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Objective

The study of definable subsets of non-separable spaces with singular
uncountable weight

.
Or, doing generalized descriptive set theory with singular cardinals
instead of regular ones.

Inspiration (Kechris)

“Descriptive set theory is the study of definable sets in Polish spa-
ces”, and of their regularity properties.

Classical case

Polish spaces: separable completely metrizable spaces, e.g. the
Cantor space ω2 and the Baire space ωω.
Definable subsets: Borel sets, analytic sets, projective sets. . .
Regularity properties: Perfect set property (PSP), Baire property,
Lebesgue measurability. . .
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Classical results

• ω2 is the unique compact perfect zero-dimensional Polish
space

• Every zero-dimensional Polish space is homeomorphic to a
closed space of ωω and a Gδ subset of ω2, therefore results on
the Cantor space spread to all zero-dimensional Polish spaces

• Every Polish space is continuous image of a closed subset of
ωω

• Lusin Separation Theorem and Souslin Theorem (i.e., Borel =
bi-analytic)

• Every analytic set satisfies PSP, Baire property and Lebesgue
measurability

• Silver Dichotomy, i.e., PSP for co-analytic equivalence
relations

By the first and second points, all the other points are true in any
zero-dimensional Polish space, and “partially” true in every Polish
space.
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We are going now to analyze past approaches to generalize this
setting

.
There is a branch of research in set theory called “Generalized
descriptive set theory”. It consists of replacing ω with κ
everywhere, where κ is regular and most of the time κ<κ = κ. It
has remarkable connections with other areas of set theory and
model theory.

GDST

Generalized Cantor and Baire spaces: κ2 and κκ, endowed with
the bounded topology, i.e., the topology generated by the sets Ns =
{x ∈ κ2 : s w κ} with s ∈ <κ2 or <κκ respectively.
Definable subsets: κ+-Borel sets = sets in the κ+-algebra gene-
rated by open sets; κ-analytic sets = continuous images of closed
subsets of κκ
Regularity properties: κ-PSP for a set A = either |A| ≤ κ or κ2
topologically embeds into A; κ-Baire property (sometimes). . .
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What happens to the “nice” properties that we had on the
classical case?

A lot is lost, most of the nontrivial results are either
false or independent of ZFC:

GDST results

Complete metrizability: If κ > ω and regular, then κ2 is not com-
pletely metrizable. Therefore we cannot talk of “κ-Polish spaces”.
Lusin separation and Souslin theorems: False when κ > ω.
PSP: κ-PSP for closed/κ+-Borel/analytic sets is independent of
ZFC.
Silver Dichotomy: κ-Silver Dichotomy is independent of ZFC (very
false in L for κ inaccessible).
Bonus: κκ 6≈ κ2 only if κ is weakly compact.

The culprit here seems to be the fact that κ is regular. What if κ
is singular? There is already some bibliography on that...
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A.H.Stone, Non-separable Borel sets, 1962

Baire spaces: Πn∈ωTn, where each Tn is discrete. In particular, the
space B(λ) = ωλ and, if cof(λ) = ω, the space C (λ) = Πn∈ωλn,
where λn’s are cofinal in λ

.
Definable subsets: Borel sets (σ-algebra generated by open sets);
λ-analytic sets = continuous image of B(λ)
Regularity properties: λ-PSP for a set A = either |A| ≤ λ or λ2
topologically embeds into A.

Woodin, Suitable extender models II, 2012

Baire space: Vλ+1, where λ satisfies I0(λ), with the topology where
the open sets are Oa,α = {x ⊆ Vλ : x ∩ Vα = a}, with α < λ and
a ⊆ Vα.
Definable subsets: very complicated, the simplest are in L1(Vλ+1),
therefore λ-projective
Regularity properties: different definitions of PSP (the details la-
ter).
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Also Džamonja (before Woodin) suggested that maybe singular
cardinals could give a better picture. Together with Väänänen,
they studied a bit of generalized descriptive set theory with κ
singular of cofinality ω, mainly in connection with model theory
(models of ω-chain logic)

.

We wanted to give some order to this variety of approaches, and
define a single framework where they all live, and that is close to
the “classical” approach.

7 / 36
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Baire and Cantor spaces
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Fix λ uncountable cardinal of cofinality ω, and λn cofinal sequence
in it

. So, we have four different approaches:

λ2 B(λ) = ωλ C (λ) = Πn∈ωλn Vλ+1

Proposition (Džamonja-Väänänen, D.-Motto Ros)

The following spaces are homeomorphic:

• λ2

• Πn∈ω
λn2

• Πn∈ω2λn where 2λn is discrete

• ω(2<λ) where 2<λ is discrete

It is therefore immediate to see that when λ is strong limit, then
all the spaces above are homeomorphic!
On the other hand, λ2 6≈ λλ, as λλ has density λ<λ > λ;
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Proposition (Džamonja-Väänänen, D.-Motto Ros)

The following spaces are homeomorphic:

• λ2

• Πn∈ω
λn2

• Πn∈ω2λn where 2λn is discrete

• ω(2<λ) where 2<λ is discrete

It is therefore immediate to see that when λ is strong limit, then
all the spaces above are homeomorphic!
On the other hand, λ2 6≈ λλ, as λλ has density λ<λ > λ;

9 / 36



Fix λ uncountable cardinal of cofinality ω, and λn cofinal sequence
in it. So, we have four different approaches:

λ2 B(λ) = ωλ C (λ) = Πn∈ωλn Vλ+1
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Universality properties
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Definition

A space is uniformly zero-dimensional if for any U 6= ∅ open, every
ε > 0, every i ∈ ω, U can be partitioned into ≥ λi -many clopen
sets with diameter < ε

.

Andrea Medini noticed that this implies ultraparacompactness, or
dim = 0.
Theorem (A.H.Stone)

Up to homeomorphism, λ2 is the unique uniformly zero-dimensional
λ-Polish space, therefore results on the generalized Cantor space
spread to all uniformly zero-dimensional λ-Polish spaces.
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Proposition (D.-Motto Ros)

Every λ-Polish space is continuous image of a closed subset of ωλ,
therefore results on the generalized Cantor space partially spread to
all λ-Polish spaces.
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Definable subsets
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On λ2 we consider λ+-Borel sets, as in GDST. It can be proven
that these sets can be stratified in a hierarchy with exactly
λ+-many levels

. Also, since λ is singular, λ+-Borel = λ-Borel.
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As for the analytic sets

...

Classical case

In the classical case, tfae:

• A is a continuous image of a Polish space;

• A = ∅ or A is a continuous image of ωω;

• A is a continuous image of a closed set F ⊆ ωω;

• A is the continuous/Borel image of a Borel subset of ωω or ω2;

• A is the projection of a closed subset of X × ωω;

• A is the projection of a Borel subset of X × Y , where Y is ωω
or ω2.
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New case

If λ is a singular cardinal of cofinality ω, tfae:

• A is a continuous image of a λ-Polish space;

• A = ∅ or A is a continuous image of ωλ;

• A is a continuous image of a closed set F ⊆ ωλ;

• A is the continuous/Borel image of a Borel subset of ωλ or λ2;

• A is the projection of a closed subset of X × ωλ;

• A is the projection of a Borel subset of X × Y , where Y is ωλ
or λ2

.

Again, this is not true if λ is regular.

16 / 36



New case

If λ is a singular cardinal of cofinality ω, tfae:

• A is a continuous image of a λ-Polish space;

• A = ∅ or A is a continuous image of ωλ;

• A is a continuous image of a closed set F ⊆ ωλ;

• A is the continuous/Borel image of a Borel subset of ωλ or λ2;

• A is the projection of a closed subset of X × ωλ;

• A is the projection of a Borel subset of X × Y , where Y is ωλ
or λ2.

Again, this is not true if λ is regular.

16 / 36



Proposition (D.-Motto Ros)

• The collection of λ-analytic subsets of any λ-Polish space
contains all open and closed sets, and is closed under λ-unions
and λ-intersections. In particular, λ-Borel sets are λ-analytic

.

• There are λ-analytic subsets of λ2 that are not λ-Borel.

Generalized Luzin separation theorem (D.-Motto Ros)

If A,B are disjoint λ-analytic subsets of a λ-Polish space, then A
can be separated from B by a λ-Borel set.

Generalized Souslin theorem (D.-Motto Ros)

A subset of a λ-Polish space is λ-bianalytic iff it is λ-Borel.
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Perfect set property
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Definition

A subset A of a topological space X has the λ-PSP if either |A| ≤ λ
or else λ2 topologically embeds into A

.

A.H.Stone

Every λ-analytic subset of a uniformly zero-dimensional λ-Polish
space has the λ-PSP.
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Silver dichotomy
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Theorem (D.-Shi)

Let λ be a strong limit cardinal of cofinality ω

. Suppose that λ
is limit of measurable cardinals. Let E be a coanalytic equivalence
relation on ωλ. Then exactly one of the following holds:

• E has at most λ many classes:

• there is a continuous injection ϕ : ωλ→ ωλ such that for
distinct x , y ∈ ωλ ¬ϕ(x)Eϕ(y).

Corollary

Let λ be a strong limit cardinal of cofinality ω. Suppose that λ is
limit of measurable cardinals. Let E be a coanalytic equivalence re-
lation on a uniformly zero-dimensional λ-Polish space. Then exactly
one of the following holds:

• E has at most λ many classes:

• there is a continuous injection ϕ : ωλ→ ωλ such that for
distinct x , y ∈ ωλ ¬ϕ(x)Eϕ(y).
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This is the first case where the proof is not only almost
cut-and-paste from the classical case, but needs some further tools

.
The starting point is the G0-dichotomy: Ben Miller’s proof works
also on this setting.
But the Baire category argument fails. Instead of that, we have
some argument that relies on the properness of the diagonal Prikry
forcing..
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List of things that do not generalize well in this setting:

• λ-analytic sets are not exactly those that are the continuous
image of λλ: in fact, it is possible that all the λ-projective
sets are the continuous image of λλ

• it is not clear how to define the λ-meager sets: either the
countable union of nowhere dense sets, but then they are
really small (it is not clear even if Borel sets have the Baire
property), or the λ-union of nowhere dense sets, but then the
whole space is meager.
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A bit further...
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One of the intriguing consequences of the Axiom of Determinacy is
that under AD the regularities properties hold for all the subsets of
ω2

.
A pivotal property that relates large cardinals and determinacy is
being κ-weakly homogeneously Suslin. Informally, a subset A of ω2
is κ-weakly homogeneously Suslin if there is a tree-structure of
κ-complete ultrafilters that can reconstruct A by looking at the
well-founded towers of ultrafilters.
Theorem (Woodin)

If there are ω Woodin cardinals and a measurable above, then every
subset of R in L(R) is κ-weakly homogeneously Suslin for some κ.

Theorem

All the κ-weakly homogeneously Suslin subsets of ω2 have the PSP,
the Baire property and are Lebesgue measurable.
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This structure is almost mimicked in the I0 case

.
Definition

I0(λ): There exists an elementary embedding j : L(Vλ+1) ≺
L(Vλ+1) with critical point less than λ.

I0(λ) implies that λ is a strong limit cardinal of cofinality ω. It is
an incredible large cardinal, at the very top of the hierarchy: for
example it is much stronger than I3(λ), that in turn implies that λ
is limit of cardinals that are n-huge for any n.
It induces on L(Vλ+1) a structure that is similar to L(R) under AD.
For example, L(Vλ+1) 2 AC , and λ+ is measurable in L(Vλ+1).
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Woodin developed an analogue of κ-weakly homogeneously Suslin
also under I0: U(j)-representability

.

Theorem (Cramer-Woodin)

Suppose that j witnesses I0(λ). Then every subset of Vλ+1 in
Lλ+(Vλ+1) is U(j)-representable.

Many think (hope?) that actually all subsets of Vλ+1 in L(Vλ+1)
are U(j)-representable, and Cramer claimed to have a strategy for
proving it, but there is still no written proof.

Woodin, Suitable extender models II, 2012

Suppose that j witnesses I0(λ). Then every set that is U(j)-
representable has the PSP.

Shi, Axiom I0 and higher degree theory, 2015
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Cramer, Inverse limit reflection and the structure of L(Vλ+1), 2015

Suppose that j witnesses I0(λ). Then every set has the λ-PSP
(space embedded: B(λ))

.

In both the I0 and AD cases there is a similar double argument:

• Under some condition, proving that every set has a certain
structure;

• Proving that all the sets with a certain structure have the
desired regularity property.

We are looking to generalize the second statement, again defining
a unique backdrop that works for any space.
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Definition

A family U of ultrafilters is orderly iff there exists a set K such that
for all U ∈ U there is n ∈ ω such that nK ∈ U. Such n is called the
level of U.
A tower of ultrafilters in such a U is a sequence (Un)n∈ω such that
for all m < n < ω:

• Un ∈ U has level n;

• Un projects to Um;

A tower of ultrafilters (Un)n∈ω is well-founded iff for every sequence
(An)n∈ω with An ∈ Un there is z ∈ ωK such that z � n ∈ An for any
n ∈ ω.
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Definition

Let κ ≥ λ be a cardinal, and U be an orderly family of κ-complete
ultrafilters. A (U, κ)-representation for Z ⊆ ωλ is a function π :⋃

i∈ω
iλ× iλ→ U such that:

• if s, t ∈ iλ, then π(s, t) has level i ;

• for any (s, t) ∈ nλ, if (s ′, t ′) w (s, t) then π(s ′, t ′) projects to
π(s, t);

• x ∈ Z iff there is a y ∈ ωλ such that (π(x � i , y � i))i∈ω is
well-founded

.

If λ = ω and A ⊆ R is κ-weakly homogeneously Suslin, then A is
(U, κ)-representable for some U.
Consider the homeomorphism between Vλ+1 and ωλ. Then the
image of a U(j)-representable set is (U, κ)-representable for some
U, κ, and viceversa.
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Definition

A (U, κ)-representation π for a set Z ⊆ ωλ has the tower condition
if there exists F : ranπ →

⋃
U such that:

• F (U) ∈ U for all U ∈ ranπ

• for every x , y ∈ ωλ, the tower of ultrafilters (π(x � i , y � i))i∈ω
is well-founded iff there is z ∈ ωK such that
z � i ∈ F (π(x � i , y � i)) for all i ∈ ω.

If κ is much larger than λ (e.g., λ = ω and κ measurable), then
the tower condition is for free

.
Scott Cramer proved that under I0 every representation has a
tower condition.
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Theorem (D.-Motto Ros)

Let λ be strong limit with cof(λ) = ω and let κ ≥ λ be a cardinal.
If Z ⊆ ωλ admits a (U, κ)-representation with the tower condition,
then Z has the λ-PSP

.

Corollary

Assume I0(λ), as witnessed by j . If A ∈ P(Vλ+1) ∩ L(Vλ+1) is
U(j)-representable, then A has the λ-PSP.

Corollary

Assume I0(λ). All λ-projective subsets of any uniformly zero-
dimensional λ-Polish space have the λ-PSP.

Corollary

Assume I0(λ), as witnessed by a proper j with crt(j) = κ. Let P
be the Prikry forcing on κ with respect to the measure generated
by j . Then there exists a P-generic extension V [G ] of V in which
all κ-projective subsets of any uniformly zero-dimensional κ-Polish
space have the κ-PSP.
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A look into the future
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This new approach opens a lot problems. All the “classical” results
are up for grabs

.
The following is a personal selection of possible developments.

Open problem

Is it necessary for the Silver dichotomy for λ to be limit of measurable
cardinals?

Open problem

How to define meager, comeager, Baire property?

Open problem

Is there a model where all the subsets of λ2 are (U, κ)-representable,
different from L(R) under large cardinals or L(Vλ+1) under I0?
Maybe L(P(ℵω)) under generic I0? Or L(Vλ+1) when λ is limit
of Berkeley cardinals that are limits of extendible cardinals?
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Theorem (AD+V=L(R), Hjorth, A dichotomy for the definable uni-
verse, 1995)

Let E be an equivalence relation on ω2. Then exactly one of the
following holds:

• the classes of E are well-ordered;

• there is a continuous injection ϕ : ω2→ ω2 such that for
distinct x , y ∈ ω2 ¬ϕ(x)Eϕ(y)

.

Open problem

Same thing, under I0?

Theorem (D.-Shi)

Suppose I0(λ), as witness by j , and let (λn)n∈ω be the critical se-
quence of j . Suppose that all subsets of Vλ+1 are U(j)-representable.
Let E ∈ L(Vλ+1) be an equivalence relation such that if x , y ∈ ωλ
differs only in one coordinate, then ¬xEy , then there is a continuous
injection Πn∈ωλn → Πn∈ωλn such that for distinct x , y ∈ Πn∈ωλn
¬ϕ(x)Eϕ(y).
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Thanks for watching.
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