
Finitely Branching LTS’s from Reaction
Semantics for Process Calculi

Pietro Di Gianantonio Furio Honsell Marina Lenisa

Dipartimento di Matematica e Informatica, Università di Udine
via delle Scienze 206, 33100 Udine, Italy.

{digianantonio,honsell,lenisa}@dimi.uniud.it

Abstract. We experiment Leifer-Milner RPO approach to CCS and to
π-calculus. The basic category in which we carry out the construction is
the category of term contexts. Several issues and problems emerge from
this experiment; for them we propose some original solutions.

Introduction

Recently, much attention has been devoted to derive labelled transition systems
and bisimilarity congruences from reaction systems, in the context of process
languages and graph rewriting, [6,7,4,5,1,2]. In the theory of process algebras, the
operational semantics of CCS was originally given via a labelled transition system
(LTS), while more recent process calculi have been presented via reaction systems
plus structural rules. Reactive systems naturally induce behavioral equivalences
which are congruences w.r.t. contexts, while LTS’s naturally induce bisimilarity
equivalences with coinductive characterizations. However, such equivalences are
not congruences in general, or else it is an heavy, ad-hoc task to prove that they
are congruences.

Leifer and Milner [6] presented a general categorical method, based on the
notion of Relative Pushout (RPO), for deriving a transition system from a re-
action system, in such a way that the induced bisimilarity is a congruence. The
labels in Leifer-Milner’s transition system are those contexts which are minimal
for a given reaction to fire.

In the literature, some case studies have been carried out in the setting of
process calculi, for testing the expressivity of Leifer-Milner’s approach. Some dif-
ficulties have arisen in applying the approach directly to such languages, viewed
as Lawvere theories, because of structural rules. Thus more complex categorical
constructions have been introduced by Sassone and Sobocinski in [7].

In this work, we apply the RPO technique to the prototypical examples of
CCS and pi-calculus.

Aims and basic choices are the following.
i) To consider simple and quite fundamental case studies in which to experiment
the RPO approach.
ii) To apply the RPO approach in the category of term contexts. In this category,
arrows represent syntactic terms or contexts. The use of a category so strictly

mailto:digianantonio@dimi.uniud.it

related to the original syntax has the advantage that the generated LTS has a
quite direct and intuitive interpretation.

In carrying out the simpler case study given by CCS, we have found the
following problems. For all of them we propose some original solutions.
– Structural rules. In [7], Sassone and Sobocinski proposed the use of G-categories
to deal with reduction systems like CCS, where, beside the reduction rules, there
is a series of structural rules. However, so far G-categories have been used to treat
just tiny fragments of CCS, while in other treatments of CCS [1], structural
rules are avoided through a graph encoding; namely there is a single graph
representation for each class of structurally equivalent terms. In this work, we
show how, using a suitably defined G-category, one can directly apply the RPO
approach to the full CCS calculus.
– Names. Another issue is given by names, and name biding. In this work we
propose de Brujin indexes as a suitable instrument to deal with the issues that
name manipulation poses. We found out that de Brujin indexes can be suitably
used also for π-calculus, where name manipulation is more sophisticated than in
CCS.
– Pruning the LTS. The simple application of the RPO approach generates
LTS’s that are quite redundant, in the sense that most of the transitions can
be eliminated from the LTS without affecting the induced bisimilarity. From a
practical point of view, having such large trees makes the proofs of bisimilarity
unnecessarily complex. In this work, we propose a general technique that can be
used in order to identify sets of transitions that can be eliminated from the LTS,
without modifying the induced bisimilarity. In detail, we introduce a notion of
definability of a transition in terms of a set of other transitions T . We prove that,
given a LTS constructed via the RPO technique, if the class T of transitions is
such that any other transition in the original LTS is definable from T , then the
restricted LTS, obtained by considering only transitions in T , induces the same
bisimilarity of the original LTS.

The result of the above technique is a LTS for CCS that coincides with
the original LTS proposed by Milner. The above construction, applied to the
more sophisticated case of the π-calculus, gives us a notion of bisimilarity which
turns out to coincide with the syntactical bisimilarity of [4], and it is strictly
included in Sangiorgi’s open bisimilarity. In the π-calculus case, the LTS that
we obtain by our general construction, although quite reduced, is not directly
finitely branching. However, it can be turned into a finite one, by working in the
setting of categories of second-order term contexts of [3], where parametric rules
can be represented.

Summary. In Section 1, we present CCS syntax and reaction semantics with
de Brujin indexes. In Section 2, we summarize the theory of G-categories, and
Leifer-Milner theory of reaction systems in a G-category setting. In Section 3,
we present a construction allowing to prune the LTS obtained by applying the
previous theory of reaction systems. In Sections 4 and 5, we study LTS’s and
bisimilarities obtained by applying the above general constructions to CCS, and

2

π-calculus, respectively. Final remarks and directions for future work appear in
Section 6.

1 CCS Processes with de Brujin Indexes

In this section, we present a version of Milner’s CCS with de Brujin indexes,
together with the reaction system. Such presentation allows us to deal smoothly
with binding operators, and it is needed for extending in a natural way the
structural congruence on processes to contexts.

In our presentation, CCS names a0, a1, . . . are replaced by de Brujin indexes
r0, r1, . . ., which are name references. The intuition about indexes is that

– the index ri refers to the free name aj if j = i− n ≥ 0 and ri appears under
the scope of n ν’s;

– otherwise, if i < n, then ri is bound by the i+ 1-th ν on its left;
– binding operators ν do not contain any name.

E.g. in ννr0.r2.0, r0 is bound by the internal ν, while r2 refers to the free
name a0. Formally:

Definition 1 (CCS Processes). Let r0, r1, . . . ∈ NR be a set of name ref-
erences, let α ∈ Act = {ri, ri|ri ∈ N} ∪ {τ} be a set of actions, and let
x, y, z, . . . ∈ X be a set of process variables, then we define

(G 3) M ::= 0 | α.P | M1 +M2 | α.x guarded processes
(P 3) P ::= M | νP | P1|P2 | rec x.P | ϕP processes

where ϕ is a (injective) index transformation, obtained as a finite composition
of the transformations {δi}i≥0 ∪ {si}i≥0, where δi, si represent the i-th shifting
and the i-th swapping, respectively, defined by

δi(rj) =

{
rj+1 if j ≥ i
rj if j < i

si(rj) =

rj if j 6= i, i+ 1
ri+1 if j = i

ri if j = i+ 1

A closed process is a process in which each occurrence of a variable is in the
scope of a rec operator.

The index transformations ϕ in Definition 1 above are needed for dealing
with α-rule explicitly.

In order to apply the GRPO technique to CCS, it is convenient to extend the
structural congruence, which is usually defined only on processes, to all contexts.
Here is where the syntax presentation à la de Brujin plays an important rôle.
Namely the CCS rule

(νaP) | Q ≡ νa(P | Q) , if a not free in C[]

is problematic to extend to contexts with the usual syntax, since, if Q is a
context, we have to avoid captures, by the ν-operator, of the free variables of

3

the processes, that will appear in the holes of Q. Using de Brujin indexes (and
index transformations), we above rule can be naturally extended to contexts as
follows:

C[]|(νC ′[]) ≡ ν((δ0C[])|C ′[])

The complete definition of structural congruence is as follows:

Definition 2 (Structural Congruence). Let C[], C ′[], C ′′[] denote 0-holed
or 1-holed contexts. The structural congruence is the relation ≡, closed under
process constructors, inductively generated by the following set of axioms:

(par) C[]|0 ≡ C[] C[]|C ′[] = C ′[]|C[]
C[]|(C ′[]|C ′′[]) ≡ (C[]|C ′[])|C ′′[]

(plus) C[] + 0 = C[] C[] + C ′[] ≡ C ′[] + C[]
C[] + (C ′[] + C ′′[]) = (C[] + C ′[]) + C ′′[]

(rec) rec x.C[] ≡ C[][rec x.C[]/x]

(nu) ν0 ≡ 0 C[]|(νC ′[]) ≡ ν((δ0C[])|C ′[]) ννC[] ≡ ννs0C[]

(phi) ϕ0 ≡ 0 ϕ(α.C[]) ≡ ϕ(α).ϕ(C[])
ϕ(C[]|C ′[]) ≡ ϕ(C[])|ϕ(C ′[]) ϕ(rec x.C[]) ≡ rec x.(ϕC[])
ϕ(C[] + C ′[]) ≡ ϕ(C[]) + ϕ(C ′[]) ϕ(νC[]) ≡ ν(ϕ+1C[])
ϕ1 . . . ϕm[] ≡ ϕ′1 . . . ϕ′n[] , if ϕ1 ◦ . . . ◦ ϕm = ϕ′1 ◦ . . . ◦ ϕ′n

where ϕ+1(ri) =

{
r0 if i = 0
(ϕ(ri−1))+1 otherwise

ϕ(α) =

ϕ(r) if α = r

ϕ(r) if α = r

τ if α = τ

The last (phi)-rule in the above definition is useful for dealing with structural
congruence of contexts (but of course is not necessary when dealing only with
processes). Notice that there is an effective procedure to determine whether
ϕ1 ◦ . . . ◦ ϕm = ϕ′1 ◦ . . . ◦ ϕ′n. Namely, the two compositions are equal if and
only if they contain the same number of transformations in the forms δi and
their behavior coincides on an initial segment of indexes (whose length can be
calculated from the δi’s and the si’s involved.)

As in the standard presentation, one can easily show that each CCS process
is structurally congruent to a process in normal form, i.e. a process of the shape
νk(Σm1

j=1α1j .P1j | . . . | Σmn
j=1αnj .Pnj), where all unguarded restrictions are at the

top level, and index transformations do not appear at the top level. A similar
normal form can be defined also for contexts. Reaction semantics, defined up-to
structural congruence, is as follows:

Definition 3 (Reaction Semantics). The reaction relation → is the least re-
lation (on closed processes) closed under the following reaction rules and reaction
contexts:

Reaction rules. r.P +M | r.Q+N → P |Q τ.P +M → P

Reaction contexts. D[] ::= [] | νD[] | P |D[] | D[]|P

4

Of course, one can easily define a mapping from standard CCS syntax into
our de Brujin presentation, in such a way that reaction semantics is preserved.
We omit the details.

2 The Theory of Reactive Systems in the G-category
Setting

In this section, we summarize the categorical notions necessary in the remaining
of the article. These are the theories of G-categories, and the reaction systems
formulated in a G-category setting [6,8].

The basic idea is to formulate the notion of reaction system, in a setting
whereby contexts are modeled as arrows of a category, terms are arrows having
as source a special object 0, and reaction rules are pairs of terms.

For our purpose it is necessary to consider a more involved formulation of
the theory where G-categories are used. G-categories are a particular form of 2-
categories where morphisms between arrows are all isomorphisms. G-categories
are useful in dealing with calculi where there are structural equivalence relations
on terms, CCS and π-calculus are typical examples. For these calculi, two cells
isomorphisms represent equivalence relations on contexts. The extra complexity
of using G-categories is motivated by the fact that the simpler approach of using
categories with arrows representing equivalence classes of contexts (or terms)
induces an incorrect bisimilarity, [8] .

Definition 4. A 2-category C consists of

– A set of objects: X,Y, Z, ...
– For any pair of objects X,Y ∈ C, a category C(X,Y). Objects in C(X,Y) are

called 1-cells morphisms, and denoted by f : X → Y . Arrows in C(X,Y) are

called 2-cells isomorphisms and represented by α : f ⇒ g or by X

f
&&

g

88

�� ��
�� α Y .

Composition in C(X,Y) is called vertical composition and it is denoted by
•.

– For all objects X, Y and Z, there is a functor ◦ : C(Y,Z) × C(X,Y) →
C(X,Y), called horizontal composition, which is associative and admits the
identity 2-cells of idX as identities.

A G-category is a 2-category whose 2-cells morphisms are all isomorphisms.

We define here the G-category formed by the finite (i.e. without the rec
operator) CCS terms and contexts, with terms (and contexts) equipped with
a structural equivalence. Since the CCS grammar needs to distinguish between
guarded and generic terms, the category needs to contain two distinct objects.
Formally:

– Objects are 0,G,P.

5

– Arrows from 0 to G (P) are guarded processes (generic processes). Arrows
from G (P) are contexts that take a guarded term (a term). More formally,
the arrows A → B are the contexts CBA[] generated by the grammar:
CGG [] ::= [] | α.CPG [] | CGG [] +M | M + CGG []
CGP [] ::= α.CPP [] | CGP [] +M | M + CGP []
CPG [] ::= CGG [] | νCPG [] | CPG []|P | P |CPG [] | δCPG []
CPP [] ::= [] | CGP [] | νCPP [] | CPP []|P | P |CPP [] | δCPP []
For simplicity, in what follows we will omit the tag P,G from the contexts.

– 2-cell isomorphisms between C[] and C ′[] are the one-to-one maps between
the instances of actions in C[] and C ′[] induced by the proof of structural
congruence. By structural induction on the proof of structural congruence, it
is possible to show that two structurally congruent finite terms have the same
number of instances for each action, and each proof of congruence induces a
one to one maps between actions in an obvious way.

Here we restrict the G-category to contain only finite processes because we
need the 2-cell morphisms to be isomorphisms. When CCS processes contain
the rec operator, two congruent processes can contain two different numbers of
actions, so there cannot exists a one-to-one map between the sets of actions.
However, it is possible to recover a LTS for the whole CCS processes by defining
the LTS associated to an infinite process P (a terms containing rec) as the
supremum of the LTS associated to the approximants of P . For lack of space we
omit the details.

Definition 5 (G-Reaction System). A G-reaction system C consists of:

– a G-category C;
– a distinguished object 0 ∈ |C|;
– a collection D of 1-cells morphisms, in C. D is referred as the set of reaction

contexts, it is required to be closed under 2-cells, and to reflect composition.
– a set of pairs R ⊆

⋃
I∈|C| C[0, I]× C[0, I] of reaction rules.

The reaction contexts are those in which a reaction can occur. By composition-
reflecting we mean that d ◦ d′ ∈ D implies d, d′ ∈ D, while by closure under
2-cells we mean that if d ∈ D, α : d⇒ d′ then d′ ∈ D.

In our leading example a G-reaction system for CCS is obtained by taking as
reaction rules and reaction contexts the ones given in Definition 3. It is immediate
to check that this definition is correct.

A G-reaction system induces a reaction relation → on 1-cells, defined by:
t → u if there exist 〈l, r〉 ∈ R, α : dl ⇒ t and β : u ⇒ dr. Observe that the
reaction relation is closed by 2-cell isomorphisms. In the CCS example, the above
reaction relation coincides with the canonical one given in Definition 3

The behavior of a reaction system is expressed as an unlabelled transition
system. On the other hand, many useful behavioral equivalences are only defined
for lts’s.

From a reaction systems it is possible to derive a lts by taking as labels
the contexts that transform a term into a term for which a reduction rule ap-
plies. In [6], the authors formalize these ideas and propose to take as labels the

6

“smallest contexts allowing for a reaction”. A categorical criterion for identifying
the smallest contexts is given by the relative pushouts construction. In [8] this
categorical construction is extended to G-categories.

Definition 6 (GRPO/GIPO).

(i) Let C be a G-category and let us consider the commutative diagram in
Fig. 2(i). Any tuple 〈I5, e, f, g, β, γ, δ〉 which makes diagram in Fig. 2(ii)
commute and such that δl • gβ • γt = α is called a candidate for (i).

(ii) A G relative pushout (RPO) is the smallest such candidate, i.e. it satisfies
the universal property that given any other candidate 〈I6, e′, f ′, g′, β′, γ′, δ′〉,
there exists a mediating morphism given by a tuple 〈h, ϕ, ψ, τ〉, with τ :
g′h ⇒ g, such that diagrams in Fig. 2(iii) commute. Moreover, the fol-
lowing identities on two cells need to be satisfied: γ = τe • g′ϕ • γ′, δ =
δ′ • g′ψ • τ−1f , β′ = ψl • hβ • ϕt. Such a mediating morphism must be
unique, up to 2-cell isomorphisms.

(iii) A commuting square such as diagram in Fig 2(i) is a G-idem pushout
(GIPO) if 〈I4, c, d, idI4 , α, 1c, 1d〉 is its GRPO.

I4

I2

c

>>||||||||
α

=⇒ I3

d

``BBBBBBBB

0

t

aaBBBBBBBB l

==||||||||

(i)

I4

I2
e //

||||||||

c

>>

<<<< �"
γ

I5

g

OO

I3
f

oo

BBBBBBBB

``

d
����}� δ

0

t

aaBBBBBBBB l

==||||||||

β
=⇒

(ii)

I4

I6

g′

OO

I2
e //

{{{{{{{{

e′

==

;;;; �!
ϕ

c

FF

MMMM "*
γ′

I5

h

OO

I3
f

oo

CCCCCCCC

aa

f ′

����}� ψ

111111111111111

XX

dqqqqt|
δ′

(iii)

Fig. 1. Redex Square and Relative Pushout.

Definition 7 (GIPO Transition System).

– States: equivalence classes of arrows [t] : 0 → I in C, for any I; two arrows
are in the same equivalence class if there exists a 2-cell isomorphism between
them;

– Transitions: [t]
[c]−→I [dr] iff d ∈ D, ct = dl, 〈l, r〉 ∈ R and the diagram in

Fig. 2(i) is a GIPO.

An important property of GIPO squares is that they are preserved by the
substitution of one edge with a two 2-cell isomorphic one, [8]. It follows that the

7

transition relation is independent from the chosen representative of an equiva-
lence class. Let ∼I denote the bisimilarity induced by the GIPO lts.

Another important property is the pasting property for GIPO squares.

Lemma 1 (GIPO pasting, [8]). Suppose that the square in Fig. 2(i) has an
GRPO and that both squares in Fig. 2(ii) commute.

(i) If the two squares of Fig. 2(ii) are GIPOs so is the outer rectangle.
(ii) It the outer rectangle and the left square of Fig. 2(ii) are GIPOs so is the

right square.

Definition 8 (Redex GRPO). Let C be a G-reaction system and t : 0 → I2
an arrow in C. A redex square is a diagram in the form of Fig. 2(i), with l the
left-hand side of a reaction rule and d a reaction context.
A G-reaction system C is said to have redex GRPOs if every redex square has
a GRPO.

e0

��

f0 //

f1

��

e2

��

g0
//

g1α•σf0 8@xxx xxx

g1
//

(i)

e0

��

f0 //
f1 //

e1

��

e2

��

g0
//

α 6>uuuu

g1
//

σ 6>uuuu

(ii)

Fig. 2. IPO pasting.

The following fundamental theorem is provable using the GIPO pasting
lemma:

Theorem 1. Let C be a G-reaction system having redex GRPOs. Then the
GIPO bisimilarity ∼I is a congruence w.r.t. all contexts, i.e. if a∼Ib then for
all c of the appropriate type, ca∼Icb.

3 Pruning the GIPO LTS

In this section we present a construction allowing to prune the LTS obtained
by the GIPO construction. In this way it is possible to derive simpler and more
usable LTS’s. The key notion is that of definability. We will prove that in a GIPO
LTS, the GIPO transitions that are “definable” in some suitable sense can be
removed without affecting the bisimilarity induced by the LTS. Intuitively, a
transition in a LTS is definable if can be replicated using other transitions (and
contexts).

8

Definition 9. Given a G-reaction system C, having redex GRPOs, let T be a
subset of the whole set of GIPO transitions,

(i) we say that T is closed under bisimulation if for any [t1], [t′1], [t2], [t′2],

[f], such that [t1]∼I [t′1], [t2]∼I [t′2], [t1]
[f]−→I [t2], [t′1]

[f]−→I [t′2], we have that:

[t1]
[f]−→I [t2] ∈ T iff [t′1]

[f]−→I [t′2] ∈ T
(ii) we say that the whole GIPO LTS is definable from T if there exists a set

of tuples { 〈[fk], [f ′k], Pk, ek〉|k ∈ K} of the following form:
– [fk] GIPO label, [f ′k] GIPO label or f ′k = ε with fk : Ik → I ′k, f ′k : Ik →
Jk (where we set ε : Ik → Ik)

– Pk is a Hennessy-Milner proposition with modal operators labeled by
GIPO labels

– ek : Jk → Ik (with Jk possibly 0)

and such that, in the whole GIPO LTS, there is a transition [t]
[f]−→I [t′] if

and only if there exist i and t′′ : 0→ Jk satisfying the next four conditions:
– [f] = [fk],

– ([t]
[f ′
k]−→I [t′′] ∈ T) or (t′′ = t ∧ f ′k = ε)

– In the T LTS, the state [t′′] satisfies the proposition Pk
– ([t′] = [ek(t′′)] ∧ Jk 6= 0) or ([t′] = [ek] ∧ Jk = 0)

Proposition 1. Given a reactive system C, and a subset T of transition that is
closed under GIPO bisimulation and such that the whole GIPO LTS is definable
from T , then ∼I =∼T , i.e. the two GIPO LTS induce the same bisimilarity.

Proof. Consider the relation S = {〈[ct], [cu]〉 | [t] ∼T [u], c context}. It is easy to
prove that ∼I ⊆∼T⊆ S. If we prove that S is an GIPO bisimilarity (ie S ⊆ ∼I),
then the three relations are equal. So we prove that, for any 〈[ct], [cu]〉 ∈ S, if

[ct]
[f]−→I [t′], then there exists u′ s.t. [cu]

[f]−→I [u′] with [t′]S[u′].
Consider the following diagram:

0
t //

l

��

I0
c //

f ′

��

I2

f

��

I3
d

//

α :B}}}}

I1
d′

//

β :B}}}}

I4

where the outer rectangle is the GIPO inducing the transition [ct]
[f]−→I [t′], namely

[t′] = [d′dr] with 〈l, r〉 reaction rule, and the left square is obtained from an GIPO
construction starting from l and t. There are two cases to consider:

– If the transition labeled by [f ′] is in T , then, since [t]
[f ′]−→I [dr], there exists u′′,

[u]
[f ′]−→I [u′′], [u′′] ∼T [dr]. By composition of RPO squares, [cu]

[f]−→I [d′u′′],
from which the thesis.

9

– If the transition labeled by [f ′] is not in T , then it is definable by T , and

since [t]
[f ′]−→I [dr], there exists a tuple 〈[f ′], [fk], Pk, ek〉 and a term t′′ such that

[t]
[fk]−→I [t′′], Pk([t′′]), and [dr] = [ekt′′] (or [dr] = [ek]). From the last equality

it follows [t′] = [d′dr] = [d′ekt′′] (= [d′ek]). Since [t] ∼T [u], there exists

u′′, [u]
[fk]−→I [u′′], [t′′] ∼T [u′′] and so Pk([u′′]) (Hennessy-Milner propositions

cannot separate bisimilar elements). From this, [u]
[f ′]−→I [eku′′] (

[f ′]−→I = [ek]).

By composition of GRPO squares, [cu]
[f]−→I [d′eku′′] (

[f]−→I [d′ek]), from which
the thesis.

ut
In using the above proposition for the CCS and π-calculus cases, we are not

going to use the extra expressivity given by the Hennessy-Milner propositions
Pk; in all the tuples 〈[fk], [f ′k], Pk, ek〉 defined in the following, the propositions
Pk will be set equal to true. Nevertheless, we prefer here to present this general
version of the proposition.

4 Applying the GRPO Technique to CCS

In this section, we study LTS’s obtained by applying the GRPO technique to
CCS. First, we consider the LTS obtained by applying Leifer-Milner theorem in
the GRPO setting (Theorem 1 of Section 2). This turns out to be still infinitely
branching. However, by applying our general pruning technique of Section 3, we
are able to get a finitely branching LTS and GIPO bisimilarity, which coincide
with the original Milner’s LTS and strong bisimilarity, respectively.

The basic property that allows to apply the GRPO construction is the fol-
lowing.

Proposition 2. The G-reaction system of finite CCS processes has redex GRPO.

Proof. There are several cases to consider depending also on the reaction rule
involved, here we consider only the reaction rule r.P + M | r.Q + N → P |Q.
Given the commuting redex square α : C[] ◦ P ⇒ D[] ◦ L, by structural rules,
the reaction contexts D[] can be written in the form νn([]|P1| . . . Ph), while the
context C[] can be written as νmC ′[ϕ[]], with C ′[] not containing any name
transformation ϕ′, or hiding operator ν.

If the redex L is all contained (or better mapped by α−1) in the process P ,
the GRPO has form α′ : ϕ[] ◦ P ⇒ (νm[]|Pi1 | . . . |Pik) ◦ L. Notice that the
transformation ϕ[], cannot be factorized by the GRPO construction.

If the process P contains only one side of the redex L, the GRPO has form
α′ : (ϕ[]|P ′) ◦ P ⇒ (νm[]|Pi1 | . . . |Pik) ◦L, with the process P ′ giving the other
side of the redex.

If the redex L is all contained in the context C[], the GRPO has form
α′ : C ′′[ϕ[]] ◦ P ⇒ (νm[]|P ′) ◦ L, with ϕP contained in P ′.

In the remaining cases, where the main connectives of the redex L are con-
tained in C ′[], the GRPO has the form α′ : C ′′[ϕ[]] ◦ P ⇒ (νm[]) ◦ L ut

10

Table 1 summarizes the set of GIPO contexts (up-to structural congruence)
obtained by applying Theorem 1. For simplicity, we denote an equivalence class
[C[]] by a special representative.

Process P ≡ νk(Σm1
j=1α1j .P1j | . . . | Σmn

j=1αnj .Pnj) GIPO contexts

∃i, j. αij = τ ∨ (∃i, j, i′, j′. αij = rl ∧ αi′j′ = rl) ϕ[]

∃i, j. αij 6= τ ϕ[] + M | α.Q+N

with δk0 (α) = ϕ+k(αij)

C[] | α.Q+M | α.R+N
C[] + α.Q | α.R+N
C[] + τ.Q
C[] | τ.Q+N
α.C[] +M | α.Q+N
τ.C[] +N

Table 1. CCS GIPO contexts.

The first item in Table 1 corresponds to the case where an internal transition
of the process P is considered. In such case the GIPO context is empty. If the
process P exposes a non-τ action, then a communication with a context exposing
a complementary action can arise (second item). Finally, the last raw shows all
GIPO contexts where the reduction is “all inside the context” (and the process
plays a passive rôle).

Notice that if we do not use G-categories and work on the category where
arrows are equivalence classes of CCS processes, the process α.0 | α.0 will have as
only GIPO contexts the contexts ϕ[] and the GIPO contexts ϕ[] + M | α.Q+N
will be missing.

The GIPO LTS described above is still infinitely branching. However, there
are many GIPO contexts which are intuitively redundant, e.g. all the contexts
in the last raw. These are “not engaged”, i.e. the reduction is all inside the
context. Also the class of contexts in the third raw is redundant; namely, the
contexts of the shape []|α.Q are sufficient to define the whole class, in the sense
of Definition 9 of Section 3. More precisely, we have:

Proposition 3.
i) GIPO LTS is definable from set of GIPO transitions labeled by {[]}∪{[]|α.0 |
α ∈ A}.
ii) The bisimilarity induced by the LTS defined by such GIPO contexts (see
Table 2) is a congruence.

Proof. i) Transitions corresponding to GIPO contexts of the shape ϕ[] (second
raw in Table 1) are definable via the tuple 〈ϕ[], [], true, ϕ[]〉. Transitions cor-
responding to GIPO contexts of the shape ϕ[] + M | α.Q + N (third raw in
Table 1) are definable via the tuple 〈ϕ[] +M | α.Q + N, []|α′.0, true, ϕ[]|Q〉,
where δk0 (α′) = αij . Transitions corresponding to the contexts C[] in the last

11

raw of Table 1 are definable via tuples of the shape 〈C[], ε, true, E[]〉, where
E[] is a 0 or 1-holed context defined according to the following table:

GIPO context E[]
C[] | α.Q+M | α.R+N C[] | Q | R
C[] + α.Q | α.R+N Q | R
C[] + τ.Q Q
C[] | τ.Q+N C[] | Q
α.C[] +M | α.Q+N C[] | Q
τ.C[] +N C[]

ii) The proof follows from Proposition 1. ut

Process P ≡ νk(Σm1
j=1α1j .P1j | . . . | Σmn

j=1αnj .Pnj) GIPO contexts

∃i, j. αij = τ ∨ (∃i, j, i′, j′. αij = rl ∧ αi′j′ = rl) []

∃i, j. αij 6= τ [] | αij .0

Table 2. CCS reduced GIPO contexts.

Now, it is immediate to see that the above GIPO LTS coincides with the
standard LTS; namely the GIPO context [] corresponds to the τ -transition,
while the GIPO context [] | α.0 corresponds to a α-transition.

Summarizing, we have:

Proposition 4. The reduced GIPO LTS coincides with the original LTS for
CCS, and the GIPO bisimilarity coincides with CCS strong bisimilarity.

5 The π-calculus Case

In this section, we apply the above machinery to π-calculus. The latter is sig-
nificantly more difficult to deal with than CCS, because of name substitutions,
which arise in the reaction semantics. We will show that the reduced GIPO
LTS for π-calculus induces the syntactical bisimilarity of [4], which is finer than
Sangiorgi’s open bisimilarity. Our pruning technique does not give us directly
a finitely branching LTS, however we will briefly discuss how a finitary GIPO
LTS can be obtained by working in the setting of categories of second-order term
contexts of [3].

We start by introducing the π-calculus syntax with de Brujin indexes.

Definition 10 (π-calculus Processes). Let r0, r1, . . . , s0, s1, . . . ∈ NR be a
set of name references, and let x, y, z, . . . ∈ X be a set of process variables. We
define

12

(Act 3) α ::= τ | r() | rs actions
(G 3) M ::= 0 | α.P | M1 +M2 | α.x guarded processes

(P 3) P ::= M | νP | P1|P2 | rec x.P | σP processes

where σ is a substitution obtained as a finite composition of shifting operators
δi’s, swapping operators si’s, and singleton substitutions tij, defined by:

tij(rk) =

{
rk if k 6= i

rj if k = i

A closed process is a process in which each occurrence of a variable is in the
scope of a rec operator.

We denote by dom(σ) the set of name references on which σ is not the
identity, i.e. {ri | σ(ri) 6= ri}. π-calculus contexts are defined similarly to CCS
contexts. The structural congruence extended to contexts is defined as follows:

Definition 11 (Structural Congruence). Let C[], C ′[], C ′′[] denote 0-holed
or 1-holed contexts. The structural congruence is the relation ≡, closed under
process constructors, inductively generated by the following set of axioms:

(par) C[]|0 ≡ C[] C[]|C ′[] = C ′[]|C[]
C[]|(C ′[]|C ′′[]) ≡ (C[]|C ′[])|C ′′[]

(plus) C[] + 0 = C[] C[] + C ′[] ≡ C ′[] + C[]
C[] + (C ′[] + C ′′[]) = (C[] + C ′[]) + C ′′[]

(rec) rec x.C[] ≡ C[][rec x.C[]/x]

(nu) ν0 ≡ 0 C[]|(νC ′[]) ≡ ν((δ0C[])|C ′[]) ννC[] ≡ ννs0C[]

(sigma) σ0 ≡ 0 σ(rs.C[]) ≡ σ(r)σ(s).σ(C[])
σ(τ.C[]) ≡ τ.σ(C[]) σ(r().C[]) ≡ σ(r)().σ+1C[]
σ(C[]|C ′[]) ≡ σ(C[])|σ(C ′[]) σ(rec x.C[]) ≡ rec x.(σC[])
σ(C[] + C ′[]) ≡ σ(C[]) + σ(C ′[]) σ(νC[]) ≡ ν(σ+1C[])
σ1 . . . σm[] ≡ σ′1 . . . σ′n[] , if σ1 ◦ . . . ◦ σm = σ′1 ◦ . . . ◦ σ′n

Notice that, similarly to the CCS case, the last (sigma)-rule is effective, by
definition of the substitutions σi, σ′i.

As in the standard presentation, one can easily show that each π-calculus
process P is structurally congruent to a process in normal form, i.e. a process of
the shape νk(Σm1

j=1α1j .P1j | . . . | Σmn
j=1αnj .Pnj), where all unguarded restrictions

are at the top level, and substitutions do not appear at the top level.

Definition 12 (Reaction Semantics). The reaction relation → is the least
relation closed under the following reaction rules and reaction contexts:

Reaction rules. r().P +M | rrj .Q+N → (ν(t0j+1P))|Q τ.P +M → P

Reaction contexts. D[] ::= [] | νD[] | P |D[] | D[]|P

The above rule for communication may seem strange, but one can easily check
that it is equivalent to the original one. It is motivated by the fact that, by using

13

a ν operator in the resulting process, we avoid the introduction of operators for
index decrementing, which would be problematic for the GRPO construction.

Table 3 summarizes the set of GIPO contexts (up-to structural congruence)
obtained by applying Theorem 1. Table 4 summarizes the set of reduced GIPO
contexts, which define all the GIPO contexts, according to Definition 9 of Sec-
tion 3.

Notice that, when the process exposes an output action and the context an
input one, i.e. C[] = σ[] + M | r′().Q+N (fifth raw in Table 3), we cannot get rid
of Q in the reduced context (last raw of Table 4). This is because the transition
provides a substitution for Q, depending on the process P (and hence the context
e() required in Definition 9 would not be uniform on all processes). Moreover,
if σ acts also on fr(νQ), then we cannot get rid of it, since otherwise it would
appear in the context e() and it would act also on names in Q, which we do not
want. Therefore, the reduced GIPO LTS that we obtain, although significantly
simpler than the original one, is still infinitely branching, since a process P ,

which exposes an output action, makes infinitely many transitions P
σ[]|r′().Q−→ ,

for any Q. In Section 5.1, we will sketch how to overcome this problem getting
a finitely branching characterization of the GIPO LTS and bisimilarity.

GIPOprocess GIPO contexts

P ≡ νk(Σm1
j=1α1j .P1j | . . . | Σmn

j=1αnj .Pnj)

∃i, j. αij = τ ∨ σ[]
∃i, j, i′, j′. αij = rl() ∧ αi′j′ = rls

∃i, j, i′, j′. αij = rh() ∧ αi′j′ = rls ∧ h 6= l σ[]
with σ+k(rh) = σ+k(rl)

∃i, j. αij = r() σ[] + M | r′s.Q+N

with δk0 (r′) = σ+k(r)

∃i, j. αij = rs σ[] + M | r′().Q+N

with δk0 (r′) = σ+k(r)

C[] | r().Q+M | rs.R+N
C[] + r().Q | rs.R+N
C[] + τ.Q
C[] | τ.Q+N
r().C[] +M | rs.Q+N
τ.C[] +N

Table 3. π-calculus GIPO contexts.

5.1 Finitely Branching LTS’s for π-calculus

First of all, notice that the substitution σ appearing in the GIPO context
σ[]|r′().Q in the last raw of Table 4 is actually redundant, even if it cannot
be eliminated using Proposition 1. However, by a direct reasoning, one can show
that contexts of the shape []|r′().Q are sufficient.

14

Process Reduced GIPO Contexts

P ≡ νk(Σm1
j=1α1j .P1j | . . . | Σmn

j=1αnj .Pnj)

∃i, j. αij = τ ∨ []
∃i, j, i′, j′. αij = rl() ∧ αi′j′ = rls

∃i, j, i′, j′. αij = rh() ∧ αi′j′ = rls ∧ h 6= l σ[]
with σ singleton, σ+k(rh) = σ+k(rl)

∃i, j. αij = r() [] | r′s.0
with δk0 (r′) = r

∃i, j. αij = rs σ[] | r′().Q
with dom(σ) ⊆ fr(νQ), δk0 (r′) = σ+k(r)

Table 4. π-calculus reduced GIPO contexts.

Moreover, one can show that the GIPO bisimilarity that we have obtained
coincides with the extension to the whole π-calculus of the syntactical bisimi-
larity introduced in [4] for the open π-calculus. In the syntactical bisimilarity
one essentially observes input/output actions and name fusions allowing for a
communication. The prefix and the communication rules of the LTS in [4] are
represented as follows, in our setting:

(pre)
α.P

α−→ P
(com) P

rri−→ P ′ Q
r()−→ Q′

P | Q r=r′−→ P ′ | ν(t0j+1Q
′)

The notion of syntactical bisimilarity is as defined by:

Definition 13 (Syntactical Bisimilarity). A symmetric relation R is a syn-
tactical bisimulation if whenever PRQ it holds that:

– if P α−→ P ′ then Q
α−→ Q′,

– if P r=r′−→ P ′ then Q
r=r′−→ Q′ and (σP ′)R(σQ′),

where σ is a fusion that fuses r to r′.
The union of all syntactical bisimulations is syntactical bisimilarity.

Intuitively, our (reduced) GIPO LTS corresponds to the one of [4]. Notice in
particular that, when P exposes an output action, in the LTS of [4] we have a
transition P

rs−→ P ′, where we recall both the output channel r and the object

s in the label, while in our LTS we have P
[] | r().Q−→ P ′ | ν(σQ), where we

keep track of the object s not in the label, but in the substitution applied to Q.
Summarizing, we have:

Theorem 2. The GIPO bisimilarity on π-calculus coincides with the syntactical
bisimilarity.

As it has been observed in [4], the above bisimilarity is strictly included in
Sangiorgi’s open bisimilarity (where there is the extra freedom of matching a
fusion transition of a process with a τ -transition of the other).

The LTS of [4] provides a finitely branching characterization of our GIPO
bisimilarity. However, it is possible to get a more direct finitary characterization

15

of the GIPO equivalence, by working in the setting of categories of second-order
term contexts, introduced in [3]. In this setting one can represent parametric

transitions such as P
[] | r().X−→ P ′ | ν(σX), where X is a second-order variable

representing a generic term, which will be possibly instantiated in the future
(with the most general substitution allowing for a reaction). In this way we can
avoid to have infinitely many ground transitions. We aim to present the whole
construction in a further work.

6 Conclusions and Directions for Further Work

In this paper, we have refined Leifer-Milner construction for deriving LTS’s from
reaction systems, by studying general conditions under which we can prune the
GIPO LTS. Then we have carried out two fundamental case studies in process
calculi, by working in categories of term contexts. In order to deal properly
with structural rules, we had to work in the setting of G-categories. For CCS
the result is quite satisfactory, since we have obtained as GIPO LTS exactly
Milner’s original LTS together with strong bisimilarity. There are other works
in the literature, where the case study of CCS has been considered, but often a
graph encoding is used and furthermore the original LTS is not directly obtained
from the general construction, but it is recovered only a posteriori, using an ad
hoc reasoning. A similar observation applies also to π-calculus, to which the RPO
approach has not been previously applied directly to its reaction semantics, but
to a (often ad hoc) enriched semantics. Under this perspective, it would be
interesting to develop in all details also the π-calculus case study in the second-
order setting, as hinted at the end of Section 5.1.

Finally, it would be interesting to compare our work with [9], where it is
presented a LTS for the π-calculus whose labels are taken to be contexts on
a higher order syntax. However, that work does not apply the Leifer-Milner
technique to derive the LTS, and the higher-order syntax does not coincide with
the one proposed in [3] for second-order contexts. It is not clear how the proposed
LTS is related to the one obtained by the GIPO technique in the second-order
setting.

References

1. F. Bonchi, F. Gadducci, and B. König. Process bisimulation via a graphical encod-
ing. In ICGT, volume 4178 of LNCS, pages 168–183. Springer, 2006.

2. F. Bonchi, B. König, and U. Montanari. Saturated semantics for reactive systems.
In LICS, pages 69–80. IEEE Computer Society, 2006.

3. P. Di Gianantonio, F. Honsell, and M. Lenisa. RPO, second-order contexts, and
lambda-calculus. In R. M. Amadio, editor, FoSSaCS, volume 4962 of Lecture Notes
in Computer Science, pages 334–349. Springer, 2008. extended version available at
http://www.dimi.uniud.it/pietro/papers/.

4. G. L. Ferrari, U. Montanari, and E. Tuosto. Model checking for nominal calculi. In
V. Sassone, editor, FoSSaCS, volume 3441 of Lecture Notes in Computer Science,
pages 1–24. Springer, 2005.

16

5. F. Gadducci and U. Montanari. Observing reductions in nominal calculi via a
graphical encoding of processes. In Processes, Terms and Cycles, volume 3838 of
LNCS, pages 106–126. Springer, 2005.

6. J. J. Leifer and R. Milner. Deriving bisimulation congruences for reactive systems.
In CONCUR, volume 1877 of LNCS, pages 243–258. Springer, 2000.

7. V. Sassone and P. Sobocinski. Deriving bisimulation congruences using 2-categories.
Nord. J. Comput., 10(2):163–, 2003.

8. P. Sobocinski. Deriving process congruences from reduction rules. PhD thesis,
University of Aarhus, 2004.

9. P. Sobocinski. A well-behaved lts for the pi-calculus: (abstract). Electr. Notes
Theor. Comput. Sci., 192(1):5–11, 2007.

17

	Finitely Branching LTS's from Reaction Semantics for Process Calculi
	Pietro Di Gianantonio Furio Honsell Marina Lenisa

