
Languages and Compilers.
Continuation of the course in Programming Languages.

• New computation paradigms:
• Logic: Prolog
• Functional logic: Curry

• Formal description of declarative languages behavior:
• functional programming: rewriting systems, lambda calculus, pattern

matching
• logic programming: unification, SLD-derivations
• functional logic programming : narrowing

• Compilers
• parsing
• attribute grammars
• type checking
• intermediate code generation

24 hours on first semester + 48 hours on the second.
P. Di Gianantonio (Udine) Rewriting Systems 1 / 82

Languages and Compilers

Course web page⇒ Marco Comini;
These slides available on my web page.

Exam:

• Similar to the exam for Programming Languages:

• three small projects, one at the end of first semester, during the
January-February exam period, (one month time window);

• group projects (1-3 persons),

• first project: ∼ 2 days for a group of 3 persons.

P. Di Gianantonio (Udine) Rewriting Systems 2 / 82

Rewriting systems

Term rewriting systems

are the founding theory for:

• functional programming,

• logic programming,

• functional logic programming,

• concurrent systems.

P. Di Gianantonio (Udine) Rewriting Systems 3 / 82

Text book: TeReSe-Lite

Freely available on line.

The course only condisiders the material contained in the following
sections:

• 0.0

• 1.0, 1.1, 1.2

• 2.0, 2.1, 2.2, 2.3, 2.7.0, 2.7.1

• 3.1, 3.2.0, 3.3.2,

• 4.1, 4.8.0

Here, n.0 indicates the first part of Chapter n, before Section n.1 starts.
When subsections are indicated, as in 2.7.0, it is sufficient to read the
material contained in the specified subsections, omitting the other parts of
the section.

P. Di Gianantonio (Udine) Rewriting Systems 4 / 82

Rewriting as computation

In evaluating an expression, e.g. (3 + 5 + 6) · (1 + 2)

• One moves from one expression to the following one.

• An finite set of rules are applied.

• Local rewriting.

• Non-determinism – confluence.

• Result as termination.

P. Di Gianantonio (Udine) Rewriting Systems 5 / 82

Several form of computation

can be formulated as rewriting systems:

• Turing machine;

• Post canonical systems;

• lambda calculus, functional programming;

• logic programming;

• ...

indeed

• computation proceeds by steps,

• each step of computation is local (modify just a local of the system).

P. Di Gianantonio (Udine) Rewriting Systems 6 / 82

Abstract reduction system
one abstracts on the nature of rewritten (reduced) objects.

One just considers the graph of reductions.

Definition (Abstract reduction system)

A := (A ,→)

• A set

• → binary relation on A

• the set A represents the possible states of the computation;

• the relation→ represents the single steps of reduction (rewriting,
computation).

P. Di Gianantonio (Udine) Rewriting Systems 7 / 82

Abstract reduction system

The shape of the computation graph give information on the nature of
computation.

• deterministic programs (non-deterministic);

• reversible computing;

• termination, non-termination,

• confluence.

P. Di Gianantonio (Udine) Rewriting Systems 8 / 82

Labeled reductions

In some areas (e.g, concurrence), one considers a set of reduction
relations.

A := (A , {→α| α ∈ I})

These structures are also called labeled transition systems (LTS)

Motivations:

• to distinguish among several kind of reduction rules,

• the reduction generates side-effects that need to be specified.

P. Di Gianantonio (Udine) Rewriting Systems 9 / 82

ARS, definitions:

When a →α b one says that:

• a reduces to b in a single step of (α-)reduction (computation),

• b is a (α-)reduct, in one step, of a ,

• a is an (α-)expansion, in one step, of b.

Definition (Reduction sequence)
is a, finite or infinite, sequence is the form:

a0 → a1 → . . .→ an →

One says that;

• a0 reduces to an (in several steps);

• an is a reduct (by several steps) of a0.

P. Di Gianantonio (Udine) Rewriting Systems 10 / 82

ARS, derived relations

One can look at an ARS as a directed graphs (possibly labeled).

→+ is the transitive closure of→
a →∗ b iff a reduces to b in n steps with n > 0
as a graph: there exists a non-empty path from a to b,

→∗ is the reflexive and transitive closure of→
for every a, a →∗ a.

a = b is the symmetric, reflexive and transitive closure of→
implicitly: if a → b then a and b are taken as equal,
as a graph: a and b belong to the same connected
component.

Notation: The syntactic equality is denoted by ≡.

P. Di Gianantonio (Udine) Rewriting Systems 11 / 82

Property on ARS: Confluence
Different reductions, starting from the same element, can re-converge to a
common element.

Definition
An element a ∈ A is called weakly confluent or weakly Church-Rosser
(WCR) if
∀b , c. b ← a → c we have that: ∃d. b →∗ d ∗← c.

An element a ∈ A is called confluent or Church-Rosser (CR) if
∀b , c. b ∗← a →∗ c we have that: ∃d. b →∗ d ∗← c.

An ARS is (weakly) Church-Rosser if every element is (weakly)
Church-Rosser.
CR ensures that different computations can re-converge on a common
state.

WCR is easier to verify.

WCR is a strictly weaker property that CR. Counterexample: . . .
P. Di Gianantonio (Udine) Rewriting Systems 12 / 82

CR reduction system: examples an
counterexamples

Examples:

• evaluation of arithmetic expressions ;

• pure functional languages;

• deterministic computation.

Counterexamples:

• definitions by pattern matching,

• logic programming,

• concurrent systems.

P. Di Gianantonio (Udine) Rewriting Systems 13 / 82

Several notion of confluence

There exists a plethora of different notions of confluence, in common they
have the structure of the definitions, they differ for the used relations.

Definition

• Diamond property: ∀b , c. b ← a → c implies ∃d. b → d ← c,

• →α weakly commutes with→β : ∀b , c. b ←α a →β c implies ∃d.
b →∗β d ←∗α c,

• . . .

The most meaningful notions remain CR and WCR.

P. Di Gianantonio (Udine) Rewriting Systems 14 / 82

ARS properties: termination

Assumption: the final results of computation are the elements that cannot
be further reduced.

Definition

• a is in normal form if @ b .a → b.

• a is weakly normalizing (WN) if ∃ b in normal form s.t . a →∗ b.

• a is strong normalizing (SN) if there is no infinite reduction starting
from a.

• an ARS is WN (SN) if every element in it is WN (SN).

P. Di Gianantonio (Udine) Rewriting Systems 15 / 82

ARS properties: confluence on normal
forms

Definition

• an ARS has the normal form property (NF) if
∀a, b . b normal form ∧ a = b ⇒ a →∗ b

• an ARS has the unique normal form property (UN) it
∀a, b . a, b, normal forms ∧ a = b ⇒ a ≡ b

Theorem
NF⇒ UN

Show that the reverse implication does not hold.

P. Di Gianantonio (Udine) Rewriting Systems 16 / 82

Logical implication among properties

Theorem

• SN ∧WCR⇒ CR

• WN ∧ UN⇒ CR

• CR⇒ NF

P. Di Gianantonio (Udine) Rewriting Systems 17 / 82

Term rewriting system (TRS)

ARS defines an abstract notion.
TRS special cases of ARS where:

• the elements (computation objects) are first order terms on a given
algebra;

• reduction given by a set of rules:
• defined parametrically (using variables and pattern matching)
• rules applicable everywhere (in any context).

The relation→ is called rewriting (instead of reduction).

P. Di Gianantonio (Udine) Rewriting Systems 18 / 82

Motivating example
Natural numbers arithmetic
Terms generated signature:
〈0 : 0,S : 1, add,mult : 2〉.

Rewriting rules:

• add(x, 0)→ x

• add(x,S(y))→ S(add(x, y))

• mult(x, 0)→ 0

• mult(x,S(y))→ add(mult(x, y), x)

Problems:
• What are the (closed) terms in normal form.
• Reduce mult(S(S(0)),S(S(0))).
• Show that mult(S(S(0)),S(S(0))) è CR.
• Define the rewriting rules for subtraction.

P. Di Gianantonio (Udine) Rewriting Systems 19 / 82

Terms defined by a syntax
Signature Σ: list of constants and functions organized by arity.
Example: 〈0 : 0,S : 1, add,mult : 2〉.
Constants can be seen as functions with 0 arguments.
The syntax may contain also an extra set of variables V .

Definition
The set of terms on Σ, V is the set T(Σ,V) generated by the following
rules:

• ∀x ∈ V x ∈ T(Σ,V)

• ∀f ∈ Σ, arity(f) = n, t1, . . . tn ∈ T(Σ,V)
f(t1, . . . tn) ∈ T(Σ,V)

According to definition a constant c should be written as c(), but we use
the usual writing.
Only prefix notation, no infix notation.
Exercise. Define the syntax for Boolean algebra.

P. Di Gianantonio (Udine) Rewriting Systems 20 / 82

Alternative definition

The set of terms generated by the grammar:

T := x1 | x2 | . . .

c1() | c2() | . . .
u1(T) | u2(T) | . . .
f1(T ,T) | f2(T ,T) | . . .
g1(T ,T ,T) | g2(T ,T ,T) | . . .

P. Di Gianantonio (Udine) Rewriting Systems 21 / 82

Counting

Definition

• Ground terms: closed, not containing variables, belonging to T(Σ, ∅)

• Linear term: each variable occurs at most once.

• Var(t) denotes the set of variable occurring in t :
t ground ⇔ Var(t) = ∅.

• The length of a term t , (denoted by |t |) is the number of functions and
variable symbols appearing in t :
• |x | = 1
• |f(t1, . . . , tn)| = 1 + |t1|+ . . . + |tn |

The depth of a term t in the maximal number of consecutive
application:
• depth(x) = 1
• depth(f(t1, . . . , tn)) = 1 + max(depth(t1), . . . , depth(tn))

P. Di Gianantonio (Udine) Rewriting Systems 22 / 82

Context

Rewriting rules can be applied to subterms,
that is terms inside a context.
Context: what is remain of a terms having removed a subterm.
Formally:

Definition
A context Σ is a term generated by a signature Σ : 〈[] : 0〉,

Symbol [], called hole, represent a missing subterm.
We just consider in one hole context.
Notation. C[].
Examples: f(c0, [], g(c1, c2)), (3 + 8) × ([] + 5)

Basic operation: substitute the hole in the context C[] by a term t ; C[t].

P. Di Gianantonio (Udine) Rewriting Systems 23 / 82

Term tree

It is useful to thought to terms as ordered trees.

• variables an constants are the leaves.

• functions are internal nodes with having as children the arguments.

P. Di Gianantonio (Udine) Rewriting Systems 24 / 82

Positions

In a term tree every subterm is uniquely identify by the path root-subterm.
Such a path is describe the sequence of natural numbers, telling for each
node which subtree to choose.
Notation

• 〈n1, . . . , ni〉 sequence;

• 〈n1, . . . , ni〉 · 〈m1, . . . ,mj〉 concatenation of sequences;

• t |〈n0,...,ni〉 subterm of t identify by 〈n0, . . . , ni〉 ;

• t[]〈n0,...,ni〉 context obtained by removing from t the subterm t |〈n0,...,ni〉

Examples:

P. Di Gianantonio (Udine) Rewriting Systems 25 / 82

Substitution

The operation of substituting, in a terms, some variables with other terms.

Definition

• A substitution is a function σ : V → T(Σ,V).

• A substitution can be extended to the whole set of terms,
σ : T(Σ,V)→ T(Σ,V), by syntax induction:
σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)).

σ(t) is usually written as tσ or as tσ.

P. Di Gianantonio (Udine) Rewriting Systems 26 / 82

Domain and codomain

Definition
The domain of σ is the set of variable modify by σ

Dom(σ) = {x ∈ V | σ(x) , x}

The codomain is the set of variables contained in the image of the domain.

Cod(σ) =
⋃

x∈Dom(σ)

Var(σ(x))

Note that this definition is different from the standard definition of domain
and codomain of a functions.

P. Di Gianantonio (Udine) Rewriting Systems 27 / 82

Finite domain substitutions
We are mainly interested in substitutions having a finite domain,
they can be represented by finite set (assignments) pairs:

{x1/s1, . . . , xn/sn}

The set contains the variable in the domain of the substitution.

Possible alternative notations, in the literature: {x1 7→ s1, . . . , xn 7→ sn} or
{s1/x1, . . . , sn/xn}

Substitution restriction:

σ|v =

{
σ(x) if x ∈ V
x otherwise

Unions of substitution with disjoint domain:

σ1 ∪ σ2

P. Di Gianantonio (Udine) Rewriting Systems 28 / 82

Substitutions composition

As functions on terms, substitutions compose:

(σ ◦ τ)(t) = σ(τ(t))

We use the notation:
tτσ = (tτ)σ

On variables:
τσ(x) = (τ(x))σ

Composition is associative (as every function composition).
Is it commutative?

Find a counterexample.

P. Di Gianantonio (Udine) Rewriting Systems 29 / 82

Substitutions composition

As functions on terms, substitutions compose:

(σ ◦ τ)(t) = σ(τ(t))

We use the notation:
tτσ = (tτ)σ

On variables:
τσ(x) = (τ(x))σ

Composition is associative (as every function composition).
Is it commutative? Find a counterexample.

P. Di Gianantonio (Udine) Rewriting Systems 29 / 82

Composition of finite domain
substitutions

Given two substitutions with finite domain:

σ = {x1/s1, . . . , xm/sm}

τ = {y1/t1, . . . , yn/tn}

from the formula of στ on variable, one obtains that στ is given by the set:

{x1/sτ1, . . . , xm/sτm, y1/t1, . . . , yn/tn}

from the above set one needs to remove the pairs yi/ti with
yi ∈ {x1, . . . , xm} = Dom(σ) e
(and for compactness) the pairs xi/xi , (generated by those xi such that
xi = xστi .

P. Di Gianantonio (Udine) Rewriting Systems 30 / 82

Matching

Problem
Given s and t build, if it exists, built a substitution σ such that s ≡ tσ.

Example

• C(x, C (y, z)) / C(1, C(2,T))

• N(x, N(y,y,w), z) / N(S, N (T, T, z), y)

• N(x, N(y,w,y), z) / N(S, N (T, T, z), T)

In Haskell syntax:

• (C x (C y z)) / (C 1 (C 2 T))

• (N x (N y y w) z) / (N S (N T T z) y)

• (N x (N y w y) z) / (N S (N T T z) T)

P. Di Gianantonio (Udine) Rewriting Systems 31 / 82

Matching
To present the matching algorithm, it is convenient to generalize the
problem to the matching of two sequences of terms, by a single
substitution.

{t1/s1, . . . , tn/sn}

Matching Algorithm
Givem by a set of rewriting rules:

{f(t1, . . . , tn)/f(s1, . . . , sn)} ∪ S =⇒ {t1/s1, . . . , tn/sn} ∪ S
{f(t1, . . . , tn)/g(s1, . . . , sm)} ∪ S =⇒ fail, if f . g

{f(t1, . . . , tn)/x} ∪ S =⇒ fail
{x/s1} ∪ S =⇒ fail if x/s2 ∈ S ∧ s1 . s2

When no rule can be applied, we have the matching substitution.

P. Di Gianantonio (Udine) Rewriting Systems 32 / 82

Unification

Problem
Given s and t build, if it exists, built a substitution σ such that sσ ≡ tσ.

Example
N(x, T, z) = N(T, y, y)
N(x, T, z) = N(T, y, w)

• More than one substitution solves the problem.
Instead, matching has a unique solution.

• There exists a canonical solution: the most general substitution.

• We need to define a generality order on terms, and on substitutions.

P. Di Gianantonio (Udine) Rewriting Systems 33 / 82

Renaming
Definition
A renaming is a substitution σ:

• replacing variable by variable,

• and not identifying two different variables.

Prove that: a finite substiturion σ is a renaming iff is a permutations of
variables.

Definition
A substitution σ is said to be a renaming for a term t is σ

• substitutes each variable in t by a variable and

• does not identify distinct variables in t).

TeReSe givem the following definition:
σ is renaming for a term t if σ|Var(t) is a renaming.

Why the two definitions do not coincide?
P. Di Gianantonio (Udine) Rewriting Systems 34 / 82

Subsumption order on terms

Definition
If s ≡ tσ:

• s is an instance of t

• t subsumes s, t is more general than s.

• t is matched with its instance s by the substitution σ.

• s � t

The relation � is a quasi-order
i.e. a reflexive and transitive relation,
not necessarily antisymmetric. Proof?

If s � t and t � s, t is called a variant of s, s � t

s � t iff there exists a renaming σ such that s ≡ tσ

We write s ≺ t if s � t and s � t , (s is a proper instance of t).

P. Di Gianantonio (Udine) Rewriting Systems 35 / 82

Property of subsumption quasi-order

Theorem

• ≺ does not have any strictly increasing chain, (chain of more and
more general terms)

• any two terms s and t have a supremum (sup) r, that is
s � r, t � r e ∀q.(s � q) ∧ (t � q) ⇒ r � q,

Corollary
Two terms s and t do not necessary have a common instance, but if they
have a common instance they also have most general comon instance
(mgci).

P. Di Gianantonio (Udine) Rewriting Systems 36 / 82

Subsumption order on substitutions

Definition
The substitution τ is more general that σ:

σ � τ

if
∃ ρ. σ = τ ρ

Property:
σ � τ ⇒ ∀t . tσ � tτ.

Does the other implication hold?
Almost always.
(Very difficult) Exercise: find a counterexample.

P. Di Gianantonio (Udine) Rewriting Systems 37 / 82

Unification

Given two terms s and t , can they be equated by a common substitution?

Definizione
[Unifier, MGU]

• If sσ ≡ tσ then σ is a unifier of s and t .

• The greater unifier of two terms s and t , with respect to the
subsumption order, �, is called the most general unifier MGU.

Theorem
If two terms s, t admit a unifier they also have a MGU (unique up to
renaming).

P. Di Gianantonio (Udine) Rewriting Systems 38 / 82

Unification algorithm (Martelli, Montanari,
1982)

Given by a set of rewriting rules:

{f(t1, . . . , tn) = f(s1, . . . , sn)} ∪ E =⇒ {t1 = s1, . . . , tn = sn} ∪ E
{f(t1, . . . , tn) = g(s1, . . . , sm)} ∪ E =⇒ fail, se f . g

{x = x} ∪ E =⇒ E
{f(t1, . . . , tn) = x} ∪ E =⇒ {x = f(t1, . . . , tn)} ∪ E

{x = t} ∪ E =⇒ fail se x ∈ Var(t) e x , t
{x = t} ∪ E =⇒ {x = t} ∪ E{x/t}

se x < Var(t), x ∈ Var(E)

When no rules can be applied, the equation gives the MGU.

P. Di Gianantonio (Udine) Rewriting Systems 39 / 82

Observations

• Martelli-Montanari algorithm is an efficient version of Robinson
unification algorithm (65).

• The algorithm is non deterministic, several rule can be applied to the
same set.

• Correctness: each single rules is correct, does not change the set of
unifiers.

• Termination not completely obvious, the last rules can increase the
length of the terms, a well-founded order is needed.

P. Di Gianantonio (Udine) Rewriting Systems 40 / 82

Reduction rules on Σ-terms

Definition (Reduction Rule)
A reduction (rewriting) rule (on Σ) is given by a pair of terms l → r in
T(Σ,V) such that:

1) l is not variable;

2) Var(r) ⊆ Var(l)

l → r represents a rule scheme: the whole rules that can be obtained by
instantiating variables and inserting in contexts.

{C[lσ]→ C[rσ] | for any substitutionσand context C[]}

• lσ redex

• rσ contractum

P. Di Gianantonio (Udine) Rewriting Systems 41 / 82

Term Rewriting System (TRS)

Definition (Term Rewriting System)

• A TRS is a pair R := 〈Σ,R〉 formed by a signature Σ and a set of
rules R on Σ.

• A TRS induced a reduction relation,→R , on T(Σ,V), the union of
l’unione delle riduzioni definite dalle singole regole.

• If there is no ambiguity, one can remove the subscript in→.

• A TRS is an instance of an Abstract Reduction System.

• All definition given on ARS can be applied to TRS. That is: reduction
sequence,→∗, =, WCR, CR, normal form, WN, SN, NF, UN.

• If reduction rules are named: ρ : l → r , one can write t →ρ s to
indicate that t reduces to s by an application of the rule ρ.

P. Di Gianantonio (Udine) Rewriting Systems 42 / 82

Examples — Algebraic data types

• Arithmetic: 〈0 : 0,S : 1, add,mult : 2〉
• add(x, 0)→ x
• add(x,S(y))→ S(add(x, y))
• mult(x, 0)→ 0
• mult(x,S(y))→ add(mult(x, y), x)

• Lists and append, merge functions.

• Binary trees and linearize function.

• Binary numbers and addition

P. Di Gianantonio (Udine) Rewriting Systems 43 / 82

Examples – Combinatory Logic (Moses
Schönfinkel, Haskell Curry)

Combinatory Logic signature: 〈S,K : 0, app : 2〉
Usually app is written with the infix notation:
app(x, y) is written as x · y

• (K · x) · y → x

• ((S · x) · y) · z → (x · z) · (y · z).

Reduce: ((S · K) · K) · x.

As for product, the symbol · can be omitted.
Application is left-associative. Es. SKK = ((SK)K).

Defined I as SKK , reduce SII(SII).

Defined B as S(KS), reduce Bxyz.

In combinatory one can encode natural numbers and define computable
function.

P. Di Gianantonio (Udine) Rewriting Systems 44 / 82

Condition on rules
Some properties on rules implies properties of the TRS.

A rule ρ : l → r è:

• left-linear if l is linear.
The cost of verifying if a rule is applicable to a given subterms, is
constant.

• non-duplicating if no variable has more occurrences r than l.
Duplicating otherwise: the rule duplicate part of the redex.

• non-erasing is Var(l) = Var(r).
Erasing otherwise: in the redex all the subterms that match with a
given variable are erased.

• non-colapsing if r is not a variable. Collapsing otherwise.

A TRS is called left-linear (non-duplicating, non-erasing, non-collapsing if
all its rules are so.

Exercise: apply these definition to the TRS for arithmetic.
P. Di Gianantonio (Udine) Rewriting Systems 45 / 82

Conditions on rules for confluence, (CR)

Example of a non-confluent TRS

ρ1 : f(g(x), y) → x
ρ2 : g(a) → b

The term f(g(a), b) is not confluent

The rules ρ1 e ρ2 can both be applied but the application of one rule
destroy the possibility of applying the other.

An analysis of this possibility leads to the following definition.

P. Di Gianantonio (Udine) Rewriting Systems 46 / 82

Overlapping rules

Definition
Two rules ρ0 : l0 → r0 and ρ1 : l1 → r1 are overlapping if l0 and a subterm,
different from a variable, of l1 have a common instance, or the other way
round.

P. Di Gianantonio (Udine) Rewriting Systems 47 / 82

Examples of overlapping rules

Overlapping can involve the whole left sides of both rules l0, l1,
consider the rules:

ρ1 : f(g(x), y) → x
ρ2 : f(x, b) → b

and the term:
f(g(a), b)

One rule can overlap with itself,
consider the rule:

ρ : f(f(x)) → a

and the term:
f(f(f(b)))

P. Di Gianantonio (Udine) Rewriting Systems 48 / 82

Equivalent condition

Two rules ρ0 : l0 → r0 e ρ1 : l1 → r1 are overlapping if,
after renaming the variable in such a way that Var(l0) ∪ Var(l1) = ∅,
the term l0 unify with a subterm, different from a variable, of l1.

P. Di Gianantonio (Udine) Rewriting Systems 49 / 82

Example of non-overlapping rules

Non overlapping rules can generate redex, one inside the other, but in this
case the application of one redex tdoes not destroy the other:

Compare:
ρ1 : f(x, y) → x
ρ2 : g(a) → b

with

ρ1 : f(g(x), y) → x
ρ2 : g(a) → b

on the term:

f(g(a), g(a))

P. Di Gianantonio (Udine) Rewriting Systems 50 / 82

Result

Theorem
A TRS without overlapping rules is weakly confluent, WCR (weak
Church-Rosser).

There exists a stronger version of this theorem admitting “good”
overlapping rules.

A WCR is not necessary confluent CR, if the system is not strong
normalizing
(WCR ∧ SN ⇒ CR).

P. Di Gianantonio (Udine) Rewriting Systems 51 / 82

Counterexample

Consider the TRS given by the rules:

ρ1 : f(x, x) → b
ρ2 : g(x) → f(x, g(x))
ρ3 : a → g(a)

Observe that:

• the rules are not overlapping

• the TRS is WCR

• g(a)→∗ b and g(a)→∗ g(b),

• b and g(b) do not reduce to a comon term.

P. Di Gianantonio (Udine) Rewriting Systems 52 / 82

Orthogonality

Definition
A TRS R is orthogonal if it is left-linear and does not contain overlapping
rules.

Theorem
Every orthogonal TRS is confluent (CR).

P. Di Gianantonio (Udine) Rewriting Systems 53 / 82

Constructor Based TRS
Quite often on defining a signature Σ, one assume a partition on the
function symbols in Σ,
• C, constructors, they generate the elements in a given type
• D, defined functions, the functions defined on given type

Examples:

• on the signature for arithmetic, constructors are 0,S, defined
functions are add,mul

• on the signature for lists, constructors are nil, cons, defined functions
are append, concatenate

Definition
A Constructor Based TRS, is a TRS containing only rules in the form:

f(t1, . . . , tn)→ s with f ∈ D ∧ ∀i. ti ∈ T(C,V)

P. Di Gianantonio (Udine) Rewriting Systems 54 / 82

Haskell

Haskell, when functions are defined by pattern matching is a Constructor
Based TRS.

Lemma
In a CBTRS, two rules, ρ0 : l0 → r0 and ρ1 : l1 → r1 are overlapping iff l0
and l1 have a common instance.

With some modification, the orthogonality theorem can be applied to
Haskell, in fact:

• pattern mathing rules, in Haskell are left linear,

• there can be overlapping rules, but in this case,
they are part of the definition of the same function,
since the rule are apply in the written order,
the rewriting system is confluent.

P. Di Gianantonio (Udine) Rewriting Systems 55 / 82

Reduction strutegies

In a TRS R, in order to apply a reduction t → t ′ on a term t , one needs:

• to select a position p on t ,

• and a rewriting rule ρ : l → r in R,

• such that there exists σ = match{l/t |p} (lσ = t |p),

• in this case, t ′ = t[rσ]p and the subterm t |p is the redex.

Given a term t , there can be many possible reductions t → t ′.

A reduction strategy for any term t select on possible reduction on t .

P. Di Gianantonio (Udine) Rewriting Systems 56 / 82

Reduction strategies

Definition (Extentional)
A one step reduction strategy F on a TRS 〈Σ,R〉 is a function
F : T(Σ,V)→ T(Σ,V) ∪ {∗} such that:

• F(t) ≡ ∗ if t 6→

• t → F(t) otherwise.

A multy step reduction strategy strategia require that t →+ F(t).

A more intensional definition, associate to any term t , and the position p
and rule ρ defining a rewriting on t .

In an orthogonal TRS, for any term and any position there exists at most
one applicable rule. One can define strategies, just by indicating where the
rules have to be applied.

P. Di Gianantonio (Udine) Rewriting Systems 57 / 82

Strategie di riduzione classiche
leftmost-innermost (ad un passo) scelgo il redex più a sinistra tra quelli

più interni.
In termini di posizioni: scelgo il redex con posizione p
minima nell’ordine lessicografico tra i redex aventi una
posizione p′ massimale in lunghezza.

parallel-innermost (a molti passi) riduco tutti i redex più interni (con
posizioni massimali in lunghezza). I redex sono disgiunti.

leftmost-outtermost (a un passo) scelgo il redex più a sinistra tra quelli più
esterni.

parallel-outtermost (a molti passi) riduco tutti i redex più esterni (con
posizioni minimali in lunghezza). I redex sono disgiunti.

full-substitution (a molti passi) riduco tutti i redex più ovunque. I redex non
sono disgiunti ma in un TRS ortogonali una riduzione non
disturba l’applicabilità di un altra.

P. Di Gianantonio (Udine) Rewriting Systems 58 / 82

Normalization

Definition
Normalizing strategy A reduction strategy is F is normalizing if leads to the
normal form when it exists:
for every term t having a normal form, there exists n such that Fn(t) = ∗.

Proposition
In orthogonal TRS, satisfying an extra condition: left-normality, the
leftmost-outermost strategy is normalizing.

The need for left-normality , is explained by the following counterexample:

consider the term f(c, a), and the reduction rules:

• f(x, b)→ d

• a → b

• c → c

P. Di Gianantonio (Udine) Rewriting Systems 59 / 82

Normalization

Proposition
In an orthogonal TRS the parallel-outtermost is normalizing.

P. Di Gianantonio (Udine) Rewriting Systems 60 / 82

Outtermost, innermost

• Innermost: strategia di riduzione eager, si valutano gli argomenti
prima di passarli alla funzione, ML.

• Outtermost: strategie di riduzione lazy, valuto un argomento solo se
espressamente richiesto, Haskell .

Strategie eager non sono normalizzanti: valuto un argomento che diverge
anche se questo non viene usato nella funzione.

Strategie lazy, con regole di riduzioni duplicanti, portano a valutare un
argomento più volte, a meno che non rappresenti i termini con DAG (Direct
Acyclic Graph), come in Haskell.

P. Di Gianantonio (Udine) Rewriting Systems 61 / 82

Haskell and TRS

In Haskell one can define constructor based TRS:

• in type definition one defines a set of constructors for each type;

• functions defined by pattern matching induce the reduction rules;

• lazyness and the order of pattern matching rules defines the
reduction strategies;

• TRS theorem shows that Haskell computation, for this CBTRS is
confluent and, in some cases, normalizing.

Can one describe every Haskell computation via a TRS?

P. Di Gianantonio (Udine) Rewriting Systems 62 / 82

Operational Semantics for Haskell

• Haskell programs are terms (p).

• A subset of terms defined the possible results of a computation (n).

• A set of rules defined a reductions relation→ is defined on terms.

• Such that p →∗ n iff the program p gives the result n.

P. Di Gianantonio (Udine) Rewriting Systems 63 / 82

TRS and Operational Semantics for
Haskell

TRS are not sufficient for the operational semantics, several problems

• Terms are non typed, there is only one kind of terms,
one cannot distinguish between booleans and integers, ...
This problem can be solved by multi-sort TRS.

• Haskell is functional:
can define and manipulated functions,
this cannot be done in TRS, one needs higher-order TRS.

P. Di Gianantonio (Udine) Rewriting Systems 64 / 82

Lambda abstraction

In Haskell it is possible to defines name less fuctions
\x -> x + 2

\f -> \x -> f (f x)

In other formalism these expression are written:
λx . x + 2, λf . λx . f(fx)

Functions are first class citizen.

One need a rule for application, the β-rule:

(\x -> f) m → f {x/m}

An example:

(\x -> x + x) n → n + n

P. Di Gianantonio (Udine) Rewriting Systems 65 / 82

Lambda-abstraction

Lambda-abstraction is binding operator:
\x ->

Transform x in a closed variable, the parameter of the functions.

Binding operators cannot be defined in TRS.

P. Di Gianantonio (Udine) Rewriting Systems 66 / 82

α-equality

The name of the parameter is not important:

\x -> x + 2

is perfectly equivalent to:

\y -> y + 2

One need to define a rule establishing this equivalence the
α-rules:

\x -> t = \y -> t {x/y}

P. Di Gianantonio (Udine) Rewriting Systems 67 / 82

Variable (parameter) renaming

Necessary while applying the β-rule.

Without variable renaming
(\f -> \x -> f x) (\y -> x + y)

β reduces to
\x -> (\y -> x + y) x

\x -> x + x

Not correct, the free variable x is captured.

The correct reduction is:
(\f -> \x -> f x) (\y -> x + y)

(\f -> \z -> f z) (\y -> x + y)

\z -> (\y -> x + y) z

\z -> x + z

P. Di Gianantonio (Udine) Rewriting Systems 68 / 82

β-reduction

The previous example shows that β reduction cannot be defined naively,
some α-conversion (variable renaming) can be necessary during the
reduction,
this make more complex:

• the formal definition of rewriting system

• the implementation of functional programming languages

P. Di Gianantonio (Udine) Rewriting Systems 69 / 82

The pure lambda calculus (untyped)

A quite expressive rewriting system
where term are build using

• variables: x,

• application, a binary operator
if s and t are terms then (s t) is a term,

• λ-abstraction
if x is variable and t is term then \x -> t is a term,

having as only reduction rule the β-rules,
that can be applied in any context,
not definable as a rule of TRS.

Terms are not typed, one term can be applied to itself, like in
(\x -> x x)(\x -> x x)

P. Di Gianantonio (Udine) Rewriting Systems 70 / 82

Church numerals

One can encode natural numbers by:

• 0 ≡ (\f x -> x)

• 1 ≡ (\f x -> f x)

• 2 ≡ (\f x -> f (f x))

• n ≡ (\f x -> fnx)

The standard arithmetic function are defined by:

• Successor: \m -> \f x -> f (m f x)

• Addition: \m n -> \f x -> m f (n f x)

• Product: \m n -> \f x -> m (n f) x

• Exponentiation: \m n -> \f x -> n m f x

A difficult exercise: to define predecessor.

P. Di Gianantonio (Udine) Rewriting Systems 71 / 82

Recursion

In the λ-calculus one can define a fixed-point operator:
the Y combinator, discovered by Haskell B. Curry:
Y ≡ \f -> (\x -> f (x x)) (\x -> f (x x))

Beta reduction of this gives,
Y g = (\x -> g (x x)) (\x -> g (x x))

= g ((\x -> g (x x)) (\x -> g (x x)))

= g (Y g) (by first equality)

By repeatedly applying this equality we get,
Y g = g (Y g) = g (g (Y g))

= g (... g (Y g) ...)

Y allows to define function recursively.

P. Di Gianantonio (Udine) Rewriting Systems 72 / 82

Confluency

There can be several possible reductions for λ-terms,

(\f -> f (f a)) ((\x y -> g x y)b)

But we have

Teorema (Church-Rosser)
The reduction relation on λ-calculus is confluent (is Church-Rosser).

P. Di Gianantonio (Udine) Rewriting Systems 73 / 82

Untyped λ-calculus inside Haskell

One can define a data for the untyped λ-terms.

data Untyped = Abst [Untyped -> Untyped]

One need a translation:
untyped application and abstraction cannot translate to typed ones:

• (t s)

becomes: app t s
where: app = t -> case t of Abst f | f

• \x -> t

becomes: Abst (\x -> t)

P. Di Gianantonio (Udine) Rewriting Systems 74 / 82

λ-calculus with constants

Pure untyped λ-calculus is unsuitable for real programming.

One needs to introduce a set of constants:

• to build elements of data types,

• to define the basic functions on data types.

Typed language are safer.

A typed λ-calculus with constants is the:
Core Language di Haskell.

P. Di Gianantonio (Udine) Rewriting Systems 75 / 82

Core Language

Core languages are useful in defining the behavior, or the implementation,
of a programming languages.

• A core language is a simple language, containing a subset of the
features of a main programming language;

• the main language can be (easily) translated in the core language.
• Core language allow a modular approach to semantics and

implemtetation; in fact is sufficient:
• to give semantics (implement) the core language,
• define the translation of mail language in the core language.

Core languages emphasize:

• fundamental mechanisms of computation,

• similarities and differences between languages.

P. Di Gianantonio (Udine) Rewriting Systems 76 / 82

Core Language for Haskell

Tiny, a typed lambda calculus:

• application and λ-abstraction,

• recursive types,

• a set of basic constant.

P. Di Gianantonio (Udine) Rewriting Systems 77 / 82

Recursive data type: constructor and
destructor

In Haskell constants are defined via data type declarations.
Each data type declaration introduces a given number of constructors and
a single destructor.

data PNat = Z | S PNat

The above definition generates two constructors:

Z :: PNat

S :: PNat -> PNat

and a destructor:

case_PNat :: a -> (PNat -> a) -> PNat -> a

P. Di Gianantonio (Udine) Rewriting Systems 78 / 82

Destructor

The destructor case PNat has the following reduction rules:
case PNat a f Z → a

case PNat a f (S n) → f n

The Haskell expression:

case m of Z -> a |

S n -> f n

is a syntactic sugar for (stands for):
case PNat a f m

P. Di Gianantonio (Udine) Rewriting Systems 79 / 82

Example

The patter matching definition of addition:

add 0 y = 0

add (S x) y = S (add x y)

is equivalent to the definition:

add = \ x y -> case x of O -> y |

S x1 -> S (add x1 y)

that, in the core language, becomes:

add = Y (\ f x y -> case_PNat y (\ x1 -> f x1 y) x)

P. Di Gianantonio (Udine) Rewriting Systems 80 / 82

Core language

• The only computation mechanism is function application.

• Definition by pattern matching are reduced to definition by case
that can be reduced to application of data destructor.

P. Di Gianantonio (Udine) Rewriting Systems 81 / 82

Reduction strategies

One core language the reduction relation is defined by a set of rules in
natural deduction style,
the rules implicitly define the reduction strategy, for example:

Eager evaluation:

t1 →∗ λx.t ′1 t2 →∗ v2 t ′1[v2/x]→∗ c

(t1t2) →∗ c

Lazy evaluation:
t1 →∗ λx.t ′1 t ′1[t2/x]→∗ c

(t1t2) →∗ c

P. Di Gianantonio (Udine) Rewriting Systems 82 / 82

