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The linguistic phenomena of temporal presuppositions and counterfactuals, situated on
the boundary line between semantics and pragmatics, are common to many languages,
and the computational treatment of such phenomena is difficult because of their non-
monotonic aspect.

These phenomena are presented through a corpus of examples; they are studied empha-
sizing the various types of knowledge underlying them; and the fragment of language
that encloses such phenomena, is defined in a way not dependent from a specific language.
Then, Recursive Models, a formalism for modeling the semantics of utterances contain-
ing temporal presuppositions and counterfactuals, are proposed, described from both
functional (by formal specifications) and structural points of view, and compared with
related work. Finally, the adequacy of Recursive Models is empirically verified: TOBI
(Temporal presuppositions and counterfactuals: an Ontological Based Interpreter), a
system that interacts with the user in natural language using the recursive models, is
illustrated. TOBI is not based on a deductive system, but uses the more primitive and
flexible notion of model-based evaluation; its architecture, flow of control and internal
data structures are presented.

Introduction

In Section 2 the linguistic phenomena of tempo-

This paper! sketches a formalism, named recur-
sive models, that can be used for representing,
at a semantic-pragmatic level, utterances contain-
ing temporal presuppositions and counterfactuals.
The power of this formalism is tested by using it
in a natural language processing system named
TOBI (Temporal presuppositions and counterfac-
tuals: an Ontological Based Interpreter).

The paper is structured in the following way.

'This work is a revised and extended version of [33, 34].

ral presuppositions and counterfactuals are pre-
sented and analyzed, and the fragment of natural
language relevant for such phenomena is formally
defined. Section 3 presents recursive models, the
data structures used for modeling the semantics of
natural language utterances; such presentation is
given from a functional-formal, a structural, and
a behavioral point of view. Furthermore, a sur-
vey of related work is proposed. Section 4 de-
scribes the TOBI system, illustrating its architec-
ture, flow of control, and internal data structures.
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Section 5 summarizes the work done so far and
proposes some future extensions.

2 The language fragment

The linguistic phenomena considered in this work
are situated on the boundary between semantics
and pragmatics. In the following three subsec-
tions: (i) a corpus of examples that informally
describe such phenomena is presented; (ii) the
examples are analyzed with respect to a classifi-
cation of various kinds of knowledge; and (iii) a
formal (syntactical) definition of the fragment of
the language studied is presented.

2.1 The linguistic phenomena

To completely understand the meaning of each
utterance, it is important to analyze its relations
with the other utterances in the discourse. Fol-
lowing Gazdar [18], an utterance implies another
utterance if the latter is a consequence of the for-
mer (here I give no formal definition of implica-
tion). For example, utterance (1)

“Mary met John before she left” (1)

(utterances are enclosed in double quotes) implies
utterances (2) and (3):

“Mary met John” (2)

“Mary left.” (3)

A vparticular case of implication between ut-
terances is entailment: utterance (1) entails (2).
However, entailment is not the only type of impli-
cation, as utterance (3) proves: the relation be-
tween (1) and (3) is not an entailment, as shown
by the fact that the utterance

“Mary met John before she left and he
persuaded her to stay at home” (4)

is consistent. If we admit that (3) is entailed by
(1), then (3) is also entailed by (4). But (4) entails

“Mary did not leave”
which contradicts (3). Utterance (3) is a (tempo-

ral) presupposition of (1) [18, 23, 24, 27, 29, 30].
A presupposition is a form of implication weaker
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than entailment: the second part of (4), asserting
that Mary stayed at home, cancels the presupposi-
tion, so we do not have a contradictory utterance.

It is important to remark that although the
event ‘Mary left’ did not happen, it is used in
(4) to date the event ‘Mary met John’. Moreover,
from a logical point of view it seems more correct
to say

“Mary met John before she did not
leave and he persuaded her to stay at
home” (5)

instead of (3), but no human would do so. In
other words, the problem is in nonmonotonicity:
utterance (1) implies (3) only by default and the
second part of (4) deletes the default. Then, en-
tailment can be seen as a certain inference, while
presupposition as a default (and so uncertain)
one.? Therefore, a system handling such phe-
nomena must be nonmonotonic. The most widely
used formalism for this purpose is represented by
nonmonotonic logics [11, 21]; however, the ap-
proach followed in this work is different, as will
be shown later.

It has to be noted that ‘after’ is not the sym-
metric counterpart of ‘before’, as shown by the
fact that in the utterance

“Mary met John after she left”

the leaving event cannot be deleted, as done in
utterance (4): the utterance

“Mary met John after she left. She did
not leave”

is clearly inconsistent.
Furthermore, relationships between events are

necessary for example to explain the utterance

“Mary left before meeting John”, (6)

2 Note that there are two different views of temporal
presuppositions (and of presuppositions in general). On
the one side (what might be called an a priori view) they
are necessary for giving a truth value to the whole sentence:
the name ‘presupposition’ comes from here. On the other
side (a posteriori view) they leave a trace as a defeasible
inference: as it was pointed out before, temporal presup-
positions can be seen as a kind of implication weaker than
entailment. Here I am interested in the latter aspect; the
former is analyzed in a lot of works [23, 24, 29].
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in which the meeting event is presupposed, but
it is immediately deleted on the basis of world
knowledge; so the leaving event prevents the meet-
ing.

Another linguistic phenomenon strictly related
with the previous ones is that of (conditional)
counterfactuals. In fact, (4) implies:

“If Mary had not met John, she would
have left”, (7)

that is used for referring to an hypothetical course
of events, or a non-real world (the world in which
Mary did not meet John). It is important to
observe the (perhaps unexpected) fact that the
meaning of an utterance as “a before 3”7 is some-
times more similar to an utterance of type “if not
o, "7 (where o stays for the subjunctive form
of @ and (' for the conditional form of 3) than to
an utterance of kind “g after o”.

Two other related linguistic phenomena have
been considered. The first one is exemplified by

“The bullet deviated before hitting
Mary. Nevertheless it hit her.” (8)

What happens in this utterance can be explained
in the following way:

— analogously to utterance (6), it is presup-
posed that the bullet hit the target, but
such presupposition is immediately deleted
on the basis of world knowledge: human be-
ings know that if a thing is deviated from its
trajectory, usually it does not hit the original
target;

— in the second part of the utterance it is as-
serted that the bullet hit the target anyway.
To do this, it is not correct to use the con-
junction ‘and’ as done in (4) to cancel a pre-
supposition. A more powerful way, the use
of the conjunction ‘nevertheless’, is needed.
The reason is that what has to be deleted
in this case (the non-occurrence of the non-
hitting, derived from world knowledge con-
siderations) is something ‘stronger’ than the
temporal presupposition of (4).

The second phenomenon is shown by the fol-
lowing utterance, implied by (8):

“Even if the bullet had not deviated, it
would have hit Mary.” (9)

Informatica 21 (1997) 3

Such ‘even if’ utterances (that I shall call weak
counterfactuals) play, concerning ‘nevertheless’
utterances (i.e. utterances like (8) above), the
same role that usual counterfactuals have in the
case of ‘and’ sentences. That is, utterance (9) is
for (8) what (7) is for (4).

The standard treatment of temporal presup-
positions [18, 23, 24, 27, 29, 30] is not entirely
satisfactory: there is no deep explanation of why
‘before’ should introduce a presupposition, while
‘after’ should introduce an entailment. The point
is that an ontology of time is not taken into ac-
count: time is ordered and the future unknown
and partially unpredictable, and these facts must
be taken into account when dealing with utter-
ances containing ‘before’ and ‘after’. In this way,
no linguistic explanation of why an event intro-
duced by ‘before’ can be deleted and one intro-
duced by ‘after’ cannot is required. Linguisti-
cally, one can—and ought—only say that sec-
ondary sentences started by ‘after’ and ‘before’
introduce a presupposition that can be deleted
later. The explanation of the asymmetry between
‘before’ and ‘after’ must be found at a deeper
level, in the way we, human beings, perceive and
treat the time. This point is investigated in the
next section.

2.2 Linguistic and extra-linguistic
knowledge

It is common usage [29] to divide the knowledge
utilized for making inferences about an utterance
into two classes: linguistic knowledge (LK) and
world knowledge (WK). In this section I propose
a more subtle distinction, that will be useful for
both understanding and treating the linguistic
phenomena at hand.

First, it is possible to distinguish between LK
and eztra-linguistic knowledge (ELK). LK is used
for deriving facts from an utterance through pure

linguistic rules.> For instance: a proper noun

3Let us note that ‘knowledge’ and ‘inference’ can be
defined from the standpoint of mathematical logic. A for-
mal calculus [16] is made of axioms (that represent known
facts about a domain) and inference rules (that model the
inference process). Starting from the axioms, and using
inference rules, one can derive (infere) other facts. The
axioms may be divided into groups corresponding to dif-
ferent kinds of knowledge involved. In the same way, also
the inference rules may be grouped. Inferences and derived
facts can be classified according to the kind of the axioms
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stands for an individual; if a noun phrase is plural,
then it denotes more than one individual; if the
tense of a verb is ‘simple past’ (‘future’), then the
event that it denotes happened in the past (will
happen in the future); if an event is described in
the main (secondary) proposition, then it is en-
tailed (presupposed); and so on. ELK inferences
instead are not directly derived from the utter-
ance through linguistic considerations, but from
other knowledge sources (i.e. from the world as
we know it): a human proper noun like ‘Mary’
usually denotes a female human being; if some-
one is dead, he cannot do anything; if an event
happened in the past, it cannot be modified; if
an event is expected to happen in the future, it
may or may not happen; and so on. The dis-
tinction between LK and ELK is not so clear-cut,
being sometimes difficult (or arbitrary) to classify
an axiom or an inference. Anyway it is interest-
ing to study how far it is possible to push this
dichotomy.

Second, both the LK and ELK inferences and
derived facts can be uncertain or certain. The
uncertain LK inferences were called in the pre-
vious section ‘presuppositions’, the certain ones
‘entailments’. Another kind of uncertain LK in-
ferences are implicatures [30]. ELK inferences are
often uncertain (the ‘real’ world is very difficult
to model: the research on WK, or common sense
[14, 25] is one of the main subfields of artificial
intelligence): ‘Mary’ usually denotes a female hu-
man being, but it might denote a hurricane, or
a boat, or something else; if a bullet is deviated,
usually it does not hit the target, but sometimes
this could happen anyway; and so on. But ELK
inferences can also be certain: if an event hap-
pened in the past it cannot be modified; if an
event is said to happen in the future, it might
happen or not happen; and so on. In the fol-
lowing I will call ontology the certain ELK and
content the uncertain ELK. Informally speaking,
ontology is the component of knowledge that has
a general logical status; on the contrary, content
is the component of knowledge that is highly sit-
uation dependent.

Let us consider a concrete example. In Table 1

and inference rules used. Therefore, it is possible to speak
of axioms (inference rules, inferences, and facts) of LK and
ELK type. Examples of distinctions can be, besides the
WK/LK in [29], the terminological/assertional [9], or the
symbolic/subsymbolic [38] dichotomies.
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Uncertain
LK | (presupposition)

An event of ‘hitting’ (from
the before-clause) hap-
pened in the past
‘The bullet’ and ‘Mary’
denote individuals
An event of ‘deviation’

happened in the past
The deviation-event hap-

pened before the hitting-
event

An event of ‘hitting’ (from
the  nevertheless-clause)
happened in the past

The individual denoted by
‘Mary’ is a female human
being

The hitting-event,
because of the deviation-
event, did not happen
The hitting-event is in the
future for what concerns
the before-clause, so it is
uncertain.

Certain
(entailment)

Uncertain

ELK | (content)

Certain
(ontology)

Table 1: Inferences from utterance (8).

some of the facts that can be derived from utter-
ance (8) reported here below are shown and clas-
sified along the LK/ELK and uncertain/certain

dimensions.*

“The bullet deviated before hitting
Mary. Nevertheless it hit her.” (8)

The phenomenon of temporal presuppositions
seems to be an expression of the ontology of time,
not of the content of time. The ontology of time
is its ordering and the fact that while the past is
in a sense closed, the future is open. This leads
to certain inferences. On the other side, the met-
ric of time is a content characteristic, in that the
subjective evaluation of the duration of a time in-
terval may vary depending on the situation, and
this usually leads to uncertain inferences. Then,
the phenomenon of temporal presuppositions can
be explained in the following way: an event in the
future cannot be certain, because of the ontology

“The case of the certain ELK inference might seem a
bit awkward. A more convincing example is the fact that
in utterance “Mary met John after she left” the leaving
event did certainly happen.
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of time (partial unpredictability of the future).5
This is why ‘before’ introduces a temporal pre-
supposition, while ‘after’ does not.

In this work, I am interested in those parts of
LK and ELK that are related with temporal pre-
supposition and counterfactuals. The content is
not the focus of this research, but it plays a role
(indeed a marginal one) into the above described
linguistic phenomena. As a matter of fact, con-
tent inferences can contradict presupposed and/or
entailed events, thus sometimes (but only if rel-
evant and necessary) it will be necessary to take
content into account. Note that entailments over-
come content inferences (as, for instance, in utter-
ance (8)), and that content inferences overcome
presuppositions (as, for instance, in (4), (6) and

(8))-

2.3 Abstract syntax

In order to analyze the above introduced phe-
nomena, it is sufficient to work on a restricted
language fragment, defined in this section. The
usual way to formally define a fragment of the lan-
guage is to provide a grammar. Since the consid-
ered phenomena occur in many natural languages
(almost every western language has the syntactic
constructs necessary for expressing the previous
utterances), I prefer here a more abstract descrip-
tion, to some extent independent from the partic-
ular language adopted. I shall call such formalism
abstract syntaz.

The first step to define the abstract syntax of
the relevant natural language fragment (that will
be denoted with L) is to specify a family of syntac-
tic functions, functions that syntactically manip-
ulate sentences of the natural language to obtain
other sentences. The definition of the abstract
syntax of L is then obtained by means of a set hi-
erarchy: starting from a set of simple sentences,
other sets containing complexr and compound sen-
tences [42] are obtained as the range of syntactic
functions. The union of these sets will be L.

The syntactic functions used to cover all the lin-
guistic phenomena presented in the previous sec-
tion are the following;:

5Tt is important to point out that ‘future’ refers to the
point of reference, not to the point of speech [36]. In ut-
terance (1), both the events happened in the past (‘met’
and ‘left’), but the second is in the future of the point of
reference.

Informatica 21 (1997) 5

— neg(s): returns the negation of sentence s.
For example, if s is ‘Mary left’ (sentences are
enclosed in single quotes), neg(s) is ‘Mary did
not leave’;

— before(sy, s2): returns the complex sentence
formed by the main clause s; and the tem-
poral subordinate sy, introduced by ‘before’.
Observe that the syntactic functions do not
only concatenate the strings given as argu-
ments, but also (syntactically) manipulate
them to obtain the correct result. For ex-
ample, from ‘Mary met John’ and ‘Mary
left’, using the syntactic function before, one
should obtain ‘Mary met John before she left’
and not ‘Mary met John before Mary left’;

— after(sy, s2): returns the complex sentence
formed by the main clause s; and the tem-
poral subordinate so, introduced by ‘after’;

— and(s1, $2): returns the compound sentence
constituted by the two sentences s; and so
joined by the conjunction ‘and’;

— nevertheless(sy, $2): returns the compound
sentence constituted by the two sentences s;
and sy joined by the conjunction ‘neverthe-
less’. Usually, nevertheless(si,s2) is a pair
of sentences separated by a full stop. Here
this detail is not important, in that the two
sentences, from a semantic point of view, are
co-ordinated;

— ¢f(s1,82): returns the counterfactual sen-
tence with s; as antecedent and sy as con-
sequent. For example, if s; is ‘Mary met
John’ and s9 is ‘Mary left’, cf (neg(s1),s2) is
‘If Mary had not met John, she would have
left’;

— wef (s1,82): returns the weak counterfactual,
i.e. a sentence (syntactically) differing from
a counterfactual one in that ‘even if’ substi-
tutes ‘if’. For instance, if s; and s9 are the
two sentences just met for the c¢f function,
then wcf (neg(s1),s2) is ‘Even if Mary had
not met John, she would have left’.

Now, the syntactic functions listed above are
used to formally define the fragment L: as it was
said before, a set hierarchy is built, the last set
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and + nevertheless

Figure 1: The construction of L.

of the hierarchy being L. The process of L’s con-
struction is illustrated in Figure 1. Nodes indicate
the subsets of L, arcs mean set inclusion and arc
labels show which syntactic functions are used to
obtain the following sets.

The first set of the hierarchy, Ly, contains sim-
ple sentences, like ‘Mary met John’ or ‘Mary left’,
and so on.

Using the neg function, the set L; can be de-
fined as®

Ly = LyU neg(LO).
L; contains sentences and their negations, so sen-
tences as ‘Mary did not meet John’ belong to L;.

The next set is defined by the before and after

functions:

Ly = Ly Ubefore(Ly, Lo) U after(Ly, Ly).

Note that the temporal clauses introduced by ‘be-
fore’ are always affirmative, as observed in [24]
and as indicated by the utterances and sentences
(in particular (5)) presented above.

The following steps are:

Ly =
Ly =

Ly U and(Lgy, Ly) U nevertheless(Lo, L),
L,y Cf(Ll, L1) U wcf(Ll, Ll).
The final set, L, is then obtained as

L = L3UlLy.

In this section, only sentences have been dealt
with, but the extension to the case of utterances

SHere and in the following of this section, the stan-
dard notation for using sets as functions arguments is used:
neg(Lo) stands for {neg(s)|s € Lo}, and similarly for the
other syntactic functions, paying attention to their arity.
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is immediate. In fact, if » is an utterance, then u
is a pair (s,c), where s is the sentence and c the
context. Then,

neg(u) = (neg(s),c)

and similarly for the other syntactic functions.

3 Recursive models

This section presents recursive models (RM), a
formalism that can be used to represent the mean-
ing of utterances at a semantic/pragmatic level.
In Section 3.1 the RMs are defined as an instance
of the class of computable models. In Section 3.2
RMs are seen as an abstract data type, whose
formal specifications are given. In Section 3.3 the
structure of RMs is described. In Section 3.4 the
functions that build and use an RM are analyzed
and a possible implementation is sketched. In Sec-
tion 3.5 related work is discussed.

3.1 Computable models

From a computational perspective, two ap-
proaches are possible for representing the seman-
tics of a discourse,” and for using such representa-
tion in finding implications between the discourse
and following utterances. In the first, ‘inferential’,
approach, the discourse is translated into a theory
(a set of logical formulas) I'; the same happens to
a following utterance, obtaining, say, the logical
formula ¢; then, to discover whether the discourse
implies the utterance, an inference procedure F is
used for testing whether I' - ¢.8

In the second, ‘model-theoretic’, approach, the
discourse is used to build a model M, and an eval-
uation function (usually denoted by = in math-
ematical logic) is used in order to test whether
M = ¢.

These are obviously two quite different ap-
proaches: in the former the central notions are a
set of axioms (to which further ones can be added
for taking into account new utterances) and a set
of inference rules; the latter is based on the two

"A discourse, or a text, can be defined as a sequence of
utterances. The concepts of implication, entailment and
presupposition described in Section 2.1 can be extended in
a natural way in order to deal with discourse.

8For an explanation of the concepts derived from math-
ematical logic, see for instance [12, 16].
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functions that, respectively, integrate (int in the
following) a previous model with the information
of a new utterance, and evaluate (eval in the fol-
lowing) an utterance in a previously built model.

If the representation of the semantics of a dis-
course has to be used by an algorithm, both these
approaches reveal some decidability problems. In
the inferential approach, this happens when nei-
ther the utterance (¢) nor its negation (—¢) are
an entailment of the discourse (T'), and this is a
common situation, in that the logical theory I' is
not necessarily complete. The standard solution
is to abort the inference process when it is too
long, the length of the process being the number
of inference steps or the computation time. In
the model-theoretic approach, similar decidabil-
ity problems arise when the evaluation function is
not computable. This leads to a constraint on the
models: their expressivity has to be sacrificed, for
obtaining a computable eval function. I shall call
the models with such property computable mod-
els.

In the next subsections I will propose an in-
stance of computable models named recursive
model (RM) that can be used to represent the se-
mantics of utterances belonging to the language
fragment defined above. I will not formally prove
the computability of the corresponding eval func-
tion; instead, the approach is empirically tested
by utilizing RMs in a system whose implementa-
tion will be described in Section 4.

3.2 Formal specifications of recursive
models

This section describes the RMs from a func-
tional point of view, formally specifying their be-
haviour without referring to their structure. In
other words, I propose the formal specifications of
the Abstract Data Type (ADT) RM. The formal
specifications of the ADT RM being rather com-
plex, only a brief sketch is presented here. I will
define (some of) the sorts, (some of) the functions
that define the ADT RM, toghether with their
signature, and (some of) the azioms that describe
the behaviour of the functions.”

9Note that I said ‘formal’, not ‘algebraic’ specifications:
in algebraic specifications [7, 39] the axioms must be equa-
tions, in order to have an executable object. Here I am
interested only in obtaining a formal definition of the be-
haviour of the ADT RM, not in the computational aspect
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The sorts of ADT RM are: !0

U, the set of all utterances. On this sort,
all the syntactic functions presented in Sec-
tion 2.3 are assumed to be defined;

— M, the set of all RMs;

B, the set of boolean values ({true, false}). 1
assume that the usual logical connectives are
defined as functions on this sort;

— Bu, the set obtained adding the unde-
fined value to the set of boolean values
({true, false, undef }). Also on this sort I as-
sume that some logical operations are pre-
defined. There exist various 3-valued logics;
among them I need Bochvar’s logic [8, 40],
in which the undef value is ‘contagious’ (i.e.,
if undef is one of the arguments of a logical
operation, the result will be undef too).

On such sorts, the following functions are de-
fined (together with the signature of the func-
tions, I also present an informal description of
their behaviour):

create: — M, that returns an empty RM;

mt: U X M — M, that returns a new RM
obtained integrating the information of a new
utterance in a previously existing model;

eval: U x M — Bu, that evaluates the truth
value of an utterance in a model;

— modify: U x M — M, that, given a counter-
factual utterance and an RM as arguments,
returns the RM obtained modifying the orig-
inal RM in such a way that the antecedent
of the counterfactual utterance is evaluated
false. The model obtained is named counter-
factual model,

— pref: 2M — M, that selects the preferred RM
among the set of plausible ones. For exam-
ple, in the case of utterance (1), pref should
choose the RM in which Mary left, and not

(that will be tackled in the following), so I prefer not to
have restrictions on the shape of axioms.

These are not all the sorts needed to completely specify
the ADT RM. Another sort, the set E of all events, on
which the functions that describe the causal links between
events must be defined, is necessary.
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the one in which Mary did not leave. This
function, together with the following three, is
needed because of the nonmonotonic aspect
of the phenomenon of temporal presupposi-
tions;

— contr: U x M — B, that is true iff an ut-
terance, once integrated in an RM, leads to
a contradiction. This happens, for example
when integrating the second part of (4) in the
RM obtained from (1), where it is not longer
true that Mary left;

— rev: U x M — M, that operates a revision of
an RM when it, together with an utterance,
leads to a contradiction;

— sntmon: U x M — M, that can integrate
utterances that do not present contradiction
with the existing RM. Therefore, intmon can-
not treat nonmonotonicity, but it is the core
of int function;

— intset: U x 2M — 2M that from the set of
previous plausible RMs and an utterance re-
turns another set of RMs. This function is
needed because it is possible to build more
than one RM from an utterance, as is shown,
for example by utterance (1) and (4);

— evalset: U x 2M — Bu, that is true iff the
utterance given as the first argument is eval-
uated true in all the RMs belonging to the
set given as the second argument;

— entail: U* x U — Bu, that is true iff an ut-
terance is an entailment of a discourse, i.e. a
sequence of utterances (with the * operator
I indicate the concatenation of utterances);

— imply: U* x U — Bu, that is true iff an utter-
ance is evaluated true in the preferred model
of a discourse. These two last functions can
be defined in terms of the previous ones, see
below.

As it was said, I present here only some ex-
amples of the axioms needed for the ADT RM.
One of such axioms defines the int function using
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functions intmon, rev and contr:'!

if contr(u,m)
then intmon (u, rev(u,m))
else intmon(u,m).

int(u,m) =

The evaluation of counterfactual and weak
counterfactual utterances takes place in a peculiar
way. A counterfactual utterance cf (uy,ug) is eval-
uated true if and only if its antecedent uy and con-
sequent ug are evaluated false and the event rep-
resented in the consequent should have happened
if the event in the antecedent had happened. In
other words, the evaluation of cf(u1,u2) in an
RM m takes place evaluating u; and wugy in m and
then evaluating ws in a model obtained modify-
ing the RM m on the basis of the antecedent u;.
A weak counterfactual wef (u1,uz) behaves in the
same way, with the exception that the consequent
ug must be evaluated true. This is formalized by
two axioms:

eval (cf (uy,us), m) =
if eval(ui,m) = false and
eval (ug, m) = false
then eval(ug, modify(ui,m))
else false

eval (wef (u1,ug), m) =
if eval(ui,m) = false and
eval (ug, m) = true
then eval(uq, modify(ui,m))
else false

(note the use of the syntactic functions c¢f and
wef).

Another axiom defines the imply function in
terms of ewval and int:

imply(uy,us) = | eval(ug, int(uy, create())) ||,

where the symbol u; denotes a sequence of utter-
ances, i.e. a discourse, and the symbol || . || in-
dicates Bochvar’s ‘assertion operator’, that maps
the undef value in false and does not affect the
other two logic values.!?

A similar axiom can be given for the definition
of the entail function. Here the notion of set of

U The if-then-else operator used here has to be intended
as a declarative one, without any procedural meaning.

12Note that the first argument of int is a sequence of
utterances, while int should have as argument a single ut-
terance (int: U x M — M). But it is easy to define by
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models must be used: an utterance is entailed by
another utterance only if the former is true in all
the models of the latter. Such an axiom is:

entail(uy, ug) =
|| evalset (us, intset(uy, {create()})) || .

As a last example, the following axiom defines
the connection among the int, intset and pref
functions:

int(u,m) = pref(intset(u,{m})).

The meaning of this axiom should be clear: the
RM obtained by int is the preferred one in the set
of all plausible models, as generated by the intset
function.

3.3 Structure of recursive models

The previous section has shown how to formally
define the properties that RMs must have. Here,
the structure of the RMs is presented.

Roughly speaking, an RM is constituted by in-
stances of classes of an encyclopedia and relations
among those instances. Therefore, an encyclope-
dia is needed, that is a taxonomy of categories and
concepts. The encyclopedia is a knowledge base,
and is needed in order to know that Mary and
John are persons, hence living beings, and so on;
that the meeting of Mary and John is an event,
etc.

Using the operation of instantiation it is possi-
ble to create a token for each individual mentioned
in the utterance. Referring to utterance (1), there
will be tokens for ‘Mary’, ‘John’ (instances of the
class person), ‘met’ and ‘left’ (instances of the
class event). Every token has an associated iden-
tifier; I shall use uppercase letters for instances of
objects (M for ‘Mary’, J for ‘John’), and lower case
letters for events (m for ‘met’, 1 for ‘left’, etc.). As
usual, tokens inherit slots from their parent con-
cepts, so M is the value of the slot agent of mand J
is the value of the slot theme of m. Moreover, be-
tween tokens m and 1 there is a temporal relation

recursion int': U* x M — M in the following way:

int'([], m)
int’ ([u1|uz])

m;
int' (uz, int(u1, m))

(where the standard symbology of Prolog lists is used in
order to indicate a sequence of utterances) and redefine int
as int’. The same remark has to be made for the intset
function in the following equation.
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to indicate that the meeting took place before the
leaving.

Tokens, slots and relations are not sufficient to
obtain a complete RM, since by using only these
components, one would obtain the same RM for
the utterance

“Mary did not meet John before she
left”

and this is clearly a problem. To deal with event
occurrence and object existence, other elements
are introduced in the RM: spaces, attachments
and signs.

A space is needed because not only an object ex-
ists, or an event takes place; it is more correct to
say that an object exists (or an event takes place)
in a world. Consider utterance (4): Mary did not
leave in the real world, but it is correct to say that
Mary left in the counterfactual world (see utter-
ance (7)) in which she did not meet John. Anal-
ogously, it is possible to say that Donald Duck
does not exist in the real world, but he exists in
Walt Disney’s world.

So, a space is a formal tool for representing al-
ternative worlds. I indicate the real world with
[1. Tt is possible to represent the object existence
and the event occurrence attaching every token to
the right world: the relation between token and
world is named attachment. Finally, attachments
are labelled with a sign in order to deal with non-
existence and non-occurrence, both of which are
represented by a negative sign, whereas a positive
sign obviously means existence and occurrence.

As illustrated in Section 2.1, the occurrence of
an event may be certain (the meeting of (1)) or
uncertain (the leaving of (1)); this can be dealt
with using certain and wuncertain signs. In the
RM of (1), the signs labelling the attachments of
the tokens for ‘met’ and ‘left’ are both positive,
but only the first is certain, while the second is
uncertain.

The RM obtained for (1) is illustrated in Fig-
ure 2. Only the portion of the encyclopedia
needed to build the RM of the utterance is rep-
resented (in the upper gray area, while in the
lower white area, the proper RM is sketched):
each rectangle stands for a concept. The rela-
tions is-a (between two concepts) and instance-of
(between a concept and a token) are represented
by labelled grey arcs, tokens are shown as circled
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[ob ect] levent|
isal i szy( \Sa
[person| | meet | |l eavel
i nst
+

i nst 1]

+ +
[] - -]

Figure 2: Graphic representation of the RM of
the utterance (1).

letters, slots are illustrated by means of oriented
arcs, relations, as usual in entity-relationship di-
agrams used in data base theory [13], are repre-
sented by arcs labelled with a rhombus (the sym-
bol < stands for ‘precedes temporally’), a dashed
arc represents an attachment, a bold sign is cer-
tain and a plain text sign is uncertain. For the
sake of simplicity, in the graphic representation
the names of the slots are not illustrated.

The RM in Figure 2 models the meaning of (1).
Nevertheless, there is another element to add for
dealing with the causal links relating the occur-
rence (or non-occurrence) of events. Examples
can be found in utterances (4) and (7) (the oc-
currence of the meeting with John causes the oc-
currence of the event ‘Mary stayed at home’) and
(6) (the occurrence of Mary’s leaving causes the
non-occurrence of the meeting with John).

The elements used in RMs to represent such
causal relations are named justifications, and are
represented by curved arcs. As signs, justifica-
tions may also be certain or uncertain. In order
to understand the role of these new elements, con-
sider Figure 3, in which the RM of (4) is repre-
sented. Here and in the following, for the sake
of simplicity, I have omitted the representation of
the encyclopedia (i.e. the classes and the isa and
inst relations): the letters labelling the tokens
should be sufficient for understanding which class
each token is an instance of. Furthermore, the to-
ken p is assumed to be an instance of the ad-hoc
class persuade to stay at home.

S. Mizzaro
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Figure 3: Graphic representation of the RM of

(4).

The justification between the signs of tokens
m and p is uncertain (graphically represented by
a thin curved line), whereas the one that links
the signs of p and 1 is certain (thick curved line).
The reason for this distinction is that the meeting
implies persuading in a very weak sense (it is a
precondition), while persuading (to stay at home)
entails non-leaving.

Note furthermore that in Figure 3 1’s attach-
ment is labelled with two signs: the positive one
(uncertain) models the presupposition of the leav-
ing and the negative one (certain) reflects the fact
that the leaving actually did not take place. The
last sign is the preferred sign (and it overrides
the uncertain one); graphically, this is represented
putting it near the end of the arc.

Justifications are needed not only by abstract
completeness considerations, but also to deal with
counterfactual utterances, as is explained in the
next section.

3.4 The implementation of eval and int
functions

At this point, the structure of the RMs should
be clear. Now, I present via a couple of exam-
ples the algorithms that implement the eval and
int functions (that build an RM for an utterance
and evaluate a question in an RM, respectively).
Both algorithms can be defined in the same way
(by structural recursion on the logical form of an
utterance, see below), therefore I describe only
the way the model of an utterance is built.

A raw RM is built on the ground of LK and
ontology and is then refined using content knowl-
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Figure 4: Graphic representation of the RM of

(6)-

edge. Let us consider for example the RM of ut-
terance (6) represented graphically in Figure 4.
The following steps take place during its creation:

— token 1, from ‘left’, is created and it is at-
tached to the space [] with a positive and
certain sign. The sign is certain because of
linguistic considerations: ‘left’ belongs to the
main proposition;

— token M is created and it becomes the value
of slot agent of token 1. Now, the building
of the RM of the main proposition is termi-
nated;

— token m, from the event of the secondary
proposition, is created and attached to [].'3
The sign of this attachment is still positive,
but uncertain because the event is in a sec-
ondary proposition;

— the slot agent of token 1 assumes as value the
token M, already present in the RM; token J
is instead created and it becomes the value
of slot theme of token m;

— the temporal relation between the tokens 1
and m is created;

— all the above operations take place on the
ground of linguistic and ontological consider-
ations. However, to complete the construc-
tion of the RM, some content inferences are

13The attentive reader might note that the processing
of the clause containing the presupposition, the secondary
one, takes place after the main one’s. This is in contrast
with the nature of the presuppositions, which should be
tackled as first. But, I pointed out in footnote 2 in Sec-
tion 2.1, here it is the ‘a posteriori’ aspect of temporal
presuppositions (and of the whole sentences encompassing
them) that is studied, so this is not a relevant difference.
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needed to create a negative certain sign (pre-
ferred to the positive uncertain one) on the
attachment of m and the corresponding justi-
fication.

Thus, the division of linguistic, ontological and
content work seems clear. Linguistically and on-
tologically, tokens are created, slot values are
filled, relations explicitly referred in the utter-
ance are produced and attachments are created.
On the ground of content considerations, justifi-
cation arcs, representing the causal relations be-
tween events implicit in the utterance, are added,
and the same happens for new signs.

However, the separation between LK, ontology
and content is not so simple: temporal relations
may be created on the basis of content, and jus-
tifications on the basis of LK. This happens, for
example, in the creation of the RM of (7), that
is similar to the one represented in Figure 4: the
only differences are the attachment of m (that is
labelled by only one negative certain sign) and the
justification (that is certain too). In this case, the
temporal relation is created on the basis of the
content, in that the fact that the leaving takes
place before the meeting is indubitably a content
inference. Furthermore, the justification derives
from LK considerations, in that it appears explic-
itly in the word ‘if’ of the utterance.

As already specified, the discussion above re-
gards exclusively the function int. Nevertheless,
the algorithm that implements the function ewval
can work in a similar way; instead of creating to-
kens, it verifies that they already exist in the RM.

The algorithm implementing eval must work in
a particular way for the evaluation of counterfac-
Such evaluation takes place in
three steps: first, the antecedent and the conse-
quent of the counterfactual utterance are evalu-
ated in the current RM; second, the current RM
is modified accordingly to what it was said in the
antecedent of the counterfactual, obtaining the
counterfactual model; third, the consequent of the
counterfactual is evaluated in the counterfactual
model. Let us consider the evaluation of utter-
ance (7) in the RM for (4) (the RM in Figure 3).
The evaluation takes place in the following way:

tual utterances.

— the antecedent and the consequent of (7) are
evaluated in the RM; both of them are false
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Figure 5: Counterfactual model for the evaluation
of (7).

(and they must be false in order to evaluate
the counterfactual utterance true);

— the counterfactual model, that is obtained
modifying the original RM in such a way
that the antecedent is evaluated false, is il-
lustrated in Figure 5. Observe that the token
m is attached with a negative sign to [], in
that the antecedent must be evaluated false.
This, by means of the justification between
the signs of m and 1 (see the original RM in
Figure 3), leads to removing the positive sign
on p’s attachment and labelling this token
with an opposite (negative) one. The same
happens with token 1; here the removal of
the negative sign brings up the positive sign;

— the consequent of the counterfactual (“Mary
left”) is evaluated in the counterfactual
model, obtaining true as result. The coun-
terfactual utterance itself is then evaluated
true.

From the informal description in this section, it
should not be difficult to extract the algorithms
for int and ewval, implemented in the system de-
scribed in Section 4.

3.5 Related work

A brief look at related work is mandatory, in or-
der to emphasize the differences between RMs and
other proposals. In this section, researches on dis-
course models and discourse representation theory
(DRT) are briefly compared with RMs, and it is
shown how RMs can handle in a simple way the
concepts of belief and situation.

S. Mizzaro

RMs can be seen as models of previous dis-
course context, into which information from sen-
tences is merged, and against which queries are
evaluated. There are a lot of studies on discourse
models in which it is investigated how the various
structures that can be individuated in a discourse
ought to be used to understand the meaning of
the sentences forming such discourse: see for in-
stance [22, 28, 31, 35, 37, 41]. RMs could be a
new instrument for this research, even if it might
be more appropriate to say that RMs are a com-
putational tool for modeling the meaning of sen-
tences, and that they do not seem to suffer from
any intrinsic limitation for being used at the level
of discourse.

RMs are also comparable to DRS (Discourse
Representation Structures), the ‘models’ used in
DRT [26], but here also there are some differences.
First of all, Kamp and Reyle themselves say in
their book on DRT [26, page 627] that they don’t
tackle the problems I have analyzed here:

There exists the possibility of using before-
phrases in a kind of “virtual” sense which
is not possible for prepositional phrase with
after. In a case where the sentence “George
died before the completion of his novel” is
true, the completion of the novel presumably
never took place. [...] This use of before has
given semanticists a good deal of trouble.
[...] It is an issue which we will not pursue
here.

Notwithstandig that, one might try to treat
temporal presuppositions in DRT—and encounter
some difficulties. Consider for instance the stan-
dard DRS of utterance (6) reported here

“Mary left before meeting John”, (6)

namely the DRS of Table 2. The DRS is divided
in 3 groups, separated by empty lines: the first
one models the main clause, the second one the
word ‘before’, and the third one the subordinate
clause. In such DRS there is nothing represent-
ing the facts that the event ey (the meeting one)
is only presupposed (and then uncertain), that it
has not happened, that there is a causal link be-
tween the occurrence of the two events and there
is no ‘first-order’ object representing the occur-
rence of the events.
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tine rizexy
t1 <n
e1 Ct
mary (x)
e1 : leave(x)

t1 < to

to < n

es C it

john(y)
es : meet(x,y)

Table 2: The DRS of (6).

Obviously, DRS could be extended in the direc-
tion indicated by RMs, but this is not so simple,
in that in DRS there is nothing like RMs’ spaces,
attachments, signs and justifications, which are
central concepts in RMs. So, DRSs might be sit-
uated at a semantic level, while RMs work on
the semantic-pragmatic boundary: a DRS is more
similar to a logical form [2] than to an RM.

RMs can be extended in a natural way for tak-
ing into account the concepts of beliefs and propo-
sitional attitudes [5, 15]. For instance, spaces al-
low to easily represent Mary’s intention to leave
in utterances (1) and (4): it is sufficient to at-
tach the token 1 in Figures 2 and 3 to a space,
[int (M)], representing the world of the events
that should have happened if everything had gone
as presupposed. In this way, one can create a
family of operators on worlds (int (X) for inten-
tions, bel(X) for beliefs, and so on), indexed on
the tokens of the RM. These operators can trans-
form one world (for instance [1) in other ones
([int (M1, [bel(M)], etc.)

Finally, RMs might easily be improved for han-
dling utterances like

“Mary left with George. This hurt

John”

in which it is not the event per se that ‘hurt John’,
but the whole context. In order to treat this kind
of utterances, it will be necessary to introduce the
concept of situation [5, 15] in RMs: the RM of
this utterance could look like the one in Figure 6,
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Figure 6: Situations in RMs.

where the grey circle is the graphic representation
of ‘what hurt John’.

4 The TOBI system

This section presents TOBI, a system that com-
municates with the user in natural language (En-
glish) and uses the RMs illustrated in the previ-
ous sections as internal representations of utter-
ances. TOBI is implemented in LPA Prolog on
a Macintosh, and it can handle all the examples
presented in Section 2.1 (and similar ones). The
following subsections illustrate: the class of nat-
ural language processing systems to which TOBI
belongs, the architecture of the system, its data
flow, and its internal data structures.

4.1 Comprehension systems

TOBI is a natural language processing system.
It is indeed a particular case of such systems, a
comprehension system (CS): it has the unique aim
of interacting with the user in natural language.
This section describes a CS using the concepts
presented in Section 3.1 and, on the basis of this
description, some design choices made in TOBI
are motivated.

A CS simulates the typical human activities
of comprehension and production of natural lan-
guage utterances: it can understand a discourse
(sequence of utterances) and provide correct an-
swers to questions regarding the discourse. For
the sake of simplicity, only polar questions are
considered, i.e. questions admitting as answers
only ‘yes’ (true), ‘no’ (false) or ‘I don’t know’
(unknown). In Figure 7 an example of dialogue
between a hypothetical CS and a user is shown.
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User> Mary met John before she left.

User> Did Mary leave?

CS> Yes.

User> Did Mary kiss John?

CS> I don’t know.

User> Ann met George before she left and
he persuaded her to stay at home.

User> Did Ann leave?

CS> No.

Figure 7: An example of interaction CS - user.

CSs work by building some internal represen-
tation of a discourse, and using such representa-
tion to answer successive questions. On the ba-
sis of what it was presented in Section 3.1, the
implementation of a CS can be accomplished in
two ways. The first (and traditional, see [20])
one is to build a nonmonotonic inferential system,
that uses an inference procedure - (and usually
a TMS, Truth Maintenance System). This kind
of CS will be named CS Formulae & Inference
(F&I). The second way of realizing a CS is to
implement a system that builds a (computable)
model of the discourse and evaluates the ques-
tion in that model in order to obtain the right
answer. Systems of this kind are named CS Mod-
els & Evaluation (M&E), and (with respect to CS
F&I) work at the more primitive and flexible level
of models and model-based evaluation.

TOBI is a CS M&E that uses the above de-
scribed RMs to model the meaning of utterances.
Since CSs F&I may rely on well known basis, de-
veloped in mathematical logic, the attempt to fol-
low the new way of CSs M&E must be justified.
The most persuasive critique of CSs F&I concerns
the way they have to abort the process of inference
if they obtain no answer. This is an unnatural
way of working, and it has no cognitive plausibil-
ity. On the other hand, CSs M&E present many
interesting features: they seem to have more cog-
nitive plausibility (it is widely recognized that hu-
man beings build a model of the utterance they
hear, and that they don’t use an inferential mech-
anism to answer questions), they might deal with
the problem of termination in a better way than
CSs F&I do, and they show a natural treatment of
implications weaker than entailment (like the pre-
suppositions met in the examples in Section 2.1).

These observations motivate the attempt to fol-
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Figure 8: TOBI’s architecture

low the approach of CSs M&E. Howewer, it must
be said that CSs F&I are preferable in handling
entailments and incomplete knowledge, fields in
which the inferential approach demonstrates all
its power.

Summarizing, TOBI is a CS M&E, and not a
F&I one for the following reasons:

— the kind of phenomena it has to deal with:
mainly presuppositions, not entailments;

— the greater cognitive plausibility;

— the supposed better control of the weakening
of the system’s inferential capacities;

— the examination of what can be done using
models and evaluation in place of classical
and well known logical calculi.

4.2 TOBI’s architecture

Figure 8 presents the architecture of TOBI. Here
is a list of TOBI’s modules with a short descrip-
tion of their tasks:

— SYNT: morphoSYNTactic analyzer that
parses the input utterance, producing its syn-
tactic structure. SYNT uses a lexicon and a
DCG grammar [19] as knowledge bases;

— SEM: SEMantic analyzer; it takes the syntac-
tic structure produced by SYNT and produces
as output the logical form, that is a repre-
sentation of the utterance in a slot-filler no-
tation, in which events and semantic roles are
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singled out. This module uses a semantic dic-
tionary associating syntactic terms with the
corresponding concepts;

— FRAM: FRAme Manager; manager of the en-
cyclopedia (a taxonomy of categories and con-
cepts) and models. It implements the proce-
dures needed to work on classes (the encyclo-
pedia) and instances (the models);

— CONT: the module devoted to handling CON-
Tent knowledge;

— MOD: MODel builder; module that imple-
ments the functions int and ewval using pro-
cedures from SEM, FRAM and CONT;

— UI: User Interface; it accepts utterances from
the user (via keyboard) and answers his (her)
questions. This interface is developed using
the features of LPA Prolog for windows and
menus management.

4.3 TOBI’s data flow

In Figure 9 the data flow of TOBI is presented,
in order to illustrate the process that takes place
when the system builds an RM from an utterance.
TOBI processes the utterance in three steps. The
first step is the morphosyntactic analysis: the in-
put utterance is parsed into its syntactic struc-
ture.

The syntactic structure is input to the semantic
analysis, that produces another representation of
the initial utterance, namely its logical form.

The last step is the interpretation: here the log-
ical form is used to build the RM of the utterance
(or, more generally, to integrate the old RM with
the new information in the utterance). It is in
this phase that TOBI’s peculiarity comes in evi-
dence. In most natural language systems, content
knowledge is encapsulated in the encyclopedia,
together with ontological knowledge. In TOBI
the two kinds of knowledge are separated; the en-
cyclopedia contains only ontological knowledge,
that can easily be dealt with in symbolic terms;
the content part is handled by another module.

As it was said in Section 2.2, the phenomenon
of temporal presuppositions is based on the on-
tology of time, not on its content. But a system
that works only at an ontological level could do
very little. For example, to understand utterance
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Figure 9: TOBI’s data flow for the interpretation
of an utterance.

(6) content considerations are necessary for keep-
ing into account the relation between the leav-
ing and meeting events. Then TOBI has to deal
with content inferences too. I have assumed that
ontology can be handled using classical symbolic
methods; there are reasons, however, to believe
that this might not be true for content (see for in-
stance [1]). Furthermore, the linguistic phenom-
ena studied rely on the ontology, not on the con-
tent. Therefore, in the present version of TOBI,
content inferences are replaced by an interface to
an external user, activated upon request of a mas-
ter module, which fully implements ontological in-
ferences. The clear division between ontology and
content gives a conceptually clean system, and the
implementation of a ‘real’ content module can be
tackled in an independent way.

4.4 TOBI’s data structures

In this section I go deeply into the internal de-
tails of TOBI’s work, illustrating in a concrete
example the utterance analysis process. The data
structures passed across the three steps described
in Section 4.3, namely the utterance, the syntac-
tic structure, the logical form and the RM, are
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1 s(asser,
2 vg(sing,meet,trans,ind,past,aff),
3 subj (np(sing,f,det, ],

pNoun (person(mary)), [1)),
4 objl(np(sing,m,det, [],

pNoun (person(john)),[1)),

5 obj2(nil),
6 [es(
prep(before),
7 s(asser,
8 vg(sing,leave,intr,ind,past,aff),
9 subj (np(sing,f,det, [],pronoun, 1)),
10 obj1(nil),obj2(nil), [1))1)

Figure 10: The syntactic structure that TOBI
generates when interpreting (1).

explicitly shown. Let us consider the interpreta-
tion of utterance (1)

“Mary met John before she left” (1)

The syntactic structure, that the SYNT module
builds starting from the utterance (1), is the Pro-
log term showed in Figure 10, where (see [42] or
[2] for a description of the terminology used here):

s stands for ‘sentence’ and asser means that
the sentence is assertive;

— line 2 represents the verb group (vg) that is
singular, has head ‘meet’, is transitive, is in
the indicative form, in the past tense and af-
firmative;

— line 3 models the subject of the main clause;
it is a noun phrase (np), singular, female,
definite, without modifiers ([]), with head
the proper noun ‘Mary’ and without quali-
fiers ([1);

— lines 4 and 5 represent the direct (‘John’) and
indirect object (not present here) of the main
clause, respectively;

— in lines 6 to 10, the embedded sentence (es)
introduced by the temporal presupposition
‘before’ is represented, in a recursive man-
ner. The symbols have the same meaning as
in the main clause.

The syntactic structure is then input to the SEM
module that (recursively) transforms it in the log-
ical form of Figure 11. Here the events (meet and

S. Mizzaro

leave) and the semantic roles (agent and theme)
are singled out and the anaphoric references are
made explicit.'* The notation should be clear, af-
ter noting that the logical form is expressed in a
slot-filler notation, that sLf and npLf stand for
‘sentence logical form’ and ‘noun phrase logical
form’ respectively and that <VAR> stands for an
unspecified value.

The last data structure is the recursive model.
The RM of (1) was illustrated in Figure 2. In
TOBI, it is represented as the set of Prolog facts
of Figure 12, where, again, the meaning should be
clearly understandable, when compared with the
graphic representation of Figure 2.

5 Conclusions and future work

The main points discussed in this paper are:

— the linguistic phenomena of temporal presup-
positions and counterfactuals;

— the distinction between linguistic and extra-
linguistic knowledge, and the role played by
different kinds of knowledge and inferences
(entailments, presuppositions, ontology and
content) in the linguistic phenomena studied;

— the abstract syntax of the fragment of lan-
guage related to temporal presuppositions
and counterfactuals;

— the recursive models, an instance of computa-
tional models for naturally dealing with tem-
poral presuppositions and counterfactuals. 1
have sketched the formal specifications of re-
cursive models, described their structure and
compared them with related proposals;

— the consideration that the nonmonotonic lin-
guistic phenomena of temporal presupposi-
tions and counterfactuals are more naturally
handled by comprehension systems Models &
Evaluation than Formulae & Inference;

— the implementation, based on the RMs, of
the TOBI system, a comprehension systems
Models & Evaluation indicating that RMs
are an effective tool for treating temporal

Y1 know that this is not an easy problem, but here I
am not interested in it. In TOBI, anaphoric references are
handled via a simple history list mechanism (see [2]).
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sLf (meetConc(aff),asser,past,

[slot agent:
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anf(person,sing,f,<VAR>,slot name:mary,slot sex:f),

slot theme:

npLf (person,sing,m,<VAR>,slot name: john,slot sex:m),

slot atTime(before):

sLf (leaveConc(aff) ,asser,past,

slot agent:

npLf (person,sing,f,det,slot name:mary,slot sex:f))])

Figure 11: The logical form of (1).

model(ml, inst(leaveConcl, leaveConc)).

model (m1, inst(person2, person)).

model (m1, inst(personl, person)).

model (m1, inst(meetConcl, meetConc)).

model (m1, instanceSlot(leaveConcl, agent, personl)).
model (ml, instanceSlot(meetConcl, theme, person2)).
model (ml, instanceSlot(person2, sex, m)).

model (m1, instanceSlot(person2, name, john)).

model (m1, instanceSlot(meetConcl, agent, personl)).
model (ml, instanceSlot(personl, sex, f)).

model (m1, instanceSlot(personl, name, mary)).
model(ml, relation(beforeTime, meetConcl, leaveConcl)).
model (m1, attach(a4, meetConcl, [])).

model (m1, attach(a3, leaveConcl, [])).

model (m1, attach(a2, person2, []1)).

model(ml, attach(al, personil, [1)).

model (ml, attachSign(a4, (s4,plus,cert))).

model (m1, attachSign(a3, (s3,plus,uncert))).

model (m1, attachSign(a2, (s2,plus,uncert))).

model (m1, attachSign(al,

(s1,plus,uncert))).

Figure 12: TOBI’s internal representation of the RM of Figure 2.

presuppositions and counterfactuals and that
the dichotomy ontology-content seems rea-
sonable.

From an epistemological point of view, RMs
make explicit some considerations about the use
of negation by human (or more generally living)
beings (see [6, 10]). In fact, the first way that one
can imagine for representing the non-existence of
an object (or the non-occurrence of an event)
is probably the use of a slot ‘existence’ (‘occur-
rence’), with the opportune value for each token.
In RMs, the more general mechanism of spaces,
attachments and signs allows not only to deal
with existence and occurrence, but also to explic-
itly represent the fact that the causal relations
hold between occurrences (or non-occurrence) of

events, and not merely between events.

In the near future, TOBI will probably be en-
To extend the set of
cases it can deal with, an extension of the vo-
cabulary is needed. This, in conjunction with
an improvement of the grammar, will allow for
the treatment of utterances syntactically differ-
ent from the ones considered in this work, but
with some common semantic-pragmatic charac-
teristics. For example, counterfactual phenomena
are very common in language, and do not need a
specific syntactic construction: another common
case is for instance the use of the verb ‘to wish’,
as in “Mary really wishes she had left”. Also,
the extensions regarding beliefs and situations il-
lustrated in Section 3.5 will surely be considered.

hanced in various ways.
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Finally, it is also planned to formalize the theory
that underlies the RMs, on the basis of Allen’s
theory of action and time [3, 4], of McDermott’s
temporal logic [32], and of Fomichov’s theory of
K-calculuses and K-languages [17] using the for-
mal specifications presented in Section 3.2.
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