I0, Generic Absoluteness and Combinatorics

Vincenzo Dimonte

INFTY Final Conference
04 March 2014
Theorem (Kunen, 1971)
If \(j : V \prec M \), then \(M \neq V \).
Theorem (Kunen, 1971)

If $j : V \prec M$, then $M \neq V$.

Kunen’s proof uses a choice function that is in $V_{\lambda+2}$.
Theorem (Kunen, 1971)
If \(j : V \preceq M \), then \(M \neq V \).

Kunen’s proof uses a choice function that is in \(V_{\lambda+2} \). So

Corollary
There is no \(j : V_\eta \prec V_\eta \), with \(\eta \geq \lambda + 2 \).
This leaves room for a new breed of large cardinal hypotheses:
This leaves room for a new breed of large cardinal hypotheses:

Definition

I_3 iff there exists λ s.t. $\exists j : V_\lambda \prec V_\lambda$;

I_2 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec V_{\lambda+1}$;

I_1 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec V_{\lambda+1}$;

I_0 For some λ there exists a j:

$L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, with $\text{crt}(j) < \lambda$.

Why are they large cardinals?

The critical point of j is measurable, n-huge, supercompact in V_λ.

λ is a strong limit cardinal (in fact, Rowbottom).
This leaves room for a new breed of large cardinal hypotheses:

<table>
<thead>
<tr>
<th>Definition</th>
<th>I3</th>
<th>I2</th>
<th>I1</th>
</tr>
</thead>
<tbody>
<tr>
<td>I3</td>
<td>iff there exists λ s.t. $\exists j : V_\lambda \prec V_\lambda$;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2</td>
<td>iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec_1 V_{\lambda+1}$;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I1</td>
<td></td>
<td></td>
<td>For some λ there exists a $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, with $\text{crt}(j) < \lambda$;</td>
</tr>
</tbody>
</table>

Why are they large cardinals?
The critical point of j is measurable, n-huge, supercompact in V_λ.

λ is a strong limit cardinal (in fact, Rowbottom).
This leaves room for a new breed of large cardinal hypotheses:

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>I3 iff there exists (\lambda) s.t. (\exists j : V_\lambda \prec V_\lambda);</td>
</tr>
<tr>
<td>I2 iff there exists (\lambda) s.t. (\exists j : V_{\lambda+1} \prec_1 V_{\lambda+1});</td>
</tr>
<tr>
<td>I1 iff there exists (\lambda) s.t. (\exists j : V_{\lambda+1} \prec V_{\lambda+1});</td>
</tr>
</tbody>
</table>
This leaves room for a new breed of large cardinal hypotheses:

<table>
<thead>
<tr>
<th>Definition</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I3</td>
<td>iff there exists λ s.t. $\exists j : V_\lambda \prec V_\lambda$;</td>
</tr>
<tr>
<td>I2</td>
<td>iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec_1 V_{\lambda+1}$;</td>
</tr>
<tr>
<td>I1</td>
<td>iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec V_{\lambda+1}$;</td>
</tr>
<tr>
<td>I0</td>
<td>For some λ there exists a $j : \text{L}(V_{\lambda+1}) \prec \text{L}(V_{\lambda+1})$, with $\text{crt}(j) < \lambda$</td>
</tr>
</tbody>
</table>
This leaves room for a new breed of large cardinal hypotheses:

Definition

<table>
<thead>
<tr>
<th>Level</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>I3</td>
<td>$\exists \lambda \text{ s.t. } \exists j : V_\lambda \prec V_\lambda$;</td>
</tr>
<tr>
<td>I2</td>
<td>$\exists \lambda \text{ s.t. } \exists j : V_{\lambda+1} \prec_1 V_{\lambda+1}$;</td>
</tr>
<tr>
<td>I1</td>
<td>$\exists \lambda \text{ s.t. } \exists j : V_{\lambda+1} \prec V_{\lambda+1}$;</td>
</tr>
<tr>
<td>I0</td>
<td>For some λ there exists a $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, with $\text{crt}(j) < \lambda$</td>
</tr>
</tbody>
</table>

Why are they large cardinals?
This leaves room for a new breed of large cardinal hypotheses:

Definition

- **I₃** iff there exists \(\lambda \) s.t. \(\exists j : V_\lambda \prec V_\lambda \);
- **I₂** iff there exists \(\lambda \) s.t. \(\exists j : V_{\lambda+1} \prec_1 V_{\lambda+1} \);
- **I₁** iff there exists \(\lambda \) s.t. \(\exists j : V_{\lambda+1} \prec V_{\lambda+1} \);
- **I₀** For some \(\lambda \) there exists a \(j : L(V_{\lambda+1}) \prec L(V_{\lambda+1}) \), with \(\text{crt}(j) < \lambda \)

Why are they large cardinals?
The critical point of \(j \) is measurable, \(n \)-huge, supercompact in \(V_\lambda \).
This leaves room for a new breed of large cardinal hypotheses:

Definition

- **I₃** if there exists λ s.t. $\exists j : \mathcal{V}_\lambda \prec \mathcal{V}_\lambda$;
- **I₂** if there exists λ s.t. $\exists j : \mathcal{V}_{\lambda+1} \prec_1 \mathcal{V}_{\lambda+1}$;
- **I₁** if there exists λ s.t. $\exists j : \mathcal{V}_{\lambda+1} \prec \mathcal{V}_{\lambda+1}$;
- **I₀** for some λ there exists a $j : L(\mathcal{V}_{\lambda+1}) \prec L(\mathcal{V}_{\lambda+1})$, with $\text{crt}(j) < \lambda$

Why are they large cardinals?
The critical point of j is measurable, n-huge, supercompact in \mathcal{V}_λ.
λ is a strong limit cardinal (in fact, Rowbottom).
It is an easy exercise to see that, given j, λ is unique.
It is an easy exercise to see that, given j, λ is unique. Suppose $j : V_\lambda \prec V_\lambda$.

Consider $\langle \text{crt}(j), j(\text{crt}(j)), j(j(\text{crt}(j))), \ldots \rangle$
It is an easy exercise to see that, given \(j \), \(\lambda \) is unique. Suppose \(j : V_\lambda \prec V_\lambda \).

Consider \(\langle \text{crt}(j), j(\text{crt}(j)), j(j(\text{crt}(j)), \ldots \rangle \). The supremum of this sequence, \(\eta \), is a fixed point for \(j \).
It is an easy exercise to see that, given j, λ is unique. Suppose $j : V_\lambda \prec V_\lambda$.

Consider $\langle \text{crt}(j), j(\text{crt}(j)), j(j(\text{crt}(j))), \ldots \rangle$. The supremum of this sequence, η, is a fixed point for j. If $\eta < \lambda$, then $j(\eta + 2) = \eta + 2$, so $j \upharpoonright V_{\eta+2} : V_{\eta+2} \prec V_{\eta+2}$.
It is an easy exercise to see that, given j, λ is unique. Suppose $j : V_\lambda \prec V_\lambda$.

Consider $\langle \text{crt}(j), j(\text{crt}(j)), j(j(\text{crt}(j))), \ldots \rangle$. The supremum of this sequence, η, is a fixed point for j. If $\eta < \lambda$, then $j(\eta + 2) = \eta + 2$, so $j \upharpoonright V_{\eta+2} : V_{\eta+2} \prec V_{\eta+2}$. Contradiction
It is an easy exercise to see that, given j, λ is unique. Suppose $j : V_\lambda \prec V_\lambda$.

Consider $\langle \text{crt}(j), j(\text{crt}(j)), j(j(\text{crt}(j)), \ldots \rangle$. The supremum of this sequence, η, is a fixed point for j. If $\eta < \lambda$, then $j(\eta + 2) = \eta + 2$, so $j \upharpoonright V_{\eta+2} : V_{\eta+2} \prec V_{\eta+2}$. Contradiction. So $\eta = \lambda$.
Theorem (D., Friedman, 2013)

Suppose \(I^* \) is \(I_3, I_2, I_1 \) or \(I_0 \). Then \(I^* \) is consistent with each of the following:

- GCH
- Failure of GCH at regular cardinals
- \(V=HOD \)
- \(\Diamond \)
Theorem (D., Friedman, 2013)

Suppose I^* is I_3, I_2, I_1 or I_0. Then I^* is consistent with each of the following:

- GCH
Theorem (D., Friedman, 2013)

Suppose I^* is $I3$, $I2$, $I1$ or $I0$. Then I^* is consistent with each of the following:

- GCH
- failure of GCH at regular cardinals
Theorem (D., Friedman, 2013)

Suppose I^* is I_3, I_2, I_1 or I_0. Then I^* is consistent with each of the following:

- GCH
- failure of GCH at regular cardinals
- $V = \text{HOD}$
Theorem (D., Friedman, 2013)

Suppose I^* is I_3, I_2, I_1 or I_0. Then I^* is consistent with each of the following:

- GCH
- failure of GCH at regular cardinals
- $V=\text{HOD}$
- ♦
Theorem (D., Friedman, 2013)

Suppose I^* is I_3, I_2, I_1 or I_0. Then I^* is consistent with each of the following:

- GCH
- failure of GCH at regular cardinals
- $V=\text{HOD}$
- ♦
- etc...
Theorem (D., Wu, 2014)

Suppose I0. Then I1, i.e., \(j : V_{\lambda+1} \prec V_{\lambda+1} \), is consistent with each of the following:

- the failure of SCH at \(\lambda \)
- the first failure of SCH at \(\lambda \)
- TP(\(\lambda^{++} \))
- \(\neg \text{SCH} + \neg \text{AP} \)
- etc...
Theorem (D., Wu, 2014)

Suppose I0. Then I1, i.e., \(j : V_{\lambda+1} \preceq V_{\lambda+1} \), is consistent with each of the following:

- the failure of SCH at \(\lambda \)
Theorem (D., Wu, 2014)

Suppose I0. Then I1, i.e., \(j : V_{\lambda+1} \prec V_{\lambda+1} \), is consistent with each of the following:

- the failure of SCH at \(\lambda \)
- the first failure of SCH at \(\lambda \)
- etc...
Theorem (D., Wu, 2014)

Suppose I0. Then I1, i.e., \(j : V_{\lambda+1} \prec V_{\lambda+1} \), is consistent with each of the following:

- the failure of SCH at \(\lambda \)
- the first failure of SCH at \(\lambda \)
- \(TP(\lambda^{++}) \)
Theorem (D., Wu, 2014)

Suppose I_0. Then I_1, i.e., $j : V_{\lambda+1} \prec V_{\lambda+1}$, is consistent with each of the following:

- the failure of SCH at λ
- the first failure of SCH at λ
- $TP(\lambda^{++})$
- $\neg SCH + \neg AP + \text{(Very good scale)}$ at λ
Theorem (D., Wu, 2014)

Suppose I₀. Then I₁, i.e., \(j : V_{\lambda+1} \prec V_{\lambda+1} \), is consistent with each of the following:

- the failure of SCH at \(\lambda \)
- the first failure of SCH at \(\lambda \)
- \(TP(\lambda^{++}) \)
- \(\neg SCH + \neg AP + (\text{Very good scale}) \) at \(\lambda \)
- etc...
The key of the proofs is the relationship between rank-into-rank embeddings and forcing. There are some easy cases:

- \((V_{\lambda+1})^{V[G]} = V_{\lambda+1}\): this case is trivial, \(j\) is still a witness in \(V[G]\);
The key of the proofs is the relationship between rank-into-rank embeddings and forcing. There are some easy cases:

- \((V_{\lambda+1})^{V[G]} = V_{\lambda+1}\): this case is trivial, \(j\) is still a witness in \(V[G]\);
- \(\mathbb{P} \in V_{\text{crt}(j)}\): define the extension \(k(\tau_G) = j(\tau)_G\).
The key of the proofs is the relationship between rank-into-rank embeddings and forcing. There are some easy cases:

- \((V_{\lambda+1})^{V[G]} = V_{\lambda+1}\): this case is trivial, \(j\) is still a witness in \(V[G]\);
- \(\mathbb{P} \in V_{\text{crt}(j)}\): define the extension \(k(\tau_G) = j(\tau)_G\).
- \(\mathbb{P} \in V_\lambda\): as before, since iterating \(j\) we can have \(\text{crt}(j) < \lambda\) as large as we want.
Theorem (Hamkins, 1994)

Suppose $\mathbf{I_1}$ witnessed by j and λ
Theorem (Hamkins, 1994)

Suppose I_1 witnessed by j and λ. Let \mathbb{P} be a forcing iteration of length λ, with \mathbb{Q}_δ its stages and \mathbb{P}_δ its initial segments.
Theorem (Hamkins, 1994)

Suppose I₁ witnessed by J and λ. Let P be a forcing iteration of length λ, with Q_δ its stages and P_δ its initial segments. Then I₁ is preserved in the forcing extension if P is:

- a reverse Easton iteration (nontrivial forcing only at limit stages, direct limit at inaccessible stages, inverse limit otherwise)
- simple (for all δ, V_{P_δ} \models |Q_δ| \leq 2^δ)
- directed closed (for all δ, Q_δ is <δ-directed closed)
- J-coherent (for all δ, J(P_δ) = P_{J(δ)})
Theorem (Hamkins, 1994)

Suppose $\text{I}1$ witnessed by j and λ. Let \mathbb{P} be a forcing iteration of length λ, with \mathbb{Q}_δ its stages and \mathbb{P}_δ its initial segments. Then $\text{I}1$ is preserved in the forcing extension if \mathbb{P} is:

- a reverse Easton iteration (nontrivial forcing only at limit stages, direct limit at inaccessible stages, inverse limit otherwise)
Theorem (Hamkins, 1994)

Suppose \mathcal{I}_1 witnessed by j and λ. Let \mathbb{P} be a forcing iteration of length λ, with \mathbb{Q}_δ its stages and \mathbb{P}_δ its initial segments. Then \mathcal{I}_1 is preserved in the forcing extension if \mathbb{P} is:

- a reverse Easton iteration (nontrivial forcing only at limit stages, direct limit at inaccessible stages, inverse limit otherwise)
- simple (for all δ, $V^{\mathbb{P}_\delta} \models |\mathbb{Q}_\delta| \leq 2^\delta$)
Theorem (Hamkins, 1994)

Suppose \mathbb{I}_1 witnessed by j and λ. Let \mathbb{P} be a forcing iteration of length λ, with \mathbb{Q}_δ its stages and \mathbb{P}_δ its initial segments. Then \mathbb{I}_1 is preserved in the forcing extension if \mathbb{P} is:

- a reverse Easton iteration (nontrivial forcing only at limit stages, direct limit at inaccessible stages, inverse limit otherwise)
- simple (for all δ, $V^{\mathbb{P}_\delta} \models |\mathbb{Q}_\delta| \leq 2^\delta$)
- directed closed (for all δ, \mathbb{Q}_δ is $< \delta$-directed closed)
Theorem (Hamkins, 1994)

Suppose \(I_1 \) witnessed by \(j \) and \(\lambda \). Let \(\mathbb{P} \) be a forcing iteration of length \(\lambda \), with \(Q_\delta \) its stages and \(P_\delta \) its initial segments. Then \(I_1 \) is preserved in the forcing extension if \(\mathbb{P} \) is:

- a reverse Easton iteration (nontrivial forcing only at limit stages, direct limit at inaccessible stages, inverse limit otherwise)
- simple (for all \(\delta \), \(V^{\mathbb{P}_\delta} \models |Q_\delta| \leq 2^\delta \))
- directed closed (for all \(\delta \), \(Q_\delta \) is \(< \delta \)-directed closed)
- \(j \)-coherent (for all \(\delta \), \(j(P_\delta) = P_{j(\delta)} \))
Theorem (Corazza, 2007)

Suppose I₃ witnessed by j and λ. Let \mathbb{P} be a forcing iteration of length λ, with \mathbb{Q}_δ its stages and \mathbb{P}_δ its initial segments. Then I₃ is preserved in the forcing extension if \mathbb{P} is:

- a reverse Easton iteration (nontrivial forcing only at limit stages, direct limit at inaccessible stages, inverse limit otherwise)
- **adequate** (for all δ, $V^{\mathbb{P}_\delta} \models |\mathbb{Q}_\delta| \leq$ the smallest inaccessible bigger than δ)
- directed closed (for all δ, \mathbb{Q}_δ is $< \delta$-directed closed)
- j-coherent (for all δ, $j(\mathbb{P}_\delta) = \mathbb{P}_{j(\delta)}$)
Theorem (D., Friedman, 2013)

Suppose \(I_3, I_2, I_1, I_0 \) witnessed by \(j \) and \(\lambda \). Let \(P \) be a forcing iteration of length \(\lambda \), with \(Q_\delta \) its stages and \(P_\delta \) its initial segments. Then \(I_3, I_2, I_1, I_0 \) is preserved in the forcing extension if \(P \) is:

- a reverse Easton iteration (nontrivial forcing only at limit stages, direct limit at inaccessible stages, inverse limit otherwise)
- adequate (for all \(\delta \), \(V^{P_\delta} \models |Q_\delta| \leq \) the smallest inaccessible bigger than \(\delta \))
- directed closed (for all \(\delta \), \(Q_\delta \) is \(< \delta \)-directed closed)
- \(j \)-coherent (for all \(\delta \), \(j(P_\delta) = P_{j(\delta)} \))
Theorem (D., Friedman, 2013)

Suppose I_3, I_2, I_1, I_0 witnessed by j and λ. Let P be a forcing iteration of length λ, with Q_δ its stages and P_δ its initial segments. Then I_3, I_2, I_1, I_0 is preserved in the forcing extension if P is:

- a reverse Easton iteration (nontrivial forcing only at limit stages, direct limit at inaccessible stages, inverse limit otherwise)
- λ-bounded (for all δ, $V^{P_\delta} \models |Q_\delta| \leq \lambda$)
- directed closed (for all δ, Q_δ is $<\delta$-directed closed)
- j-coherent (for all δ, $j(P_\delta) = P_{j(\delta)}$)
Note: if j, λ, κ witness I0, then j is iterable and if M_ω is its ω-th iteration,
Note: if j, λ, κ witness I_0, then j is iterable and if M_ω is its ω-th iteration, then $j_{0,\omega}(\kappa) = \lambda$, and λ is measurable, huge, etc... in M_ω.
Note: if j, λ, κ witness I_0, then j is iterable and if M_ω is its ω-th iteration, then $j_{0,\omega}(\kappa) = \lambda$, and λ is measurable, huge, etc... in M_ω.

Generic Absoluteness Theorem (Woodin, 2012)

Suppose there exists $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, and let $\kappa_0 = \text{crt}(j) < \lambda$ and $\kappa_{n+1} = j(\kappa_n)$.
Note: if j, λ, κ witness I_0, then j is iterable and if M_ω is its ω-th iteration, then $j_{0,\omega}(\kappa) = \lambda$, and λ is measurable, huge, etc... in M_ω.

Generic Absoluteness Theorem (Woodin, 2012)

Suppose there exists $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, and let $\kappa_0 = \text{crt}(j) < \lambda$ and $\kappa_{n+1} = j(\kappa_n)$. Let (M_ω, j_ω) the ω-th iterate of $(L(V_{\lambda+1}), j)$.
Note: if \(j, \lambda, \kappa \) witness \(I_0 \), then \(j \) is iterable and if \(M_\omega \) is its \(\omega \)-th iteration, then \(j_0, \omega(\kappa) = \lambda \), and \(\lambda \) is measurable, huge, etc... in \(M_\omega \).

Generic Absoluteness Theorem (Woodin, 2012)

Suppose there exists \(j : L(V_{\lambda+1}) \prec L(V_{\lambda+1}) \), and let \(\kappa_0 = \text{crt}(j) < \lambda \) and \(\kappa_{n+1} = j(\kappa_n) \). Let \((M_\omega, j_\omega)\) the \(\omega \)-th iterate of \((L(V_{\lambda+1}), j)\). Then \(\vec{\kappa} \) is Prikry-generic for \(\lambda \) in \(M_\omega \).
Note: if j, λ, κ witness I_0, then j is iterable and if M_ω is its ω-th iteration, then $j_{0,\omega}(\kappa) = \lambda$, and λ is measurable, huge, etc... in M_ω.

Generic Absoluteness Theorem (Woodin, 2012)

Suppose there exists $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, and let $\kappa_0 = \text{crt}(j) < \lambda$ and $\kappa_{n+1} = j(\kappa_n)$. Let (M_ω, j_ω) the ω-th iterate of $(L(V_{\lambda+1}), j)$. Then $\vec{\kappa}$ is Prikry-generic for λ in M_ω and there exists $\pi : (L_\omega(V_{\lambda+1}))^{M_\omega[\vec{\kappa}]} \prec L_\omega(V_{\lambda+1})$ with $\pi \upharpoonright V_\lambda = \text{id}$.
Note: if j, λ, κ witness I_0, then j is iterable and if M_ω is its ω-th iteration, then $j_{0,\omega}(\kappa) = \lambda$, and λ is measurable, huge, etc... in M_ω.

Generic Absoluteness Theorem (Woodin, 2012)

Suppose there exists $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, and let $\kappa_0 = \text{crt}(j) < \lambda$ and $\kappa_{n+1} = j(\kappa_n)$. Let (M_ω, j_ω) the ω-th iterate of $(L(V_{\lambda+1}), j)$. Then $\vec{\kappa}$ is Prikry-generic for λ in M_ω and there exists $\pi : (L_\omega(V_{\lambda+1}))^{M_\omega[\vec{\kappa}]} \prec L_\omega(V_{\lambda+1})$ with $\pi \upharpoonright V_\lambda = \text{id}$.

So, $I_1(\lambda)$ holds in $M_\omega[\vec{\kappa}]$
Note: if j, λ, κ witness I_0, then j is iterable and if M_ω is its ω-th iteration, then $j_0, \omega(\kappa) = \lambda$, and λ is measurable, huge, etc... in M_ω.

Generic Absoluteness Theorem (Woodin, 2012)

Suppose there exists $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, and let $\kappa_0 = \text{crt}(j) < \lambda$ and $\kappa_{n+1} = j(\kappa_n)$. Let (M_ω, j_ω) the ω-th iterate of $(L(V_{\lambda+1}), j)$. Then $\vec{\kappa}$ is Prikry-generic for λ in M_ω and there exists $\pi : (L_\omega(V_{\lambda+1}))^{M_\omega[\vec{\kappa}] \prec L_\omega(V_{\lambda+1})$ with $\pi \upharpoonright V_\lambda = \text{id}$.

So, $I_1(\lambda)$ holds in $M_\omega[\vec{\kappa}]$, and therefore $I_1(\kappa)$ holds in a Prikry forcing extension of $L(V_{\lambda+1})$.
Note: if j, λ, κ witness I0, then j is iterable and if M_ω is its ω-th iteration, then $j_{0,\omega}(\kappa) = \lambda$, and λ is measurable, huge, etc... in M_ω.

Generic Absoluteness Theorem (Woodin, 2012)

Suppose there exists $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, and let $\kappa_0 = \text{crt}(j) < \lambda$ and $\kappa_{n+1} = j(\kappa_n)$. Let (M_ω, j_ω) the ω-th iterate of $(L(V_{\lambda+1}), j)$. Then $\vec{\kappa}$ is Prikry-generic for λ in M_ω and there exists $\pi : (L_\omega(V_{\lambda+1}))^{M_\omega[\vec{\kappa}]} \prec L_\omega(V_{\lambda+1})$ with $\pi \upharpoonright V_\lambda = \text{id}$.

So, I1(λ) holds in $M_\omega[\vec{\kappa}]$, and therefore I1(κ) holds in a Prikry forcing extension of $L(V_{\lambda+1})$ (of V).
Where is Generic Absoluteness coming from?
Where is Generic Absoluteness coming from?

I0 is very similar to AD^{L(\mathbb{R})}
Where is Generic Absoluteness coming from?

10 is very similar to $\text{AD}^L(\mathbb{R})$. Woodin defined $\mathcal{U}(j)$-representable sets in a manner similar to homogeneously Souslin sets.
Where is Generic Absoluteness coming from?

I0 is very similar to $\text{AD}^L(\mathbb{R})$. Woodin defined $U(j)$-representable sets in a manner similar to homogeneously Souslin sets.

All the subsets of $V_{\lambda+1}$ in $L(\mathbb{R})$ are $U(j)$-representable (Cramer).
Where is Generic Absoluteness coming from?

II_0 is very similar to $\text{AD}^L(\mathbb{R})$. Woodin defined $U(j)$-representable sets in a manner similar to homogeneously Souslin sets.

All the subsets of $V_{\lambda+1}$ in $L(\mathbb{R})$ are $U(j)$-representable (Cramer), and the “simple” ones are uniformly $U(j)$-representable (they behave well w.r.t j) (Woodin)
Where is Generic Absoluteness coming from?

I0 is very similar to $\text{AD}^L(\mathbb{R})$. Woodin defined $U(j)$-representable sets in a manner similar to homogeneously Souslin sets.

All the subsets of $V_{\lambda+1}$ in $L(\mathbb{R})$ are $U(j)$-representable (Cramer), and the “simple” ones are uniformly $U(j)$-representable (they behave well w.r.t j) (Woodin).

An example: j and the theory of $V_{\lambda+1}$ are simple. therefore coded by some structure
Where is Generic Absoluteness coming from?

I0 is very similar to AD\(_L^R\). Woodin defined \(U(j)\)-representable sets in a manner similar to homogeneously Souslin sets.

All the subsets of \(V_{\lambda+1}\) in \(L(R)\) are \(U(j)\)-representable (Cramer), and the “simple” ones are uniformly \(U(j)\)-representable (they behave well w.r.t \(j\)) (Woodin).

An example: \(j\) and the theory of \(V_{\lambda+1}\) are simple. therefore coded by some structure. In \(M_\omega\) the sets disappear, but the structure remains
Where is Generic Absoluteness coming from?

I0 is very similar to AD$^L(\mathbb{R})$. Woodin defined $U(j)$-representable sets in a manner similar to homogeneously Souslin sets.

All the subsets of $V_{\lambda+1}$ in $L(\mathbb{R})$ are $U(j)$-representable (Cramer), and the “simple” ones are uniformly $U(j)$-representable (they behave well w.r.t j) (Woodin).

An example: j and the theory of $V_{\lambda+1}$ are simple. therefore coded by some structure. In M_ω the sets disappear, but the structure remains. $\vec{\kappa}$ is the key to decrypt the code and reconstruct the sets.
The Theorem holds also with any Prikry-generic in V instead of $\vec{\kappa}$.
The Theorem holds also with any Prikry-generic in V instead of $\vec{\kappa}$, and with a bit of work it is possible to extend it to any generic in V that adds a cofinal ω-sequence.
The Theorem holds also with any Prikry-generic in V instead of $\vec{\kappa}$, and with a bit of work it is possible to extend it to any generic in V that adds a cofinal ω-sequence.

Generic Absoluteness Theorem (extended)

Suppose there exists $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$. Let (M_ω, j_ω) be the ω-th iterate of $(L(V_{\lambda+1}), j)$. Then there exists $\pi : L(\omega(V_{\lambda+1})) \prec L(\omega(V_{\lambda+1}))$ with $\pi \upharpoonright V_\lambda = \text{id}$.
The Theorem holds also with any Prikry-generic in V instead of $\vec{\kappa}$, and with a bit of work it is possible to extend it to any generic in V that adds a cofinal ω-sequence.

Generic Absoluteness Theorem (extended)

Suppose there exists $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$. Let (M_ω, j_ω) be the ω-th iterate of $(L(V_{\lambda+1}), j)$. Let $G \in V$ generic for M_ω such that $(\text{cof}(\lambda) = \omega)^{M_\omega[G]}$. Therefore assuming $I_0(j, \lambda, \kappa)$, if P is a forcing notion that adds a cofinal ω-sequence to κ and such that $j_0, \omega(P)$ has a generic in V, then $I_1(\kappa)$ holds in a generic extension of V.
The Theorem holds also with any Prikry-generic in \(V \) instead of \(\bar{\kappa} \), and with a bit of work it is possible to extend it to any generic in \(V \) that adds a cofinal \(\omega \)-sequence.

Generic Absoluteness Theorem (extended)

Suppose there exists \(j : L(V_{\lambda+1}) \prec L(V_{\lambda+1}) \). Let \((M_\omega, j_\omega)\) be the \(\omega \)-th iterate of \((L(V_{\lambda+1}), j)\). Let \(G \in V \) generic for \(M_\omega \) such that \((\text{cof}(\lambda) = \omega)^{M_\omega}[G]\). Then there exists \(\pi : (L_\omega(V_{\lambda+1}))^{M_\omega[G]} \prec L_\omega(V_{\lambda+1}) \) with \(\pi \upharpoonright V_\lambda = \text{id} \).
The Theorem holds also with any Prikry-generic in V instead of $\vec{\kappa}$, and with a bit of work it is possible to extend it to any generic in V that adds a cofinal ω-sequence.

Generic Absoluteness Theorem (extended)

Suppose there exists $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$. Let (M_ω, j_ω) be the ω-th iterate of $(L(V_{\lambda+1}), j)$. Let $G \in V$ generic for M_ω such that $(\text{cof}(\lambda) = \omega)^{M_\omega[G]}$. Then there exists $\pi : (L_\omega(V_{\lambda+1}))^{M_\omega[G]} \prec L_\omega(V_{\lambda+1})$ with $\pi \upharpoonright V_{\lambda} = \text{id}$.

Therefore assuming $\text{I}_0(j, \lambda, \kappa)$, if \mathbb{P} is a forcing notion that adds a cofinal ω-sequence to κ and such that $j_{0,\omega}(\mathbb{P})$ has a generic in V, then $\text{I}_1(\kappa)$ holds in a generic extension of V.
Sufficient condition:
Sufficient condition:

Definition

A forcing notion \mathbb{P} is λ-good iff for any \mathcal{D} family of open dense sets, $|\mathcal{D}| < \lambda$, $\forall p \in \mathbb{P} \exists q \in \mathbb{P} \exists \langle \mathcal{D}_i : i \in \omega \rangle$ such that $\mathcal{D} = \bigcup_{i \in \omega} \mathcal{D}_i$ and \mathcal{D}_i is dense below q.
Sufficient condition:

Definition

A forcing notion \mathbb{P} is λ-good iff for any \mathcal{D} family of open dense sets, $|\mathcal{D}| < \lambda$, $\forall p \in \mathbb{P} \exists q \in \mathbb{P} \exists \langle \mathcal{D}_i : i \in \omega \rangle$ such that $\mathcal{D} = \bigcup_{i \in \omega} \mathcal{D}_i$ and \mathcal{D}_i is dense below q, i.e., $\forall r \leq q \exists r^* \leq r$ such that \mathcal{F}_{r^*} is \mathcal{D}_i-generic.
Sufficient condition:

Definition

A forcing notion \mathbb{P} is λ-good iff for any \mathcal{D} family of open dense sets, $|\mathcal{D}| < \lambda$, $\forall p \in \mathbb{P} \exists q \in \mathbb{P} \exists \langle \mathcal{D}_i : i \in \omega \rangle$ such that $\mathcal{D} = \bigcup_{i \in \omega} \mathcal{D}_i$ and \mathcal{D}_i is dense below q, i.e., $\forall r \leq q \exists r^* \leq r$ such that \mathcal{F}_{r^*} is \mathcal{D}_i-generic.

Pikry forcing is λ-good
Sufficient condition:

Definition

A forcing notion \mathbb{P} is λ-good iff for any \mathcal{D} family of open dense sets, $|\mathcal{D}| < \lambda$, $\forall p \in \mathbb{P} \ \exists q \in \mathbb{P} \ \exists \langle \mathcal{D}_i : i \in \omega \rangle$ such that $\mathcal{D} = \bigcup_{i \in \omega} \mathcal{D}_i$ and \mathcal{D}_i is dense below q, i.e., $\forall r \leq q \ \exists r^* \leq r$ such that \mathcal{F}_{r^*} is \mathcal{D}_i-generic.

Pikry forcing is λ-good, Gitik-Magidor extender Prikry forcing is λ-good.
Sufficient condition:

Definition

A forcing notion \mathbb{P} is λ-good iff for any \mathcal{D} family of open dense sets, $|\mathcal{D}| < \lambda$, $\forall p \in \mathbb{P} \exists q \in \mathbb{P} \exists \langle \mathcal{D}_i : i \in \omega \rangle$ such that $\mathcal{D} = \bigcup_{i \in \omega} \mathcal{D}_i$ and \mathcal{D}_i is dense below q, i.e., $\forall r \leq q \exists \varepsilon^* \leq r$ such that F_{ε^*} is \mathcal{D}_i-generic.

Pikry forcing is λ-good, Gitik-Magidor extender Pikry forcing is λ-good, diagonal supercompact Pikry forcing is λ-good...
Is there a Prikry-like forcing that is not λ-good?
Is there a Prikry-like forcing that is not λ-good? Is there a sufficient condition for λ-goodness that does not need new definitions (main suspects: Prikry condition, geometric condition)?
Is there a Prikry-like forcing that is not λ-good? Is there a sufficient condition for λ-goodness that does not need new definitions (main suspects: Prikry condition, geometric condition)?

What about I0 (or above)?
Is there a Prikry-like forcing that is not λ-good? Is there a sufficient condition for λ-goodness that does not need new definitions (main suspects: Prikry condition, geometric condition)?

What about I0 (or above)?

Is it possible to avoid generic absoluteness?
Thanks for your attention