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Abstract

We present the different constructive definitions of real number that
can be found in the literature. Using domain theory we analyse the notion
of computability that is substantiated by these definitions and we give a
definition of computability for real numbers and for functions acting on
them. This definition of computability turns out to be equivalent to other
definitions given in the literature using different methods.

Domain theory is a useful tool to study higher order computability
on real numbers. An interesting connection between Scott-topology and
the standard topologies on the real line and on the space of continuous
functions on reals is stated. An important result in this paper is the proof
that every computable functional on real numbers is continuous w.r.t. the
compact open topology on the function space.

1 Introduction

Turing in 1937 was the first to introduce the notion of computable real number
[Tur37]. Since then a great number of different approaches have been used to
investigate, from a constructive standpoint, main concepts arising in analysis
such as real number, limit, derivative and measure. These enterprises have been
referred to with various names, e.g., recursive analysis, constructive analysis
and computable analysis.

Although the theory of computable analysis can be considered a well-developed
subject, there have been so far very few attempts of implementing computable
analysis on digital computers, see Boehm and Cartwright, Grue, Vuillemin,
[BCRO86], [Boe87], [Gru88], [Vui88]. Such implementations should lead to the
realization of “exact real number computation”.

∗Work partially supported by MURST 40% grant, by EEC/HCM Network “Lambda Calcul
Typé” and by an SERC Senior Fellowship. An earlier version of this paper appeared in the
Proceedings of the 18th International Symposium on Mathematical Foundation of Computer
Science 1993.
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In ordinary practice the computation on real numbers is performed by ap-
proximating real numbers by a subset of the rational numbers and by approx-
imating the arithmetic on real numbers by a limited precision arithmetic on
rationals. In exact real computation instead the result of a computation can
be obtained with arbitrary precision, thus getting rid of the unfortunate phe-
nomenon of the “round-off error”.

In this work we do not face directly the problem of defining a feasible effective
implementation of exact real number computation. We go instead towards the
direction of closing the gap existing between the theory of computable analysis
and actual computation. In order to study computability over real numbers we
use several tools peculiar to the theory of programming languages. In partic-
ular we use domain theory to give a notion of computability on real numbers.
This approach turns out to be very fruitful for several reasons. We discuss
the adequacy of Scott-domains as domains for representing real numbers. In
the literature on real number computation different kinds of partial orders have
been employed. We relate the Scott-topology on such domains to the Euclidean
topology on IR. Using the theory of effective Scott-domains we obtain simpler
proofs of some of the classical results of constructive analysis. Domain theory
turns out to be useful also in the study of higher order functions. In particular
one of the most important results contained in this work concerns the charac-
terisation of the topological properties of the computable higher order functions
on reals.

The outline of the paper is as follows. In section 2 we give a survey of the
different forms of real number representations used in computable analysis. In
section 3 we present a domain that can be used to study real numbers. This
domain follows the approach of constructing approximation spaces for the real
numbers. This construction has a domain theoretic interest. In fact it is the
first example of the use of Scott-domains in an area where normally continuous
cpo’s (i.e., retracts of algebraic cpo’s) are used. In section 4 we investigate the
connection between the Scott-topology and the Euclidean topology on the real
line. Moreover we present several important and original results that describe
the topological properties of computable real functions. The significance of these
results lies in the possibility of characterising the topological properties of the
computable higher order functions.

2 Real Number Representations

Since the seminal work of Turing, a great number of different approaches have
been used to study constructive analysis. An important difference between these
approaches lies in the way real numbers are represented. Different representa-
tions already occur in classical analysis: Cauchy sequences of rational numbers,
Cauchy sequences of decimal rationals, Dedekind cuts in the field of rationals,
infinite decimal expansions, and so on. Classically all these representations are
equivalent and we can study Analysis without worrying about which repres-
entation for real numbers we are currently using. Also in computable Analysis
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many of these representations turn out to be equivalent. But there are also
some exceptions: for instance Dedekind cuts and Cauchy sequences turn out
not to be equivalent.

Between the various constructive representations of real numbers in use there
is one that can be considered the most general and taken as a reference. In this
representation a real number is defined as the limit of a computable sequence
of rational intervals. A formalization of the notion of a computable sequence of
rational intervals is given by the following definition.

Notation Let 〈〈 〉〉 be any effective coding of pairs of natural numbers and let
and {| |} be any effective coding of finite subsets of natural numbers.

Definition 1 Enumeration functions for integers, rationals and rational inter-
vals are defined respectively as:
ǫZ(〈〈n1, n2〉〉) = n1 − n2

ǫQ(〈〈n1, n2〉〉) = ǫZ(n1)/(n2 + 1)
ǫI(〈〈n1, n2〉〉) = [ǫQ(n1), ǫQ(n1) + |ǫQ(n2)| ]

A sequence of rational intervals (naturals, integers, rationals) 〈s0, . . . si . . .〉
is computable if there is a recursive function f : IN → IN s.t.
∀i ∈ IN.si = ǫI(f(i)) (= f(i), = ǫZ(f(i)), = ǫQ(f(i))

Definition 2 A rational-interval representation of a real number x ∈ IR is given
by a computable sequence of rational intervals, 〈s0, . . . , si . . .〉 with si = [ai, bi]
such that:
i) si+1 ⊆ si,
ii) limi→∞(bi − ai) = 0
iii) x =

⋂

i∈IN s(i).

This representation has been used by several authors in the real number comput-
ability, see Lacombe, Martin-Löf, Scott, Weihrauch, [Lac59], [ML70], [Sco70],
[WS81]. In many ways, it can be considered to be the general form of real
number representation. Many other representations proposed in the literature
differ from this one only in that they make use of a subset of the convergent
sequences of rational intervals. Here are some examples:

Definition 3 a) a real number x is represented by a computable Cauchy se-
quence of rational numbers 〈a0, . . . , ai, . . .〉 and by a computable function
q : IN → IN defining the convergence rate of the Cauchy sequence, i.e.:
i) ∀i.j.k. |aq(i)+j − aq(i)+k | ≤ 2−i

ii) x = limi→∞ ai

b) a real number x is represented by a computable Cauchy sequence of rational
numbers 〈a0, . . . , ai, . . .〉 having a fixed rate of convergence, i.e.:
i) ∀i.j. |ai − ai+j | ≤ 1/i
ii) x = limi→∞ ai

c) corresponding to every natural number p > 1, we have the following form
of real representation: a real number x is represented by a computable sequence
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of integers 〈z0, . . . , zi, . . .〉 such that:
i) ∀i. |p × zi − zi+1 |< p
ii) x = limi→∞ zi/pi

d) given a natural number b > 1 a negative-digit representation with base b
of a real number x is given by a computable sequence of integers 〈z0, . . . , zi, . . .〉,
such that:
i) ∀i ∈ IN+. − b < zi < b
ii) x =

∑

i∈IN zi × b−i

e) in the continued fraction representation a real number x is represented by
a computable sequence of integers z0, . . . , zi . . . such that:

x = lim
i→∞

z0 +
1

z1 + 1
z2+

1

...
zi

Representations a) and b) are used in Troelstra, [TvD88] and in Bishop [Bis67]
respectively. Representations a ) and b) are similar to the classical Cauchy
sequence representation. Notice however that the constructive definition of a
real number via a Cauchy sequence always requires the presence of a function
defining the convergence rate. This convergence function can be the same for
all Cauchy sequences, like in representation b), or can be specified individually
for each Cauchy sequence, like in representation a). An informal justification
for the necessity of introducing a function giving the convergence rate is the
following: if the convergence rate of a Cauchy sequence 〈a0, a1, . . .〉 with limit x
is unknown then it is impossible to give any approximation to x after examining
a finite subsequence 〈a0, . . . , ai〉, in fact any real number can be the limit of a
Cauchy sequence starting with 〈a0, . . . , ai〉. This is of paramount importance;
in fact from a constructive point of view only finite parts of an infinite sequence
can be examined.

Representation c) is used in Boehm, [BCRO86]. It can be considered a
variant of the Cauchy sequence representation. Here a sequence of integers
is used to describe a Cauchy sequence of rational p-adic numbers. A p-adic
rational number is a number that can be written in the form m × p−n with
m and n integers. For the practical purposes representation c) is convenient:
the algorithms for the arithmetic operations turn out to be simpler and more
efficient when representation c) is used instead of representations a) or b).

Representation d) is similar to the standard digited representation. The
main difference consists in introducing negative digits. This representation has
been studied in Avizienis [Avi64], Boehm [BCRO86] and Wiedmer [Wie80].

The representation e) is developed in Vuillemin [Vui88] and is similar to the
standard continued fraction representation. The only difference is that in the
standard continued fraction notation only natural numbers are used. In this
case, however, negative integers are also used.

The representations described above do not make explicit use of intervals.
However perfectly equivalent representations based on rational intervals can be
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given. Let us consider for example representation b). A real number x is defined
by a Cauchy sequence of rational numbers 〈a0, . . . , ai, . . .〉. If we examine a finite
part of the sequence s we can give an estimation for x. From the element ai

we know that the value of x lies in the interval: [ai − 1/i, ai + 1/i]. The same
information is given by the sequence of rational intervals:
〈[a1 − 1, a1 + 1], . . . , [ai − 1/i, ai + 1/i], . . .〉 .
Analogous considerations can be made for the other representations.

As mentioned above the representations presented in d) and in e) are modific-
ations of the digited representation and of the standard continued fraction rep-
resentation respectively. The reason for these modifications is that the standard
representations are not suitable for real number computation. Using the stand-
ard representations even the most fundamental functions such as addition or
multiplication are not computable.

Here is a simple example that illustrates the inadequacy of the standard
decimal representation. We show that no algorithm can compute multiplication
by 3. A hypothetical algorithm for this function will not be able to generate the
first digit of the result when it receives as input the value 0.333... . In this case
there are two possible results, namely 1.000... and 0.999... . If the algorithm
generates 1 as the first digit, this must happen after the algorithm has examined
a finite number of digits of the argument. Let us suppose that the first n digits
have been examined before generating 1. Then the algorithm generates 1 as

first digit also when it receives as input the string 0.

n
︷ ︸︸ ︷

33 . . .3 00 . . .. But this is

incorrect since the exact result should then be 0.

n
︷ ︸︸ ︷

99 . . .9 0 . . .. An analogous
argument can be made if the algorithm generates 0 as first digit.

Similar examples show also that the other arithmetic operations are not
computable. Clearly the problem presented above is not caused by the choice of
base 10 for the representation of real numbers. The same problem would arise
for any other base. The introduction of negative digits, as in representation d)
above, is a simple way to overcome these difficulties. The standard interpreta-
tion can be extended to strings of positive and negative digits. For example the
string 0.〈+4〉〈−5〉〈−3〉〈+2〉 represents the rational number

(+4 × 10−1) + (−5 × 10−2) + (−3 × 10−3) + (+2 × 10−4)

Going back to the previous example we can easily show how the introduc-
tion of negative digits solves the difficulty. The algorithm for multiplication
by 3 can in fact safely generate 1, as the first digit, after having read the first
two digits of the string 0.333... . We can easily observe that if the input be-
comes 0.3(−9)(−9)... = 0.2 the output can become 1.(−4)000... = 0.6. If the
input becomes 0.3999... = 0.4 the output can become 1.2000... . A very similar
consideration can be made for the continued fraction representation.

It is possible to prove that all the previous real number representations are
computationally equivalent, in the sense that they characterize the same class
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of computable reals and computable real functions. The proof consists in defin-
ing effective translations between the different representations. In constructive
mathematics other representations of real numbers, not computationally equi-
valent to the previous ones, are also considered, for example representations
based on Dedekind cuts [TvD88]. In this paper we do not discuss these repres-
entations.

3 A domain of approximations for real numbers

In the literature there are different approaches to computability on real num-
bers which make use of different sorts of domains. In one of his early papers on
domain theory, Scott [Sco70] suggested that a cpo consisting of intervals of the
real line can be used to study computability on real numbers. Previously also
Martin-Löf [ML70] constructed a similar space of approximations. A similar
idea was also presented in Lacombe [Lac59]. In all these cases the real line is
embedded in spaces of approximations where a notion of computability can be
defined in a natural way. Many results concerning the computability theory
on real numbers are given in these contexts. These spaces of approximations
are particular cases of countably based continuous partial orders whose formal
theory has been developed in Smyth [Smy76]. Later Weihrauch and Schreiber
[WS81] developed similar ideas in the context of algebraic cpo’s enriched with a
notion of distance and weight. In recent work Sünderhauf [S9̈5] considers a do-
main of approximation for real numbers based on the notion of quasi-uniformity.

In this paper we present a construction that is similar in many respects to
the ones mentioned above but has some important differences. In constructing
a space of approximations a given form of real number representation is always
assumed. All constructions mentioned above are based on the representation of
real numbers as converging sequences of rational intervals (Definition 2). This
form of representation is not appropriate for implementations of real number
computation. One can see this informally, by noting that the efficiency of the
computation is certainly decreased by the existence of too many approximation
points (every rational interval is an approximation point), i.e., cumbersome
representations.

In view of our goals we base our construction on other forms of real number
representations: the integer sequence and the digit sequence representations of
Definition 3 c) and d). These forms are in fact more suitable for use in an
actual implementation. A second important difference is the following: our
space of approximations turns out to be a Scott-Domain. The other approaches
generate instead more general forms of cpo’s, which are less used in denotational
semantics.

3.1 Domain theory preliminaries

For completeness we briefly summarise some basic definitions of domain theory.
Further details can be found [AJ94].
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Given a partial order 〈D,⊑〉 the following notation is used. d⊔ d′ and d⊓ d′

denote the least upper bound and the greatest lower bound of the elements
d, d′ ∈ D respectively, if they exist. Given a subset A of D,

⊔
A and ⊓A denote

respectively the least upper bound, greatest lower bound of A, if they exist.
A subset A of D is directed if it is non-empty and every pair of elements of A
has an upper bound in A. Two elements d, d′ ∈ D are consistent if they have
an upper bound, we write d ⇑ d′ for the proposition that d, d′ are consistent.
A downward closed (upward closed) subset of D is a subset A such that for all
d, d′ in D if d ∈ A and d′ ⊑ d (d ⊑ d′) then d′ ∈ A. An ideal over 〈D,⊑〉 is
a directed, downward closed subset. Given d ∈ D, the downward cone (upward
cone) generated by d is the set ↓d = {d′ | d ⊑ d′} (↑d = {d′ | d ⊑ d′}) An ideal
I ⊆ D is called principal if there exist d ∈ D s.t. I =↓d. We write Idl〈D,⊑〉 for
the set of the ideals over the order 〈D,⊑〉.

A complete partial order (cpo) is a partial order 〈D,⊑〉 where there exists a
least element ⊥D and every directed subset has lub. A finite element of a cpo
〈D,⊑〉 is an element d ∈ D such that for any directed subset A of D if d ⊑

⊔
A

then there is an element a ∈ A such that d ⊑ a. We write D◦ for the set of finite
elements of 〈D,⊑〉. A cpo 〈D,⊑〉 is algebraic if, for each d ∈ D the set D◦∩ ↓d
is directed and its lub is d. If 〈D,⊑〉 is a partial order with a least element
then Idl〈D,⊑〉 ordered by inclusion is an algebraic cpo. The finite elements of
Idl〈D,⊑〉 are the principal ideals of 〈D,⊑〉. The order 〈 Idl〈D,⊑〉,⊆〉 is called
the the ideal completion of 〈D,⊑〉. A cpo 〈D,⊑〉 is ω-algebraic if it is algebraic
and D◦ is countable. A cpo 〈D,⊑〉 is consistently complete if each pair of
consistent elements has a least upper bound. A Scott-domain is a consistently
complete ω-algebraic cpo.

A function f : D → D′ from a cpo D to a cpo D′ is continuous if for all
directed subset A of D we have: f(

⊔
A) =

⊔

d∈A f(d). The set [D → D′] of
continuous functions from D to D′ is itself a cpo under the pointwise ordering.
If d, d′ are finite elements of D and D′ we write (d ⇒ d′) for the element of
[D → D′] defined by: (d ⇒ d′)(d0) = d′ if d ⊑ d0 and (d ⇒ d′)(d0) = ⊥
otherwise. A function of the form (d ⇒ d′) is called step function. If D and D′

are Scott-domains so is [D → D′]. Its finite elements are the lubs of finite sets
of step functions. Let D and D′ be two Scott-domains, D × D′ denotes the set
of pairs with the pointwise order. D × D′ is itself a cpo.

Cpos can be endowed with a topological structure called Scott-topology. In a
cpo D, a subset O is open w.r.t. the Scott-topology if it is upward closed and for
any directed subset A of D if

⊔
A ∈ O then A∩O 6= ∅. If D is an algebraic cpo

an equivalent definition of the Scott-topology can be given as follows: a subset
O is open if it is union of subsets of the form ↑d where d is a finite element. A
function f : D → D′ between Scott-domains is continuous (preserves the lub’s
of directed sets) if and only if it is continuous w.r.t. the Scott-topologies.

An effective Scott-domain is a triple 〈D,⊑, ǫ〉 such that 〈D,⊑〉 is a Scott-
domain and ǫ is an enumeration of the finite elements D◦ such that the following
relations are decidable:
i) ǫ(n) ⇑ ǫ(m) ii) ǫ(n) = ǫ(m) ⊔ ǫ(m′)
An element d in a effective Scott-domain 〈D,⊑, ǫ〉 is computable if the set
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{n | ǫ(n) ⊑ d} ⊆ IN is recursively enumerable. If 〈D,⊑, ǫ〉 and 〈D′,⊑, ǫ′〉
are effective Scott-domains so are D×D′ and [D → D′], the enumeration func-
tions ǫ× and ǫ→ are defined by: ǫ×(〈〈n1, n1〉〉) = 〈ǫ(n1), ǫ(n2)〉 and
ǫ→({| 〈〈m1,1, m1,2〉〉, . . . , 〈〈mn,1, mn,2〉〉 |}) is equal to

⊔

i<n(mi,1 ⇒ mi,2) if this
lub exists and it is equal to ⊥ otherwise.

3.2 The construction of the domain RD

The domain of approximations defined next is called Reals Domain (RD). First
we present a construction of RD starting with the binary negative digit notation
of real numbers, according to Definition 3 d) in base 2. Later we will show that
RD can be obtained also by repeating the same construction starting with the
Cauchy sequence notation of real numbers. Let 〈si〉i∈IN be a sequence of integers
defining a real number r according to the binary negative digit notation and let
〈si〉i<n be an initial subsequence. 〈si〉i<n gives partial information about the
value r. Examining 〈si〉i<n we can deduce that the value r is contained in an in-
terval of real numbers. For example the sequence 〈2, (−1)〉 is the initial notation
of a number contained in the closed interval [1, 2]. All the sequences beginning
with 2, (−1) denote a real contained in the interval [1, 2] and each number in
the interval [1, 2] can be denoted by a sequence beginning with 2, (−1) . This
observation leads to the definition of a function from finite sequences of integers
to intervals in the real line. To any finite sequence 〈si〉i<n we associate the
interval [a, b] containing the real numbers that can be represented by sequences
having as initial subsequences 〈si〉i<n.

To simplify the presentation we restrict ourselves to consider just those se-
quences of integers that do represent real numbers or approximations of them.

Notation We write S∗, Sω, S∞ for the partial orders composed of sequences
of integers and defined by:

S∗ = {〈s0, . . . sn−1〉 | n ∈ IN, s0 ∈ Z, ∀i < n − 1 . si+1 ∈ {−1, 0, 1} }
Sω = {〈si〉i∈IN | ∀n ∈ IN . 〈si〉i<n ∈ S∗ }
S∞ = S∗ ∪ Sω

with order given by the prefix relation.

Note that S∞ is isomorphic to the ideal completion of S∗. Next we define a
monotone function φ from S∗ to the partial order formed by the closed intervals
of the real line with the superset ordering. In the following RI will denote the
partial order of closed intervals of the real line. Before giving the definition of
φ we need to extend the arithmetic operations to RI.

Definition 4 The arithmetic operations on RI are defined by:
[a, b] + [a′, b′] = [a + a′, b + b′]
−[a, b] = [−b,−a]
[a, b]×[a′, b′] = [min{a × a′, a × b′, b × a′, b × b′}, max{a × a′, a × b′, b × a′, b × b′}]

1 ÷ [a, b] =

{
[−∞, +∞] if 0 ∈ [a, b]
[1 ÷ b, 1 ÷ a] otherwise

where with [−∞, +∞] we denote the interval consisting of the whole real line.
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A justification for the above definition is the following: [a, b] + [a′, b′] is the
interval of values that are obtained by adding an element of [a, b] to an element
of [a′, b′]. It is easy to check that similar considerations are valid for the other
arithmetic operations.

Notation If a′ is a rational number and [a, b] is a closed interval in IR, we
use the abbreviation a′ + [a, b] to denote the interval [a′, a′] + [a, b]. Similar
abbreviations are used also for the other arithmetic operations.

Definition 5 The function φ : S∗ → RI is recursively defined by:

φ(〈 〉) = [−∞, +∞]
φ(〈s0, s1, . . . , sn〉) = s0 + φ′(〈s1, . . . , sn〉)
φ′(〈 〉) = [−1, 1]
φ′(〈s0, s1, . . . , sn〉) = (s0 + φ′(〈s1, . . . , sn〉)) ÷ 2

The left and the right endpoint of the interval φ(〈si〉i<n) denote respectively the
smallest and the largest number that can be denoted by an element greater than
〈si〉i<n (under the substring order). Every number inside the interval φ(〈si〉i<n)
can be denoted by a proper infinite superstring of 〈si〉i<n.

Examples:
φ(〈0〉) = [−1, 1], φ(〈0, 1〉) = [0, 1], φ(〈0, 1, 0〉) = [1/4, 3/4].

It is not difficult to verify that the image of the function φ is given by the
whole real line ([∞, +∞]) and by the intervals having form [(z−1)/2n, (z+1)/2n]
where n is a natural and z is an integer. The rational numbers in the form z/2n

with n ∈ IN , z ∈ Z are called dyadic rationals. We call dyadic intervals the
rational intervals having the form [−∞, +∞] or [(z − 1)/2n, (z + 1)/2n] where
n ∈ IN and z ∈ Z.

Notation D will indicate the set of rational dyadic numbers and (DI,⊑) will
indicate the partial order of the dyadic intervals. The order relation ⊑ on DI
is the superset relation, that is [a, b] ⊑ [a′, b′] if and only if [a′, b′] ⊆ [a, b].

A useful property of the partial order (DI,⊑) is derived from the following:

Proposition 1 The intersection of any pair of dyadic intervals is empty or
reduces to a single point or is itself a dyadic interval.

Proof Let [(z1 − 1)/2n1 , (z1 + 1)/2n1] and [(z2 − 1)/2n2, (z2 + 1)/2n2] be two
dyadic intervals. The proof is by case analysis on the order relation existing
between the limits of the two dyadic intervals. Let us consider the case where
(z1 − 1)/2n1 < (z2 − 1)/2n2 < (z1 + 1)/2n1 < (z2 + 1)/2n2 with n1 ≤ n2.
Therefore z2−1 < (z1 +1)×2n2−n1 < z2 +1 and so: (z1 +1)×2n2−n1 = z2.
It follows that:
[(z1 − 1)/2n1 , (z1 + 1)/2n1] ∩ [(z2 − 1)/2n2 , (z2 + 1)/2n2]
= [(z2 − 1)/2n2, z2/2n2]
= [(2 × z2 − 1) − 1)/2n2+1, (2 × z2 − 1) + 1)/2n2+1]
which is a dyadic interval.

All other cases are trivial or similar to this one. ⊓⊔
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[−1, 1]

[−∞, +∞]

[−2, 0]

[−1, 0] [−1/2, 1/2] [1, 0]

[0, 2]

Figure 1: The diagram representing DI.

To extend the function φ to the set S∞ it is necessary to complete the partial
order DI.

Definition 6 Let RD denote the cpo obtained by the ideal completion of
(DI,⊑).

Proposition 2 RD is a consistently complete ω-algebraic cpo.

Proof Since RD is the ideal completion of a countable partial order, it is ω-
algebraic cpo. From Proposition 1 it follows immediately that RD is consistently
complete. ⊓⊔

The function φ is monotone and therefore it can be extended by continuity
to a function φ : S∞ → RD.

φ(〈si〉i<n) =↓φ(〈si〉i<n),

φ(〈si〉i∈IN ) = {[a, b] | ∃n ∈ IN . φ(〈si〉i<n) ⊆ [a, b]}.

The domain RD can be thought as composed of equivalence classes of elements
S∞. The equivalence classes of finite elements are composed of finite sequences
containing identical information about the real value they approximate (via the
binary negative digit notation).

It is interesting to observe that RD can be obtained also repeating the
previous construction using a different notation for the real numbers. Instead
of the binary negative digit notation, the Cauchy sequence notation of reals
presented in Definition 3 c) (with p = 2) can be considered. In this case the
repetition of the previous construction leads to the definition of a different set of
meaningful sequences S∞

1 but also to the definition of exactly the same domain
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RD and of a function φ1 : S∞
1 → RD that maps each element in S∞

1 to the
interval of real numbers that it approximates via the Cauchy sequence notation.

S∗
1 = {〈s0, . . . , sn−1〉 | n ∈ IN, ∀i < n − 1 . |2 × si − si+1 |< 2}

S∞ = S∗
1 ∪ {〈si〉i∈IN | ∀n ∈ IN . 〈si〉i<n ∈ S∗

1 }

and φ1 is the continuous extension of the functions φ1 : S∗
1 → DI defined by:

φ1(〈 〉) = ⊥
φ1(〈s0, . . . , sn〉) = [sn − 1, sn + 1] ÷ 2n

In an alternative presentation one can also consider all the possible sequences
of integers, instead of restricting to the meaningful ones. In this case one needs
to introduce the empty interval to denote “inconsistent” sequences, that is,
sequences that neither approximate nor denote any real number. The empty
interval will be the maximum element of the alternative domain RD⊤.

3.3 Computability

Here we use the effective coding function of pairs of natural numbers 〈〈 〉〉 and
and the enumeration function for the integers ǫZ presented Definition 1.

Proposition 3 Let ǫr be the enumeration of the finite elements of RD defined
by:

ǫr(0) = ⊥

ǫr(〈〈n1, n2〉〉 + 1) =↓[(ǫZ(n1) − 1)/2n2, (ǫZ(n1) + 1)/2n2].

(RD,⊑, ǫr) is then an effective Scott-domain.

Proof The function ǫr clearly enumerates all the finite elements of RD. Moreover:
ǫr(n) ⇑ ǫr(n

′) iff n = 0 ∨ n′ = 0 ∨ n = 〈〈n1, n2〉〉 + 1 ∧ n′ = 〈〈n′
1, n

′
2〉〉 + 1 ∧

|ǫZ(n1)/2n2 − ǫZ(n′
1)/2n′

2 | < 2−n2 + 2−n′
2

it follows that the relation ǫ(n) ⇑ ǫ(m) is decidable. A similar argument proves
the decidability of the relation ǫr(n) = ǫr(n

′) ⊔ ǫr(n
′′). ⊓⊔

In general, given an effective Scott-domain (D,⊑, ǫ), there might exist an al-
ternative effective enumerations ǫ′ of the finite elements of D such that (D,⊑, ǫ)
and (D,⊑, ǫ′) have different sets of computable elements. However the set of
computable elements of RD remains the same if we take a “reasonable” enu-
meration ǫ′r of the finite elements of RD, i.e. an enumeration for which the
relation:

ǫ′r(n0) =↓[(n1 − n2 − 1)/2n3 , (n1 − n2 + 1)/2n3]

is decidable. Note that an enumeration is reasonable if there is an effective
method that given the code of a dyadic interval evaluates its limit points. It
is not difficult to prove that for any reasonable enumeration ǫ′r there exist two
recursive functions f and g s.t. for any natural n, ǫr(n) = ǫ′r(f(n)) and ǫ′r(n) =

11



ǫr(g(n)). elements of D such that (D,⊑, ǫ). Therefore ǫr and ǫ′r define the same
set of computable elements.

Since RD is an effective Scott-Domain we can apply to it the standard
machinery for defining computability. In the next section we will exploit this
fact to give a definition of computability for real numbers and for the functions
acting on them.

3.4 Infinite elements

In this subsection we investigate the relation existing between the set of infinite
elements of RD and the real line.

First we observe the following property for the infinite elements of RD.

Proposition 4 For every infinite element d ∈ RD there exists a real number x
such that

⋂

[a,b]∈d[a, b] = {x}.

Proof For any d ∈ RD the set
⋂

[a,b]∈d[a, b] cannot be empty, in fact, since
⋂

[a,b]∈d[a, b] is an intersection of compact closed sets it is empty if and only if
there is a finite subset of intervals in d whose intersection is empty, but this is
in contradiction with d being a directed set. Now, if d is an infinite element it
cannot be the case that {x, y} ⊆

⋂

[a′,b′]∈d[a
′, b′] and x 6= y. In fact for each pair

of real numbers x, y with x 6= y there are just a finite number of dyadic intervals
containing both x and y, and this is in contradiction with the hypothesis of d
being infinite.

The relationship existing between the real line and the infinite elements of
RD can be clarified by means of following functions:

Definition 7 A function qP : RD → P(IR) is defined by:

qP(d) =
⋂

[a,b]∈d

[a, b]

Conversely, three functions e, e−, e+ : IR → RD are defined by:

e(x) = {[a, b] ∈ DI | x ∈ (a, b)}
e−(x) = {[a, b] ∈ DI | x ∈ (a, b]}
e+(x) = {[a, b] ∈ DI | x ∈ [a, b)}

where (a, b) indicates the open interval from a to b and (a, b] and [a, b) indicate
the obvious part open, part closed intervals.

Proposition 5 The following statements hold:
i) for every finite element d =↓[a, b] in RD, qP(d) = [a, b],
ii) for every real number x, {x} = qP ◦ e(x) = qP ◦ e−(x) = qP ◦ e−(x),
iii) for every non-dyadic number x ∈ IR/D, e(x) = e−(x) = e+(x),
iv) for every dyadic number x ∈ D, e(x) < e−(x), e(x) < e+(x) and e−(x) is
not consistent with e+(x),
v) e(IR) ∪ e−(IR) ∪ e+(IR) is equal to the set of infinite elements of RD.

12



The proof is easy.

Next we consider the function v : Sω → IR that associates to each meaningful
sequence of integers the real number represented by it. We want to show the
relation between the function v and the functions φ, qP and e previously defined.

Definition 8 The function v : Sω → IR is defined by:

v(〈si〉i∈IN ) =
∑

n∈N

sn/2n

It is not difficult to prove that:

Proposition 6 For every s ∈ Sω, {v(s)} = (qP ◦ φ)(s)

Given a dyadic number a we can divide the sequences of integers representing
it into three sets, the sequences ending with a series of 0, the ones ending with
a series of 1, and the ones ending with a series of −1,

a = {〈si〉i∈IN ∈ Sω | v(〈si〉i∈IN ) = a, ∃j . ∀i > j . si = 0},
a− = {〈si〉i∈IN ∈ Sω | v(〈si〉i∈IN ) = a, ∃j . ∀i > j . si = 1},

a+ = {〈si〉i∈IN ∈ Sω | v(〈si〉i∈IN ) = a, ∃j . ∀i > j . si = −1},

it is possible to prove that any sequence representing a is contained in one of
these sets and moreover:

∀s ∈ a . φ(s) = e(a), ∀s ∈ a+ . φ(s) = e+(a), ∀s ∈ a− . φ(s) = e−(a)

We can say that the infinite elements of RD are a close representation of the
real line, the set of infinite elements in RD looks like the real line except that
each dyadic number is triplicated.

In the next section we will show how to solve the problem of multiple rep-
resentations by means of a retract construction.

4 Topological characterisations

In this section we present some results concerning the topological relationship
between the real line and the Scott-domain RD. These results are then gen-
eralised to function spaces. Using RD we give also a definition of computable
real and of computable function on reals. Topologically the domain RD is much
more tightly related with the real line that the domain S∞ whose elements were
originally used to represent real numbers. This fact is true also for function
spaces. As a consequence, the use of RD makes it easier to prove topological
properties of the computable functions on the reals.

The main topological relation considered in this section is the notion of
retraction between spaces. The real line turns out to be a retract of the subspace
of infinite elements of RD.
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↓[−1, 1]↓[−2, 0] ↓[0, 2]

e(0) e(1)

e
−(0) e

+(0)

Figure 2: The diagram representing RD.

4.1 Topological preliminaries

For completeness we give here definitions of the topological notions that will we
require.

Let S be a subset of a topological space T . The subspace topology on S is
defined as follows: a set O in S is an open set in the subspace topology if and
only if there is an open set O′ in T such that O = S ∩ O′

Let Q be an equivalence relation on a space T . Let φ denote the canonical
map from T to T/Q, φ(x) = [x]. The quotient topology on T/Q is defined by: a
set O in T/Q is open if and only if φ−1(O) is open.

A space S is said to be a retract of a space T if there are two continuous
functions q : T → S and e : S → T such that q ◦ e = IdS . In this case the
following statements hold:
1) S is homeomorphic to the subspace e(S) of T
2) Let Q denote the equivalence relation induced on T by q, S is homeomorphic
to the quotient space T/Q.

A subbase P of a space T is a family of open sets of T such that any other
open set O of T can be written as a union of finite intersections of sets in P .
Let X be a set, given a family P of subsets of X there is a unique topology on
X such that P forms a subbase for that topology.

Let S and T be two topological spaces, and S → T be set of the continuous
functions from S to T . The compact-open topology on S → T , is the topology
having as subbase the sets in the form C⇒O = {f | f(C) ⊆ O}, where C is any
compact set in S and O is any open set in T . See [Dug66] for a more complete
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treatment.

4.2 The topological relation between the domain RD and

the real line

Let RD† denote the subspace of RD consisting of the infinite elements with the
subspace Scott-topology on RD.

Proposition 7 The real line is a retract of RD† via a pair of continuous func-
tions q : RD† → IR and e : IR → RD† with

q(d) = x iff qP(d) = {x} (=
⋂

[a,b]∈d

[a, b])

e(x) = {[a, b] ∈ DI | x ∈ (a, b)}

Proof From Propositions 4 and 5 it follows that the functions q and e are well
defined and that q ◦ e = idIR. We need to prove that the two functions are
continuous. We first prove the continuity of e. Let x ∈ IR and O a Scott-open
set in RD such that e(x) ∈ O then there exists a finite element ↓[a, b] such that
↓[a, b] ⊑ e(x) and ↓[a, b] ∈ O. It follows that (a, b) is an open neighbourhood of
x and for any y ∈ (a, b), ↓[a, b] ⊑ e(y), hence e(y) ∈ O, therefore e( (a, b) ) ⊆ O.

To prove the continuity of q, let d ∈ RD† and let O be an open set contain-
ing q(d). Then there exists a dyadic interval [a, b] such that q(d) ∈ (a, b) and
[a, b] ⊆ O. It follows that ↑RD (↓ DI [a, b]) ∩ RD† is an open set in RD†,
d ∈↑↓[a, b] ∩ RD† and q(↑↓[a, b] ∩ RD†) ⊆ O. ⊓⊔

The function q associates to each element of RD† the corresponding real
number. We can interpret e as the function which picks a canonical repres-
entative for each real number. Using q it is possible to give a definition of
computable real number:

Definition 9 A real number x is computable if there is a computable element
d ∈ RD such that x = q(d).

It is straightforward to prove that a real number is computable according to the
above definition if and only if it is representable by a computable sequence ac-
cording to Definition 2. It follows that this definition coincides with other defin-
itions of computable real number given in the literature, see Aberth [Abe80],
Grzegorczyk [Grz57], Martin-Löf [ML70], Rice [Ric54], Turing [Tur37].

Using e and q it is possible to associate to each Scott-continuous function
f : RD → RD a partial real function f : IR → IR defined by f = q ◦f ◦e , which
is partial because q is defined only on the infinite elements. f is the function on
reals represented by f . We obtain in this way a new definition of computable
function on real numbers.

Definition 10 A (partial) function g : IR → IR is computable if there exits a
computable function f : RD → RD such that g = f .
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The definition of computable function allows us to associate to every element f
in [RD → RD] a function on real numbers. If the function f is not sufficiently
defined, that is if f maps some infinite element to a finite element, then the
associated function is a partial function.

For every Scott-continuous function f : RD → RD, the function f is a
composition of continuous functions and therefore is continuous. In this way we
obtain a new proof of a classical result in computable analysis: every computable
function on real numbers is continuous w.r.t. the Euclidean topology.

In the following we extend the notion of computability to functions of several
arguments and to higher order functions. We will show how the retract relation
existing between IR and RD† can also be extended to function spaces. However
the retract relation cannot be extended to second-order functional spaces. For
second-order functional spaces, a set theoretical relation is stated. We do not
introduce here definitions for functionals on reals having order higher than 2.
This is not a severe limitation, in fact in mathematical analysis functionals
having order higher than 2 are almost never employed.

Definition 11 For each natural number n,
i) the topological space IFn is defined by:

IFn = {f : IRn → IR | f total continuous function }

where IRn denotes the usual topological product of IR.
The topology on IFn is the compact-open topology.

ii) FDn is the effective Scott-domain of the Scott-continuous functions
[RDn → RD].

Remark IF 0 is homeomorphic to IR and FD0 is homeomorphic to RD. Moreover
when the function spaces are endowed with the compact-open topology the space
(IR × IR) → IR is homeomorphic, via currying, to the space IR → (IR → IR)
and in general if T is a locally compact space the spaces (S × T ) → V and
S → (T → V ) are homeomorphic [Dug66].

We will use the following property of the Scott-topology.

Proposition 8 For each pair of Scott-domains D, D′ the Scott-topology on
[D → D′] coincides with the compact-open topology.

Proof It is easy to prove that each Scott-open subset of [D → D′] is also open
w.r.t. the compact-open topology. In fact for each finite step function d ⇒ d′ we
have ↑(d ⇒ d′) = {f | f(↑d) ⊆↑d′} = (↑d) ⇒ (↑d′), and for each finite element
d, ↑d is both open and compact. To prove the converse implication we need to
prove that given C, compact subset of D, and O, open subset of D′, C ⇒ 0
is a Scott-open subset of [D → D′]. Trivially C ⇒ O is upward closed. Let
{fi | i ∈ I} be a directed set of functions such that

⊔
{fi | i ∈ I} ∈ C ⇒ O, we

need to prove that there exists i s.t. fi ∈ C ⇒ O. One easily sees that if fi ⊑ fj

then f−1
i (O) ⊆ f−1

j (O), therefore {f−1
i (O) | i ∈ I}, with the subset relation, is

a directed set of open sets. It is also easy to prove that {f−1
i (O) | i ∈ I} is a
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covering of C. By compactness of C there exists i ∈ I s.t. C ⊆ f−1
i (O), that is,

fi ∈ C ⇒ O. ⊓⊔

We do not associate any topology to second-order functionals on reals.

Definition 12 For each n-tuple of natural numbers m = 〈m1, . . . mn〉
i) the set of functionals on reals IFm is defined by:

IFm = {f : (IFm1
× . . . × IFmn

) → IR) | f total continuous function }

ii) FDm is the effective Scott-domain of the Scott-continuous functions
[(FDm1

× . . . × FDmn
) → RD]

Observe that FD〈0,...,0〉 is homeomorphic to FDn.

In RD not every element denotes a real number, some elements in RD are
just finite approximations of real numbers. Similarly not every function in FDn

represents a function in IFn. Hence, for each natural number n, we define
a subspace FD†

n of the domain FDn. Every element in FD†
n will denote an

element in IFn. A similar consideration is valid for the domains FD〈m1,...mn〉.
Therefore we give the definitions

FD†
n = {g ∈ FDn | g((RD†)n) ⊆ RD†}

FD†
m

= {g ∈ FDm | g(FD†
m1

× . . . × FD†
mn

) ⊆ RD†}

The topology on FD†
n (FD†

m) is the subspace topology of Scott-topology.

Notation. In the following an n-tuple 〈y0, . . . , yn−1〉 is denoted also by y. If f
is a function on the elements of a tuple y, f(y) denotes its pointwise application
〈f(y1), . . . , f(yn−1)〉. The symbols [a, b], [a′, b′], [ai, bi] . . . are reserved for dyadic
intervals. A dyadic interval [ai, bi] is denoted also by [a, b]i and finally if [a, b] is
an n-tuple of dyadic intervals

∏

i<n[a, b]i denotes the obvious subset of IRn.

The retract relation can be extended to function spaces.

Proposition 9 For each natural number n, IFn is a retract of FD†
n. The pair

of retract functions qn : FD†
n → IFn and en : IFn → FD†

n are defined as follows:

qn(g)(x) = q(g(e(x)))

en(f)(d) =

{
⊥ if ∃i < n . di = ⊥

{[a′, b′] | ∃↓[a, b] ⊑ d . f(
∏

i<n[a, b]i) ⊆ (a′, b′)} otherwise

Proof We prove in the order the following points:
i) qn is a well-defined function,
ii) qn is a continuous function,
iii) en is a well-defined function,
iv) en is a continuous function,
v) qn ◦ en = idIF n

.
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i) We need to prove that for each g ∈ FD†
n qn(g) is a totally defined

continuous functions. qn(g) is continuous since composition of the continuous
functions g, q and e. qn(g) is totally defined since g ∈ FD†

n.

ii) To prove the continuity of qn it suffices to prove that for each C, compact
subset of IRn, and O, open subset of IR, there exists an open subset U of FDn

such that U ∩ FD†
n = q−1

n (C ⇒ O). Since the function (
∏

i<n e) is continuous
(
∏

i<n e)(C), is a compact subset of RDn. Let O′ be an open set in RD such

that O′ ∩RD† = q−1(O). Since the Scott-topology coincides with the compact-
open topology, (

∏

i<n e)(C) ⇒ O′ is a Scott-open subset of FDn. In particular
it is the open set we are looking for, in fact:
((

∏

i<n e)(C) ⇒ O′) ∩ FD†
n =

= {g | g((
∏

i<n e)(C)) ⊆ O′ ∧ g ∈ FD†
n}

= {g | g((
∏

i<n e)(C)) ⊆ q−1(O) ∧ g ∈ FD†
n}

= {g | (q ◦ g ◦ (
∏

i<n e))(C) ⊆ O ∧ g ∈ FD†
n}

= {g | qn(g) ∈ C ⇒ O} = q−1
n (C ⇒ O).

iii) From Proposition 1 it follows that en(f)(d) is an ideal of DI, that is,
an element of RD. It is straightforward to prove the continuity of en(f). The
continuity of f implies that en(f) maps elements of (RD†)n in RD†.

iv) en is continuous since for each finite step function (↓[a, b] ⇒↓[a′, b′]) in
FDn, e−1

n (↑(↓[a, b] ⇒↓[a′, b′]) ∩ FD†
n) is an open set in IF n. In fact:

e−1
n (↑ (↓[a, b] ⇒↓ [a′, b′]) ∩ FD†

n) = (
∏

i<n[a, b]i) ⇒ (a′, b′) if for each i < n

[a, b]i 6= [−∞, +∞], and e−1
n (↑(↓[a, b] ⇒↓[a′, b′]) ∩ FD†

n) = ∅ (or IFn) otherwise.

v) The following set of equations holds:
(qn ◦ en)(f)(x) = q(en(f)(e(x)))
= q({[a′, b′] | ∃↓[a, b] ⊑ e(x) . f(

∏

i<n[a, b]i) ⊆ (a′, b′)})

= q({[a′, b′] | ∃[a, b] . x ∈
∏

i<n(a, b)i ∧ f(
∏

i<n[a, b]i) ⊆ (a′, b′)})
= q({[a′, b′] | f(x) ∈ (a′, b′)}) (by continuity of f)
= q(e(f(x))) = f(x). ⊓⊔

The functions en and qn defined above are the natural generalisation of
the functions e and q. qn associates to each element of FD†

n the element of IFn

represented by it. en chooses, for each element in IFn, a canonical representation
in FD†

n. We can also say that the function qn partitions FD†
n into equivalence

classes. All the elements contained in a single equivalence class represent the
same element in IFn. The function en defines a canonical representation for
each class.

We discuss now the problem of defining an effective method that given an
element f in FD†

n, returns the canonical representation of the equivalence class
to which f belongs. Such a method exists if the function en ◦ qn : FD†

n → FD†
n

can be extended to a continuous and computable function cn : FDn → FDn.
In the following we prove that such a function cn exists. To do this it is

convenient to introduce the notion of finite covering.
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Definition 13 Given two natural numbers n, j and an element d ∈ RDn the
set of j-coverings Γn(j, d) of d is defined by:

Γn(j, d) = {[a, b] | ∀i < n . ↓[a, b]i ⇑ di ∧ bi − ai = 2−j}

Γn(j, d) is a set of (n-dimensional) dyadic intervals having width 2−j such
that for each x ∈ IRn if d ⊑ e(x) then x is contained in the interior part of one
interval in Γn(j, d).

Lemma 10 For each n, j, d the following properties hold:
i) if for all i < n, di 6= ⊥ then Γn(j, d) is a finite non-empty set,
ii) for all d′ if d ⊑ d′ then Γn(j, d) ⊇ Γn(j, d′).
iii) for each directed set {dh | h ∈ H} d =

⊔

h dh ⇒ ∃h′ . Γn(j, d) = Γn(j, dh′)

The proof is easy.

Proposition 11 i) The function e ◦ q : RD† → RD† can be extended to a
continuous and computable function c : RD → RD, that is c|RD† = e ◦ q.
c is defined by:

c(d) = {[a′, b′] | ∃[a, b] ∈ d . [a, b] ⊆ (a′, b′)}

ii) For every natural number n the function en ◦ qn : FD†
n → FD†

n can be
extended to a continuous and computable function cn : FDn → FDn defined by:

cn(g)(d) =







⊥ if ∃i < n . di =↓[−∞, +∞]

{[a′, b′] | ∃j ∈ IN . ∀[a, b] ∈ Γn(j, d) . ↓[a′, b′] ⊑ c(g(↓[a, b]))}
otherwise

Proof In order to prove the continuity and computability of c, let ǫr→r be
the effectively given enumeration functions of the finite elements of RD → RD
(obtained from the enumeration ǫr, as shown in Subsection 3.1) and let A be
the set of finite elements in RD → RD defined by:

A = {↓[a, b] ⇒↓[a′, b′] | [a, b] ⊆ (a′, b′)}.

It is straightforward to prove that c =
⊔

A and therefore c is continuous.
Moreover the set {i | ǫr→r(i) ∈ A} is recursive. It follows that the set
{i | er→r(i) ⊑ c} = {i | ∃B ⊂ A . B finite, consistent and er→r(i) ⊑

⊔
B}

is recursively enumerable thus c is indeed computable.

In order to prove the continuity and computability of cn let ǫn be the ef-
fectively given enumeration of FDn → FDn and let An be the set of finite step
functions in FDn → FDn defined by:

An = { (
⊔

[a′,b′]∈Γn(j,↓[a,b])
(↓[a′, b′] ⇒↓[a′′, b′′])) ⇒ (↓[a, b] ⇒↓[a′′′, b′′′]) |

j ∈ IN ∧ [a, b] ∈ (DI \ {⊥})n ∧ [a′′, b′′] ⊆ (a′′′, b′′′)}.

It is not difficult to show that cn =
⊔

An, hence the function cn is continuous.
Moreover the set {i | ǫn(i) ∈ An} is recursive and therefore cn is computable.

It is easy to prove that c|RD† = e ◦ q. In order to prove the equality
cn|FD

†
n

= en ◦ qn, we make use of the following lemma
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Lemma 12 Let g ∈ FDn, [a, b] ∈ (DI \ {⊥})n and [a′, b′] ∈ DI then
g(

∏

i<n e([a, b]i)) ⊆↑↓ [a′, b′] if and only if there exists j s.t. for each

[a′′, b′′] ∈ Γn(j, ↓[a, b]) we have ↓[a′, b′] ⊑ g(↓[a′′, b′′])

Proof of the lemma

( ⇐ ) ∀[a′′, b′′] ∈ Γn(j, ↓[a, b]) . ↓[a′, b′] ⊑ g(↓[a′′, b′′]) implies
∀d ∈ (RD†)n . (d ⇑ ↓[a, b]) ⇒ (↓[a′, b′] ⊑ g(d)) which implies
∀x ∈ [a, b] . ↓[a′, b′] ⊑ g(e(x)) which implies
g(

∏

i<n e([a, b]i)) ⊆↑↓[a′, b′].

( ⇒ ) Suppose for contradiction that for any j there exists [a′′, b′′] ∈ Γn(j, ↓[a, b])
such that ↓ [a′, b′] 6⊑ g(↓[a′′, b′′]). Since for all j, Γn(j, ↓[a, b]) is finite, by
König’s lemma it is possible to find a chain 〈[a′′, b′′]h〉h∈N such that for all h,

[a′′, b′′]h ∈ Γh(↓[a, b]) and ↓ [a′, b′] 6⊑ g(↓[a′′, b′′]h). Since for all natural h,

. ↓[a′′, b′′]h ⇑ ↓[a, b] it follows that (
⊔

h ↓[a′′, b′′]h) ⇑ ↓[a, b], we have also that
⊔

h ↓[a′′, b′′]h ∈ (RD†)n, therefore q(
⊔

h ↓[a
′′, b′′]h) = q(

⊔

h ↓[a′′, b′′]h ⊔ ↓[a, b]) ∈
∏

i<n[a, b]i. Moreover ↓[a′, b′] 6⊑ g(
⊔

h ↓[a′′, b′′]h) ⊒ g((e◦q)(
⊔

h ↓[a
′′, b′′]h) there-

fore we can conclude g(
∏

i<n e([a, b]i)) 6⊆↑↓[a′, b′] which contradicts the assump-
tion. ⊓⊔

Now let g ∈ FD†
n, and d ∈ (RD \ {⊥})n, the following equalities hold:

(en ◦ qn)(g)(d)
= {[a′, b′] | ∃↓[a, b] ⊑ d . qn(g)(

∏

i<n[a, b]i) ⊆ (a′, b′)}

= {[a′, b′] | ∃↓[a, b] ⊑ d . q(g(
∏

i<n e([a, b]i))) ⊆ (a′, b′)}

= {[a′, b′] | ∃↓[a, b] ⊑ d . c(g(
∏

i<n e([a, b]i))) ⊆↑↓[a′, b′]}
(since q(d) ∈ (a′, b′) iff ↓[a′, b′] ⊑ c(d) )

= {[a′, b′] | ∃↓[a, b] ⊑ d.∃j ∈ IN .∀[a′′, b′′] ∈ Γn(j, ↓[a, b]).[a′, b′] ∈ c(g(↓[a′′, b′′]))}
(by Lemma 12)

= {[a′, b′] | ∃j ∈ IN . ∀[a′′, b′′] ∈ Γn(j, d) . [a′, b′] ∈ c(g(↓[a′′, b′′]))}
(by Lemma 10 iii) )

= cn(g)(d) ⊓⊔

4.3 Second Order Functionals

Using the retract constructions for the first-order functions it is possible to
associate to each second order functional in FD†

m the functional on the reals
represented by it.

Definition 14 For every type tuple of natural numbers m let qm be the function
from FD†

m
to IFm defined by:

qm(G)(f1, . . . , fn) = q(G(em1
(f1), . . . , emn

(fn)))

It is immediate that qm is a well defined set theoretic function. A definition of
computability for functionals follows.

Definition 15 A functional on real numbers F ∈ IFm is computable if there
exists a computable element G ∈ FDm such that F = qm(G).
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From the above a very interesting property of computable functionals follows.

Theorem 13 Every computable functional on reals is continuous w.r.t. the
compact-open topology on function spaces.

This is a useful criterion for determining the non computability of function-
als. Starting from this result we can easily prove that the following functionals
are not computable.

1. Derivative.

D(f, y) =
df

dx
(y)

2. The functional that given a function f and an interval [a,b] yields the
minimum point x in [a, b] where the value f(x) is minimum.

M(f, a, b) = min{x | x ∈ [a, b] ∧ ∀y ∈ [a, b].f(x) ≤ f(y)}

3. The functional that given a function f and an interval [a, b] yields the
minimum point x in [a, b] where the value f(x) is zero and is equal to b if
such a value does not exist.

Z(f, a, b) = min{x | x ∈ [a, b], f(x) = 0 ∨ x = b}

In fact we can prove that none of the above functionals is continuous. For each
differentiable function f and for each neighbourhood U of f there exists ǫ > 0
such that the function fǫ(x) = f(x) + ǫ sin x

ǫ
belongs to U , moreover for each ǫ

D(fǫ, 0) = D(f, 0) + 1, it follows that the functional D is not continuous. The
functional M is not continuous on the function sin and interval [−π, 2π], in fact
M(sin,−π, 2π) = −π/2 but for each neighbourhood U of sin there exists ǫ > 0
such that the function f ′

ǫ(x) = sin x− ǫx is contained in U and M(f ′
ǫ,−π, 2π) =

arccos ǫ+π ≃ 3/2π. Z is not continuous on the constant functions f0(x) = 0 and
on the interval [0, 1]. In fact Z(f0, 0, 1) = 0 and if we defined f ′′ by f ′′

ǫ (x) = ǫ−ǫx
we would have that ∀ǫ > 0 . Z(f ′′

ǫ , 0, 1) = 1.

The non-computability of the above functionals has been already proved in
the literature, see [Bee85]. Such proofs consist in showing that these functionals
when applied to computable functions can yield non-computable real numbers.
Using Theorem 13 we have an easier proof technique. Independently and us-
ing a different approach Weihrauch [Wei95] has proved a result equivalent to
Theorem 13.

It is worthwhile to notice that every functional in FD†
m sends equivalent

representations of the same function on reals into equivalent representations of
the same real, more precisely:

Proposition 14 For each n-tuple m, functional G ∈ FD†
m

and functions

g1, g
′
1 ∈ FD†

m1
, . . . , gn, g′n ∈ FD†

mn
if qm1

(g1) = qm1
(g′1), . . . and qmn

(gn) =
qmn

(g′n) then q(G(g1, . . . , gn)) = q(G(g′1, . . . , g
′
n)).
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Proof It is not difficult to prove that for each g, g′ ∈ FD†
n if qn(g) = qn(g′)

then the greatest lower bounds of g and g′, g ⊓ g′, (which exists since FDn is a
Scott-domain) is contained in FD†

n. It follows that
G(g1, . . . , gn) ⊒ G(g1 ⊓ g′1, . . . , gn ⊓ g′n) ∈ RD† and since the only elements
in RD† that are order related are the different representations of the same real
number we have: q(G(g1, . . . , gn)) = q(G(g1⊓g′1, . . . , gn⊓g′n)) = q(G(g′1, . . . , g

′
n)).
⊓⊔

This result makes less harmful the existence, in the Scott-domains we use, of
multiple representations for real numbers and for real functions.

From Proposition 14 follows that the function qm can be defined by:
qm(G) = F if for every g1 ∈ FD†

m1
, . . . gn ∈ FD†

mn
we have:

q(G(g1, . . . gn)) = F (qm1
(g1), . . . , qmn

(gn)).
Since functions can be seen as particular cases of functionals, the previous

results hold also for the first-order case.

The retract construction cannot be extended to functional spaces. In partic-
ular we will prove that the function q〈1〉 cannot be a component of a retraction
pair.

Proposition 15 There is no topology on IF 〈1〉 = (IR → IR) → IR and no

continuous function e〈1〉 : IF 〈1〉 → FD†
〈1〉 s.t. the functions e〈1〉 and q〈1〉 form a

retraction between topological spaces.

Proof Suppose for contradiction that there exist a topology on IF 〈1〉 and a
function e〈1〉 making the pair q〈1〉, e〈1〉 a retraction. Let F0 be the constant

functional λf.0 ∈ IF 〈1〉, let G0 = e〈1〉(F0) and for each n ∈ IN+ let gn ∈ FD1

be the finite function defined by:

gn(↓[a, b]) =

{
↓[−2−n, 2−n] if − n ≤ a < b ≤ n
⊥ otherwise.

Clearly
⊔

n gn ∈ FD†
1 so q(G0(

⊔

n gn)) = 0. By the continuity of G0 there exists
a positive natural number l such that ↓[−1, 1] ⊑ G0(gl), that is (gl ⇒↓[−1, 1]) ⊑
G0. Let O be the open set O =↑(gl ⇒↓[−1, 1]). We derive a contradiction from
the set (e〈1〉 ◦ q〈1〉)

−1(O) being open. Let G ∈ FD〈1〉 be the function defined by:

G(g) =

{
e(0) if g(e(l + 1)) 6= ⊥
⊥ otherwise.

Since q〈1〉(G0) = q〈1〉(G) = F0 and G0 ∈ O ⊆ q−1
〈1〉 ◦ e−1

〈1〉(O) it follows that

G ∈ q−1
〈1〉 ◦ e−1

〈1〉(O). So there exists a finite element G′ such that: G′ ⊑ G and

G′ ∈ q−1
〈1〉 ◦ e−1

〈1〉(O). G′ can be written in the form G′ =
⊔

i<n(g′i ⇒ [ai, bi]),

with n ∈ IN and for each i < n, g′i is a finite function and [ai, bi] 6= ⊥. Let

h ∈ IN , Sh ∈ FD†
1 and Gh,l ∈ FD†

〈1〉 be defined by:

h = max{b | ∃[a, b] . i < n . [a, b] ∈ g′i(e(l + 1)) ∧ b 6= +∞}
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Sh(↓[a, b]) =

{
e(0) if b ≤ h
↓[a − h, b − h] otherwise.

Gh,l(g) = (Sh ◦ g ◦ e)(l + 1)

Notice that:

q1(Sh)(x) =

{
0 if x ≤ h
x − h if x > h.

q〈1〉(Gh,l)(f) =

{
0 if f(l + 1) ≤ h
f(l + 1) − h if f(l + 1) > h.

Since G′ ⊑ G and ∀i < n . G′(g′i) 6= ⊥ then ∀i < n . g′i(e(l + 1)) 6= ⊥.
Since ∀i < n . Gh,l(g

′
i) = Sh(g′i(e(l + 1))) = e(0) = G(g′i) ⊒ G′(g′i) we have

that G′ ⊑ Gh,l, therefore Gh,l ∈ q−1
〈1〉◦e−1

〈1〉(O). Now the contradiction arises from

the fact that Gh,l belongs to q−1
〈1〉 ◦ e−1

〈1〉(O) but its behaviour on the elements of

FD† is inconsistent with the one of the step function gl ⇒↓[−1, 1]. In fact let
G′′ = e〈1〉 ◦ q〈1〉(Gh,l) we have that G′′ ∈ O and q〈1〉(G

′′) = q〈1〉(Gh,l), and let
fh,l : IR → IR be defined by:

fh,l(x) =

{
0 if x ≤ l
(h + 2) × (x − l) otherwise.

We have that: q〈1〉(Gh,l)(fh,l) = q(Gh,l(e1(fh,l))) = q(Sh(e1(f)(e(l + 1))))
= q(Sh(e(h + 2))) = 2.
On the other hand: q〈1〉(Gh,l)(fh,l) = q〈1〉(G

′′)(fh,l) = q(G′′(e1(fh,l)))
but G′′(e1(fh,l)) ⊒ (gl ⇒↓[−1, 1])(e1(fh,l)) ⊒ (gl ⇒↓[−1, 1])(gl) =↓[−1, 1].
Since 2 6∈ [−1, 1] we have a contradiction. ⊓⊔

However it is possible to give a set theoretic result and prove that each
functional in IF m is the in the range of qm. To prove this we need to introduce
the notion of j-approximation.

Definition 16 Given two natural numbers n, j and an element g ∈ FDn the
set of elements ∆n(j, g) in IFn j-approximated by g is defined as follows:

∆0(j, d) = {x | ∀[a, b] ∈ d . x ∈ (a − 2−j, b + 2−j)}

∆n(j, g) = {f | ∀[a, b] ∈ (DI)n . ∀[a′, b′] ∈ g(↓[a, b]) . ∀x ∈ IRn .
∀i < n . xi ∈ [ai + 2−j , bi − 2−j ] ∧ −2j < ai ∧ bi < 2j

⇒ f(x) ∈ (a − 2−j, b + 2−j)}

Informally, ∆n(j, g) contains all the functions in IFn approximated by g up
to a tolerance of 2−j. We need to introduce the notion of j-approximation
because some elements g in FDn do not approximate any continuous functions
on reals, that is the set ↑g ∩ FD†

n is empty. For an example consider:
gstep = (↓[−1, 0] ⇒↓[−2,−1]) ⊔ (↓[0, 1] ⇒↓[1, 2]).
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Lemma 16 For each n, j ∈ IN and g ∈ FDn:
i) ∆n(j, g) is an open set and ∆n(j, g) 6= ∅
ii) ∀g′ . g ⊑ g′ ⇒ ∆n(j, g′) ⊆ ∆n(j, g)
iii) for each directed set {gh | h ∈ H} g =

⊔

h gh ⇒ ∃h′ . ∆n(j, g) = ∆n(j, gh′)

iv) If g ∈ FD†
n then qn(g) ∈ ∆n(j, g) and for each open set O containing qn(g)

there exists j′ s.t. ∆n(j′, g) ⊆ O, in other words {∆n(j, g) | j ∈ IN} is a system
of neighbourhoods for qn(g).

The proof is straightforward.

Proposition 17 For every n-tuple m of natural numbers the function
em : IFm → FD†

m defined by:

em(F )(g1, . . . , gn) = {[a, b] | ∃j . F (∆m1
(j, g1), . . . , ∆mn

(j, gn)) ⊆ (a, b)}

is well-defined and qm ◦ em = idIF
m

.

Proof From points i), ii), iii) of Lemma 16 it follows that, for each functional
F ∈ IFm, em(F ) is a well defined function in FDm.

Let g1 ∈ FD†
m1

, . . . , gn ∈ FD†
mn

, we prove that:
em(F )(g1, . . . gn) = e(F (qm1

(g1), . . . , qmn
(gn))).

The following chain of equivalences holds:
[a, b] ∈ e(F (qm1

(g1), . . . , qmn
(gn))) ⇔

F (qm1
(g1), . . . , qmn

(gn)) ∈ (a, b) ⇔
∃U1 . . . Un . Ui neighbourhood of qmi

(gi) s.t. F (U1, . . . , Un) ⊆ (a, b) ⇔
∃j . F (∆m1

(j, g1), . . . , ∆mn
(j, gn)) ⊆ (a, b) ⇔

[a, b] ∈ em(F )(g1, . . . , gn).

It follows that em(F ) ∈ FD†
m and for every f1 ∈ IFm1

, . . . , fn ∈ IF mn
we have:

(qm ◦ em)(F )(f1, . . . , fn) = q(em(F )(em1
(f1), . . . , emn

(fn))) =
(q ◦ e)(F ((qm1

◦ em1
)(f1), . . . , (qmn

◦ emn
)(fn))) = F (fm1

, . . . , fmn
).

Therefore qm ◦ em = idIF
m

. ⊓⊔

Also in this case em chooses a canonical representation for each continuous
functional on IR. The fact that qm ◦ em(F ) = idIF m

implies that all continuous
functionals on IR can be represented by an appropriate functional on RD. By
Propositions 15 there is no topology on IF m making both functions qm and em

continuous.

4.4 Partial functions

For every natural number n it is possible to extend the interpretation functions
qn to the whole space FDn. An element in FDn not contained in FD†

n denotes
a partial function on IR. A similar extension can be applied for any tuple m to
the functions qm. In the following we give a topological property for the partial
real functions obtained in this way.
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Definition 17 For natural number n and for each n-tuple of natural numbers
m let IF p

n and IF p
m denote the set of partial functions IRn ⇀ IR and

(IFm1
× . . . × IFmn

) ⇀ IR respectively.
The functions p : RD ⇀ IR, pn : FDn → IF p

n and pm : FDm → IF p
m are defined

by:

p(d) =

{
q(d) if d ∈ RD†

undefined otherwise

pn(g)(x1, . . . , xn) = p(g(e(x1), . . . , e(xn)) )

pm(G)(f1, . . . , fn) = p(G(em1
(f1), . . . , emn

(fn)) )

Proposition 18 For each natural number n and for each n-tuple m of natural
number,
i) p|RD†= q pn|FD

†
n

= qn pm|
FD

†

m

= qm

ii) for each g ∈ FDn (G ∈ FDm), the partial function pn(g) (pm(G)) is con-
tinuous on its domain of definition and this domain is a countable intersection
of open sets.

Proof Point i) is obvious. We prove point ii) just for second-order functions.
The proof for first-order functions follows the same pattern. Since the function
q is continuous p is continuous on its domain of definition. Let G be in FDm,
pm(G) is continuous on its domain since composition of continuous partial func-
tions, moreover:
〈f1, . . . , fn〉 ∈ dom(pm(G)) iff
∀k ∈ IN . ∃[a, b] . b − a ≤ 2−k ∧ [a, b] ∈ G(em1

(f1), . . . emn
(fn)) iff

∀k ∈ IN . ∃[a, b] . b − a ≤ 2−k ∧ ∃d1 . . . dn finite . f1 ∈ e−1
m1

(↑d1 ∩ FD†
m1

) ∧ . . .

∧ fn ∈ e−1
mn

(↑dn ∩ FD†
mn

) ∧ [a, b] ∈ G(d1 . . . dn) iff

〈f1, . . . , fn〉 ∈
⋂

k∈IN

⋃
{e−1

m1
(↑d1 ∩ FD†

m1
) × . . . × e−1

mn
(↑dn ∩ FD†

mn
) |

d1 . . . dn finite ∧ ∃[a, b] . b − a ≤ 2−k ∧ [a, b] ∈ G(d1 . . . dn)}.
And obviously the set contained in the last expression is a countable intersection
of open sets. ⊓⊔

A similar and somewhat stronger result can be found in Weihrauch and
Schreiber [WS81]. There, however, just first-order functions are considered and
a different class of domains is used, namely, the ω-algebraic cpo’s with weight
and distance.

It is now natural to extend the notion of computability to partial functions.

Definition 18 A partial function f in IF p
n is computable if there is a computable

element g in FDn such that f = pn(g). A partial functional F in IF p

m
is

computable if there is a computable element G in FDm such that F = pm(G).

So we have that every computable partial function (functional) is defined on
a set which is the countable intersection of open sets and is continuous on its
domain of definition.
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Conclusions

In this work we analysed the exact real number computations in functional pro-
gramming languages. It is shown that domain theory can be usefully employed
to carry on an analysis of computability on real numbers. A limitation of do-
main theory has been pointed out: using Scott-domain we cannot obtained a
completely faithful representation of the real line. The main result presented
in the article is a topological property of the computable functionals on real
numbers: we show that every computable functional is continuous w.r.t. the
compact-open topology on the functions space.
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