

Any effectively generated theory capable of expressing elementary
arithmetic cannot be both consistent and complete.

For any formal effectively generated theory T including basic
arithmetical truths and also certain truths about formal provabil-
ity, if T includes a statement of its own consistency then T is
inconsistent.

A statement is independent from ZFC if ZFC cannot prove it or
disprove it.

If there is an inaccessible cardinal, then one can prove that ZFC is
consistent. Then ZFC cannot prove that there exists an
inaccessible cardinal, so it’s independent from ZFC.
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Theorem

The existence of an inaccessible cardinal is equiconsistent to

• the measurability of the projective sets in R;

• the existence of Kurepa trees.

Theorem

The existence of a measurable cardinal is equiconsistent to

• every Borelian measure on B([0, 1]) can be extended on a
measure on P([0, 1]);

• there exists a cardinal κ and a non-trivial homomorphism
h : Zκ \ Z<κ → Z.

Theorem(Nyikos, Fleissner 1982)

The consistency of the normal Moore conjecture is between measur-
able and strongly compact.
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Theorem (Wiles, 1995)

Suppose there are unboundedly inaccessible cardinals. Then for any
n > 2 there are no a, b, c integers such that an + bn = cn.

In 1983 Pitowsky constructed hidden variable models for spin-1/2
and spin-1 particles in quantum mechanics. Pitowsky’s functions
calculate in this model the probabilities of spin values.

Theorem (Farah, Magidor, 2012)

If there exists a measurable cardinal, then Pitowski functions do not
exist.
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There are also very debatable results. . .

Theorem (H. Friedman, 2012)

The existence of a measurable cardinal is close to equiconsistent to
the existence of God.

. . . and large cardinals even appear in pop culture!
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Main questions when dealing with a large cardinal:

• What is the relationship between it and other large cardinals?
E.g. is it really different? Is it really stronger (or weaker)?

• What are its consequences on set theory? And mathematics?

• Which theorems needs it to be proven?
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Main Problems in Set Theory #3

Is supercompact equiconsistent to strongly compact?

Main Problems in Set Theory #5

Suppose κ is strongly compact. Is it true that if for any η < κ
2η = η+, then this is true for every η?

Main Problems in Set Theory #1

Is there an inner model for supercompact?
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Definition

The rank of ∅ is 0.The rank of a set S is the supremum of the ranks
of all s ∈ S .Vα is the set of the sets of rank < α.V =

⋃
α Vα is the

universe of sets.

Examples: V0 = ∅. ∅ ∈ V1, {∅} ∈ V2, {{∅}}, {∅, {∅}} ∈ V3, . . .
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Definition

A function j : M → N is an elementary embedding if it is injective
and for any x ∈ M and any formula ϕ, M � ϕ(x) iff N � ϕ(j(x)).
We write j : M ≺ N.

It’s a morphism for the logical structure.

If x , y ∈ M and x ∈ y , then j(x) ∈ j(y). If ∃x ∈ M that satisfies
something, then ∃y ∈ N that satisfies the same thing. If all x ∈ M
satisfy something relative to a parameter p, then all y ∈ N satisfy
the same thing relative to the parameter j(p).

j(0) = 0, j(1) = 1, j(2) = 2, . . . j(n) = n, . . . , j(ω) =
ω, j(ℵω) = ℵω, . . .
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The critical point of j is the smallest ordinal α such that j(α) 6= α
(it’s easy to see that j(α) ≥ α).

Theorem (Scott, Keisler 1962)

The following are equivalent:

• there is a κ-additive measure on κ (κ is measurable);

• there exists j : V ≺ M ⊆ V , with κ critical point of j .

Can V = M? It would be a very strong hypothesis...

Theorem (Kunen, 1971)

There is no j : V ≺ V .

The proof uses greatly the Axiom of Choice.
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Main Problems in Set Theory #4

Is there a j : V ≺ V when ¬AC?.

Let’s define a local version of such hypothesis:

Definition

• I3: There exists j : Vλ ≺ Vλ;

• I1: There exists j : Vλ+1 ≺ Vλ+1.

Theorem (Laver, 1989)

Suppose I3. Then the word problem for the left-distributive algebra
is decidable.
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The gist is that the set of elementary embeddings on Vλ is an
acyclic left-distributive algebra.

This was later proved in ZFC. But there are similar (more
technical) results who are still proven only with I3.
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Let X a set. Then L(X ) is the smallest model of ZF that contains
X .

• L0(X ) = X ;

• L1(X ) = the set of subsets of L0(X ) that are definable;

• L2(X ) = the set of subsets of L1(X ) that are definable;

• . . .

• Lω(X ) =
⋃

n∈ω Ln(X );

• . . .

Definition

I0: there exists j ; L(Vλ+1) ≺ L(Vλ+1).

Does it have interesting consequences?
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Let X be a set of infinite strings of natural numbers. Then
consider the game

I a0 a1

· · ·
II b0 b1

where I wins iff (a0, b0, . . . ) ∈ X .

A winning strategy for I (for II) is a function that tells the right
moves to I (II), so that I always wins (loses). X is determined iff
there is a winning trategy for I or for II.

Axiom of Determinacy: every X is determined.

AD is in contradiction with AC, but maybe a local version can hold.
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Theorem (Woodin, 80’s)

I0 implies the consistency of AD.

But. . .

Theorem

AD is equiconsistent to infinitely many Woodin cardinals.

So the question is still open. . .

As it is now, finding a theorem that needs I0 seems hopeless (see
Main Problem #1).

But there are good chances to find consequences of I0.
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For some still unknown reason, I0 has a very rich structure
compared to I1 and I3, and this structure has some striking
similarities to AD in L(R).

Let me give you a possible future development.

We introduced recently generic I0, a variant of I0. Generic I0 gives
a positive answer to Main Problem #5 (the proper subalgebra of
ℵω). It would not be surprising if I0 would imply generic I0,
therefore solving the problem.
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Other things that generic I0 proves:

Theorem (D. 2015)

Suppose generic I0 at ℵω. Then

• L(Vℵω) 2 AC;

• L(Vℵω) � ℵω+1 is a measurable cardinal;

• L(Vℵω) � 2ℵω is very, very large (an inaccessible limit of
measurables).

Note that this goes against our results for Main Problem #2, but
that’s because L(Vℵω) does not satisfy choice.
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Can we go beyond I0? Of course!

Woodin defined L(Eα), a strengthening of I0. L(E0) is just I0, and
the higher is α the stronger the axiom is.

Question: where does the sequence stop? It must stop somewhere!

Possible indication:
Theorem (D. 2012)

Suppose that there exists ξ such that L(Eξ) 2 V = HODVλ+1
. Then

there exists an α < ξ such that there are many proper and many
non proper elementary embeddings from L(Eα) to itself.

This result seems highly suspicious, so maybe the assumption is
inconsistent.
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To recap:

• Completing the natural numbers under the operation of
”‘counting”’, opens up a very rich universe;

• large cardinal are seemingly innocuous infinite combinatorial
properties;

• yet they function very well as a measure for calculating the
strength of many mathematical propositions;

• for unknown reason, they are ordered in a linear way;

• large cardinals above Woodin are more misterious, because we
don’t have inner model theory there;

• yet they are also the more potentially productive.

52 / 53



Breaking the ceiling of infinity Stronger than mathematics I axioms

Thanks for your attention!
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