
A Language for Differentiable Functions

Pietro Di Gianantonio1 Abbas Edalat2

1 Dip. di Matematica e Informatica
Università di Udine, 33100 Udine, Italy

pietro.digianatonio@uniud.it
2 Department of Computing, Imperial College London

ae@ic.ac.uk

Abstract. We introduce a typed lambda calculus in which real num-
bers, real functions, and in particular continuously differentiable and
more generally Lipschitz functions can be defined. Given an expression
representing a real-valued function of a real variable in this calculus, we
are able to evaluate the expression on an argument but also evaluate
the L-derivative of the expression on an argument. The language is an
extension of PCF with a real number data-type but is equipped with
primitives for min and weighted average to capture computable contin-
uously differentiable or Lipschitz functions on real numbers. We present
an operational semantics and a denotational semantics based on contin-
uous Scott domains and several logical relations on these domains. We
then prove an adequacy result for the two semantics. The denotational
semantics also provides denotational semantics for Automatic Differen-
tiation. We derive a definability result showing that for any computable
Lipschitz function there is a closed term in the language whose evalu-
ation on any real number coincides with the value of the function and
whose derivative expression also evaluates on the argument to the value
of the L-derivative of the function.

Introduction

Real-valued locally Lipschitz maps on finite dimensional Euclidean spaces enjoy
a number of fundamental properties which make them the appropriate choice
of functions in many different areas of applied mathematics and computation.
They contain the class of continuously differentiable functions, are closed un-
der composition and the absolute value, min and max operations, and contain
the important class of piecewise polynomial functions, which are widely used in
geometric modelling, approximation and interpolation and are supported in Mat-
Lab [4]. Lipschitz maps with uniformly bounded Lipschitz constants are closed
under convergence with respect to the sup norm. Another fundamental property
of these maps is that a Lipschitz vector field in Rn has a unique solution in the
initial value problem [3].

In the past thirty years, motivated by applications in control theory and op-
timisation and using an infinitary double limit superior operation, the notion

of Clarke gradient has been developed as a convex and compact set-valued gen-
eralized derivative for real-valued locally Lipschitz maps [2]. For example, the
absolute value function, which is not classically differentiable at zero, is a Lips-
chitz map which has Clarke gradient [−1, 1] at zero. The Clarke gradient extends
the classical derivative for continuously differentiable functions.

Independently, a domain-theoretic Scott continuous Lipschitz derivative, later
called the L-derivative, was introduced in [9] for interval-valued functions of an
interval variable and was used to construct a domain for locally Lipschitz maps;
these results were then extended to higher dimensions [10]. It was later shown
that on finite dimensional Euclidean spaces the L-derivative actually coincides
with the Clarke gradient [6]. In finite dimensions, therefore, the L-derivative
provides a simple and finitary representation for the Clarke gradient.

Since the mid 1990’s, a number of typed lambda calculi, namely extensions
of PCF with a real number data type, have been constructed, including Real
PCF, RL and LPR [12, 5, 19], which are essentially equivalent and in which
computable continuous functions can be defined. Moreover, IC-Reals, a variant
of LPR with seven digits, has been implemented with reasonable efficiency in C
and Haskell [14].

It was relatively straightforward in [8] to equip Real PCF with the integral
operator, which is in fact a continuous functional. However, adding a derivative
operator to the language has proved to be non-trivial since classic differentia-
tion may not be defined on continuous functions and even when defined it may
not result in a continuous function. The development of the Scott continuous
L-derivative, defined in a finitary manner, has therefore been essential for con-
struction of a language with a derivative operator.

The aim of this work is to take the current extensions of PCF with a real
number data type into a new category and define a typed lambda calculus, in
which real numbers, real functions and in particular continuously differentiable
and Lipschitz functions are definable objects. Given an expression e representing
a function from real numbers to real numbers in this language, we would be able
to evaluate both e and its L-derivative on an argument. In this paper we will
only be concerned with the theoretical feasibility of such a language and not
with questions of efficiency.

To develop such a language, we need to find a suitable replacement for the
test for positiveness ((0<)), which is used in the current extensions of PCF
with real numbers to define functions by cases. In fact, a function defined using
the conditional with this constructor will not be differentiable at zero even if
the two outputs of the conditional are both differentiable: Suppose we have
two real computable functions f and g whose derivatives Df and Dg are also
computable, and consider l = λx. if (0<) x then f x else g x. The function l
is computable and there is an effective way to obtain approximations of the
value of l(x) including at 0. However, there is no effective way to generate any
approximation for the derivative of l, i.e., D l, at the point 0. In fact, it is correct
to generate an approximation of Dl on 0 only if f(0) = g(0), but this equality

is undecidable, i.e., it cannot be established by observing the computation of f
and g at 0 for any finite time.

In this paper, instead of the test (0<) , we will use the functions minimum,
negation and weighted average when defining continuously differentiable or Lip-
schitz maps. These primitives are of course definable in Real PCF, RL and LPR,
but the definitions are based on the test (0<) , which means that the information
about the derivative is lost.

By a simple transfer of the origin and a rescaling of coordinates we can take
the interval [−1, 1] as the domain of definition of Lipschitz maps. Furthermore,
by a rescaling of the values of Lipschitz maps (i.e., multiplying them with the
reciprocal of their Lipschitz constant) we can convert them to non-expansive
maps, i.e., we can take their Lipschitz constant to be one. Concretely, we take
digits similar to those in Real PCF as constructors and develop an operational
semantics and a denotational semantics based on three logical relations, and
prove an adequacy result. The denotational semantics for first order types is
closely related but different from the domain constructed in [9] in that we capture
approximations to the function part and to the derivative part regarded as a
sublinear map on the tangent space. Finally, we prove a definability result and
show that every computable Lipschitz map is definable in the language as the
limit of a sequence of piecewise linear maps with the convergence of their L-
derivatives.

We note that all our proofs can be found in the Appendix.

0.1 Related work

Given a programme to evaluate the values of a function defined in terms of a
number of basic primitives, Automatic Differentiation (also called Algorithmic
Differentiation) seeks to use the chain rule to compute the derivative of the
function [13]. AD is distinct from symbolic differentiation and from numerical
differentiation. Our work can be regarded as providing denotational semantics for
forward Automatic Differentiation and can be used to extend AD to computation
of the generalised derivative of Lipschitz functions.

In [11], the differential λ-calculus, and in [17], the perturbative λ-calculus
that integrates the latter with AD, have been introduced which syntactically
model the derivative operation on power series in a typed λ-calculus or a full
linear logic. Although apparently similar, our calculus and these two λ-calculi
differ in almost every aspect: motivation, syntax, semantics, and the class of
definable real functions. (i) These λ-calculi have been presented to analyse lin-
ear substitution and formal differentiation, (ii) the syntax is quite structured
and contains constructors that have no correspondence in our setting, (iii) the
semantics is based on differential categories and not on domain theory, and (iv)
the definable real functions are limited to analytical maps which have power
series expansion.

On the other hand, Computable Analysis [20, 21] and Constructive Analy-
sis [1] are not directly concerned with computation of the derivative and both

only deal with continuously differentiable functions. In fact, a computable real-
valued function with a continuous derivative has a computable derivative if
and only if the derivative has a recursive modulus of uniform continuity [15,
p. 191], [20, p. 53], which is precisely the definition of a differentiable function
in constructive mathematics [1, p. 44].

1 Syntax

We denote the new language with PCDF (Programming language for Com-
putable and Differentiable Functions).

The types of PCDF are the types of a slightly modified version of PCF
where natural numbers are replaced by integers, together with a new type ι, an
expression e of type ι denotes a real number in the interval [−1, 1] or a partial
approximation of a real number, represented by a closed intervals contained in
[−1, 1]. The set T of type expressions is defined by the grammar:

σ ::= o | ν | ι | σ → σ

where o is the type of booleans and ν is the type of integer numbers.
The expressions of PCDF are the expressions of PCF together with a new

set of constants for dealing with real numbers. This set of constants is composed
by the following elements:

(i) A constructor for real numbers given by: dig : ν → ν → ν → ι → ι. It is
used to build affine transformations, and real numbers are obtained by a
limiting process. The expression dig l mn represents the affine transforma-
tion λx.(l+m ·x)/n, if 0 ≤ m < n and |l| ≤ n−m, or the constant function
λx.0 otherwise. The above condition on l,m, n implies that dig l mn repre-
sents a rational affine transformation mapping the interval [−1, 1] strictly
into itself with a non-negative slope or derivative 0 ≤ m/n < 1.
In this way we use three integers to encode a rational affine transformation;
of course it is possible to devise other encodings where just natural numbers
or a single natural number is used, however these alternative encodings will
be more complex.
The affine transformations definable by dig are also called generalised dig-
its. Since there is no constant having type ι, an expression e having type ι
can never normalise and its evaluation proceeds by producing expressions
in the form dig l mn e′. These expressions give partial information about
the value represented by e, namely they state that e represents a real num-
ber contained in the interval [(l +m)/n, (l−m)/n], which is the range of
the function λx.(l+m ·x)/n. During the reduction process, this interval is
repeatedly refined and the exact result, a completely defined real number,
can be obtained as the limit of this sequence.

(ii) The opposite sign function (negation) opp : ι→ ι.
(iii) add : ν → ν → ι → ι, representing the function λ p q x . min((p/q + x), 1),

if 0 < p < 2 · q, and the constant function λx. 0 otherwise.

We define sub p q x as syntactic sugar for the expression opp (add p q (oppx)),
which returns the value max((x− (p/q),−1)).

(iv) A weighted average function av : ν → ν → ι → ι → ι. The expression
av p q represents the function λx y . (p/q) · x + (1 − p/q) · y, if 0 < p < q,
and the constant function λx y . 0 otherwise.

(v) The minimum function

min : ι→ ι→ ι

with the obvious action on pairs of real numbers. We define max x y as
syntactic sugar for the expression opp (min (oppx)(opp y)).

(vi) A test function (0<) : ι → o , which returns true if the argument is
strictly greater than zero, and false if the argument is strictly smaller that
zero. The test function can be used for constructing functions that are not
differentiable, an example being the function λx. if (0<) (x) then 1 else 0; as
a consequence we impose some restriction in its use.

(vii) The if-then-else constructor on reals, ifι : o → ι → ι → ι, and the parallel
if-then-else constructor pifι : o→ ι→ ι→ ι.

The main use for the parallel if operator is to evaluate, without loss of in-
formation, derivative of expressions containing the min operator. However,
the parallel if operator can be completely avoided in defining non-expansive
functions on real numbers. In fact in the constructive proof of our defin-
ability result, the parallel if operator is never used.

(viii) A new binding operator D. The operator D can bind only variables of type
ι and can be applied only to expressions of type ι. In our language, Dx.e
represents the derivative of the real function λx.e.

The differential operator D can be applied only to expressions that contain
neither the constant (0<) nor the differential operator D itself.

We note that, with the exception of the test functions (0<) , all the new
constants represent functions on reals that are non-expansive; the if-then-else
constructors are also non-expansive if the distance between true (tt) and false
(ff) is defined to be equal to two, while the test function (0<) cannot be
non-expansive, whatever metric is defined on the Boolean values. The expres-
sions containing neither the constant (0<) nor the differential operator D are
called non-expansive since they denote functions on real numbers that are non-
expansive. This fact, intuitively true, is formally proved by Proposition 2. The
possibility to syntactically characterise a sufficiently rich set of expressions rep-
resenting non-expansive functions is a key ingredient in our approach that allows
us to obtain information about the derivative of a function expression without
completely evaluating it. For example, from the fact that e : ι is a non-expansive
expression, one can establish that the derivative of λx.e, at any point, is con-
tained in the interval [−1, 1] and that the derivative of λx.dig l mn e is contained
in the smaller interval [−m/n,m/n].

2 Operational semantics

The operational semantics is given by a small step reduction relation, → , which
is obtained by adding to the PCF reduction rules the following set of extra rules
for the new constants.

The operational semantics of add and min operators uses an extra constant
aff : ν → ν → ν → ι → ι. The expression aff l mn is intended to represent
general affine transformations (including expansive ones) with a non-negative
derivative, i.e., the affine transformation λx.(l + mx)/n with m ≥ 0, n > 0. A
property preserved (i.e., invariant) by the reduction rules is that the constant
aff appears only as the head of one of the arguments of min or as the head of
the fourth argument of aff . It follows that in any expression e′ in the reduction
chain of a standard expression e (without the extra constants aff), the constant
aff can appear only in the above positions.

The generalised digit dig l mn is a special case of an affine transformation.
Therefore, in applying the reduction rules, we use the convention that any re-
duction rule containing, on the left hand side, a general affine transformation aff
can be applied also to terms where the affine transformation aff is substituted
by the constructor dig .

On affine transformations we will use the following notations:

– (aff l1m1 n1) ◦ (aff l2m2 n2) stands for aff (l1 ·n2 +m1 · l2) (m1 ·m2) (n1 ·n2),
i.e., the composition of affine transformations.

– If m 6= 0, (aff l mn)−1 stands for (aff (−l)nm), i.e., the inverse affine trans-
formation; if m = 0, the expression (aff l mn)−1 is undefined.

– The symbols l,m, n, p, q stand for values of integer type.

The reduction rules are the PCF reduction rules together the following set of
extra rules. First we have three simple reductions:

– dig l mn e → dig 0 0 1 e if m < 0 or n ≤ 0 or |l| > n−m.
– add p q e → dig 0 0 1 e if p ≤ 0 or q ≤ p.
– av p q e1 e2 → dig 0 0 1 e1 if p ≤ 0 or q ≤ p.

The above rules deal with those instances of dig , add , av with integer arguments
that reduce to the constant zero digit. An implicit condition on the following set
of rules is that they apply only if none of the above three rules can be applied.

1. dig l1m1 n1(dig l2m2 n2 e) → ((dig l1m1 n1) ◦ (dig l2m2 n2)) e
2. opp (dig l mn e) → dig (−l)mn (opp e)
3. add p q e → min (aff p q q e)(dig 1 0 1 e)

note that (aff p q q) and (dig 1 0 1) represent the functions λx.p/q + x and
λx.1 respectively.

4. av p q (dig l mn e1) e2 → dig l′m′ n′(av p′ q′ e1 e2)
where l′ = l · p, m′ = q′ = m · p+ n · q − n · p, n′ = n · q and p′ = m · p.
By a straightforward calculation, one can check that the left and the right
parts of the reduction rules represent the same affine transformation on the
arguments e1, e2.

5. av p q e1 (dig l mn e2) → dig l′m′ n′(av p′ q′ e1 e2)
where l′ = l(q − p), m′ = q′ = np+mq −mp, n′ = nq and p′ = np.

6. min (dig l1m1 n1 e1)(aff l2m2 n2 e2) → dig l1m1 n1 e1
if (l1 +m1)/n1 ≤ (l2 −m2)/n2.
The above condition states that every point in the image of (dig l1m1 n1)
is smaller, in the usual Euclidean order, than every point in the image of
(aff l2m2 n2), i.e., the first argument of min is certainly smaller that the
second.

7. min (aff l1m1 n1 e1)(dig l2m2 n2 e2) → dig l2m2 n2 e2
if (l2 +m2)/n2 ≤ (l1 −m1)/n1
The symmetric version of the previous rule.

8. min (dig l mn e1) e2 →
dig l′m′ n′(min ((dig l′m′ n′)−1 ◦ (dig l mn) e1) ((dig l′m′ n′)−1 e2))

if l +m < n and l′ = l +m− n, m′ = l +m+ n 6= 0, n′ = 2 · n.
The above equations imply that if (dig l mn) has image [a, b] then (dig l′m′ n′)
has image [−1, b]. The rule is justified by the fact if the first argument of
min are smaller than b then the value of min is also smaller than b.

9. min e1 (dig l mn e2) →
dig l′m′ n′(min ((dig l′m′ n′)−1 e1) ((dig l′m′ n′)−1 ◦ (dig l mn) e2))

if l +m < n and l′ = l +m− n, m′ = l +m+ n 6= 0, n′ = 2 ◦ n.
The symmetric version of the previous rule.

10. min (aff l1m1 n1 e1)(aff l2m2 n2 e2) →
dig l′m′ n′ (min ((dig l′m′ n′)−1◦(aff l1m1 n1) e1)((dig l′m′ n′)−1◦(aff l2m2 n2) e2))

if −1 < (l1+m1)/n1 ≤ (l2−m2)/n2 and l′ = l1−m1+n1, m′ = m1−l1+m1,
n′ = 2 · n1.
The above equation implies that if (dig l1m1 n1) has image [a, b] then (dig l′m′ n′)
has image [a, 1]. The rule is justified by the fact if both arguments of min
are greater that a then the value of min is also greater than a.

11. min (aff l1m1 n1 e1)(aff l2m2 n2 e2) →
dig l′m′ n′ (min ((dig l′m′ n′)−1◦(aff l1m1 n1) e1)((dig l′m′ n′)−1◦(aff l2m2 n2) e2))

if −1 < (l2−m2)/n2 < (l1+m1)/n1, and l′ = l2−m2+n2, m′ = m2−l2+m2,
n′ = 2 · n2.
The symmetric version of the previous rule.

12. aff l1m1 n1(aff l2m2 n2 e) → ((aff l1m1 n1) ◦ (aff l2m2 n2)) e
13. aff l mn e → dig l mn e

if −1 ≤ (l −m)/n, (l +m)/n ≤ 1 and e is not in the form aff a′b′e.
14. (0<) (dig l mn e) → tt if (l −m)/n > 0
15. (0<) (dig l mn e) → ff if (l −m)/n < 0
16. pifι e then dig l1m1 n1 e1 else dig l2m2 n2 e2 →

dig l′m′ n′(pif e then (dig l′m′ n′)−1 ◦ (dig l1m1 n1) e1
else (dig l′m′ n′)−1 ◦ (dig l2m2 n2) e2)

where n′ = 2 · n1 · n2, m′ = max((l1 + m1) · n2, (l2 + m2) · n1) −min((l1 −
m1) · n2, (l2 −m2) · n1), l′ = 2 ·min((l1 −m1) · n2, (l2 −m2) +m′.
Here the values l′,m′, n′ are defined in such a way that if (dig l1m1 n1)
has image [a1, b1] and (dig l2m2 n2) has image [a2, b2], then (dig l′m′ n′) has
image the convex closure of the set [a1, b1] ∪ [a2, b2].

The remaining rules for pif, if are included in the reduction rules for PCF
and therefore are omitted from the present list.

17. N → N ′

MN → MN ′
if M is a constant different from the combinator Y or is an

expression in the form minn1, minn1 n2, minn1 n2 n3, minn1 n2 n3M
′, av n1,

av n1 n2, av n1 n2M
′, addn1, addn1 n2, pifι M

′ then, pifι M
′ then M ′′ else,

where n1, n2, n3 are values.

The reduction rules for the derivative operator are:

1. Dx. x → λy. dig 0 0 1 y
2. Dx. dig l mn e → λy. dig 0mn (Dx. e)y
3. Dx. opp e → λy. opp (Dx. e)y
4. Dx. add p e q → λy. pifι (0<) (add (q−p) q (opp e)) then (Dx. e)y else dig 0 0 1 y
5. Dx. av p q e1 e2 → λy. av p q ((Dx. e1)y) ((Dx. e2)y)
6. Dx.min e1e2 →

λy. pif (λx. (0<) (av 1 2 (opp e1)e2))y then (Dx. e1)y else (Dx. e2)y
7. Dx. pifι e1 then e2 else e3 → λy. pifι (λx. e1)y then (Dx. e1)y else (Dx. e2)y
8. Dx. if e1 then e2 else e3 → λy. if (λx. e1)y then (Dx. e1)y else (Dx. e2)y
9. Dx. Y e → Dx. e(Y e)

10. Dx. (λy. e)e1 . . . en → Dx. e[e1/y]e2 . . . en

Note that the rules for the derivative operator are a direct derivation of the usual
rules for the symbolic computation of the derivative of a function.

2.1 Examples

We will give some examples for defining non-analytic functions in later sections;
in particular we will show in the proof of definability how easily piecewise linear
maps with rational coefficients are defined in the language. A useful technique
to define analytic functions and real constants is to consider their Taylor series
expansions and reduce the Taylor series to a sequence of applications of affine
transformations. For example the value e − 2, where e is the Euler constant, is
given by the Taylor series 1/2!+1/3!+1/4! Denoting the affine transformation
λx.(1 + x)/n as f , the above series can be expressed as f(2)(f(3)(f(4)(. . .) . . .).
It follows that in PCDF e− 2 can be expressed as

(Y λf : ν → ι. λn : ν. f n. dig 1 1n (f(n+ 1))) 2.

Given an expression to represent product in PCDF, it is possible to use
the above technique to express analytic functions. For example, suppose hp de-
fines the half-product function λxy. x · y/2. Then, one can express the function
λx. ex/2 − 1− x/2 by the PCDF.

λx : ι. hpx ((Y λf : ν → ι→ ι. λn : ν. λx : ι. hpx (dig 1 1n (f(n+ 1)))) 2x)

The half product hp is definable in PCDF by reducing product to a series of
applications of the average and minimum function. The actual definition of the

function hp is lengthy and we will not present it here. As a simpler example of
the technique involved, we present the definition of the function λx.x2/2.

Consider the following mutual recursive definition of the terms g, h : ν →
ι→ ι

g 0x = maxx (oppx)
hnx = add 1 (2n+1) (g n (add 1 (2n+1)x))
g (n+ 1)x = min (hnx)(hn (oppx))
By standard techniques, one can derive a PCDF expression g satisfying the

above recursive definition. The careful reader can check that the term:
λx. (sub 1 2 (av 1 2 (g 0x)(av 1 2 (g 1x)(av 1 2 (g 2x) . . . (av 1 2 (g nx) (dig 101x) . . .)
represents the step-wise linear interpolation of the function λx.x2/2 on the points
of the set {i/2n|i ∈ Z,−2n ≤ i ≤ 2n}. It follows that the function λx.x2/2 is
defined by the term:
λx. (sub 1 2((Y λf : ν → ι→ ι. λn : ν. λx : ι. (av 1 2 (g nx) (f (n+ 1)x))) 0x).

3 Denotational Semantics

The denotational semantics for PCDF is given in the standard way as a family of
continuous Scott domains, UD := {Dσ | σ ∈ T}. The basic types are interpreted
using the standard flat domains of integers and booleans. The domain associated
to real numbers is the product domain Dι = I × I, where I is the continuous
Scott domain consisting of the non-empty compact subintervals of the interval
I = [−1, 1] partially ordered with reverse inclusion. Elements of I can represent
either a real number x, i.e., the degenerated interval [x, x], or some partial in-
formation about a real number x, i.e., an interval [a, b], with x ∈ [a, b]. On the
elements of I, we consider both the set-theoretic operation of intersection (∩),
the pointwise extensions of the arithmetic operations, and the lattice operations
on the domain information order (u,t), [12]. Function types have the usual
interpretation of call-by-name programming languages: Dσ→τ = Dσ → Dτ .

A hand waiving explanation for the definition of the domain Dι = I × I, is
that the first component is used to define the value part of the function while the
second component is used to define the derivative part. More precisely, a (non-
expansive) function f from I to I, is described, in the domain, by the product
of two functions 〈f1, f2〉 : (I × I) → (I × I): the function f1 : (I × I) → I
represents the value part of f , in particular f1(i, j) is the image of the interval
i under f for all intervals j, i.e., f1 depends only on the first argument. The
second function f2 : (I × I) → I represents the derivative part. If Df denotes
the derivative of f , then f2(i, j) is the image of the intervals i and j under
the function λx, y.D f (x) · y. Thus, f2 is linear in its second component and
f2({x}, {1}) is the derivative of f at the point x.

Note that with respect to the above interpretation, composition behaves cor-
rectly, that is if the pair 〈f1, f2〉 : (I × I) → (I × I) describes the value part
and the derivative part of a function f : I → I and 〈g1, g2〉 : (I × I)→ (I × I)
describes a function g : I → I then 〈h1, h2〉 describes, by the chain rule, the func-
tion f ◦ g with h1(i, j) = f1(g1(i, j), g2(i, j)) and h2(i, j) = f2(g1(i, j), g2(i, j)).

The L-derivative of the non-expansive map f : I → I is the Scott continuous
function L(f) : I → I defined by [6]:

L(f)(x) =
⋂
{b ∈ I : ∃ open interval O ⊂ I, x ∈ O with

f(u)−f(v)
u−v ∈ b for all u, v ∈ O, u 6= v}.

Consider now the case of functions in two arguments. Given a function g : I →
I → I, its domain description will be an element in (I×I)→ (I×I)→ (I×I),
which is isomorphic to ((I × I)× (I × I)) → (I × I). Thus again, the domain
description of g consists of a pair of functions 〈g1, g2〉, with g1 describing the
value part. If Dg (x1, x2) is the linear transformation representing the derivative
of g at (x1, x2), then the function g2 is a domain extension of the real function
λx1, y1, x2, y2.D g (x1, x2) · (y1, y2).

This approach for describing functions on reals is also used in (forward mode)
Automatic Differentiation [13]. While Automatic Differentiation is different from
our method in that it does not consider the domain of real numbers and the
notion of partial reals, it is similar to our approach in that it uses two real
numbers as input and a pair of functions to describe the derivative of functions
on reals. Authomatic differentiation is also used in [17], while the idea of using
two separated components to describe the value part and the derivative part in
the domain-theoretic setting can be found also in [9].

The semantic interpretation function E is defined, by structural induction,
in the standard way:

EJcKρ = BJcK
EJxKρ = ρ(x)
EJe1e2Kρ = EJe1Kρ(EJe2Kρ)
EJλxσ.eKρ = λd ∈ Dσ.EJeK(ρ[d/x])

The semantic interpretation of any PCF constant is the usual one, while the
semantic interpretation of the new constants on reals is given by:

BJdig K(l,m, n, 〈i, j〉) =

⊥ if l = ⊥ ∨ m = ⊥ ∨ n = ⊥
〈[0, 0], [0, 0]〉 if ¬(0 ≤ m < n ∧ |l| ≤ n−m)
〈l/n+m/n · i, m/n · j〉 otherwise

BJopp K(〈i, j〉) = 〈−i, −j〉

BJadd K(p, q, 〈i, j〉) =


⊥ if p = ⊥ ∨ q = ⊥
〈[0, 0], [0, 0]〉 if ¬(0 < 2 · p < q)
〈i+ p/q, j〉 if i+ p/q < 1
〈[1, 1], [0, 0]〉 if i+ p/q > 1
〈i+ p/q ∩ [−1, 1], j u [0, 0]〉 otherwise

BJav K(p, q, 〈i1, j1〉, 〈i2, j2〉)

=

⊥ if p = ⊥ ∨ q = ⊥
〈[0, 0], [0, 0]〉 if ¬(0 < p < q)
〈p/q · i1 + (1− p/q) · i2, p/q · j1 + (1− p/q) · j2〉 otherwise

BJmin K(〈i1, j1〉, 〈i2, j2〉) =

 〈i1, j1〉 if i1 < i2
〈i2, j2〉 if i1 > i2
〈i1min i2, j1 u j2〉 otherwise

BJ(0<) K(〈i, j〉) =

 tt if i > 0
ff if i < 0
⊥ otherwise

The interpretation of the derivative operator is given by:

EJDx.eKρ = λd ∈ I × I . 〈π2(EJeKρ[〈π1d, 1〉/x]),⊥〉

Note that the function BJ(0<) K loses the information given by the derivative
part, while the function EJDx.eKρ, is a sort of translation of the function EJλx.eKρ:
The value of EJDx.eKρ is obtained from the derivative part of EJλx.eKρ, while
the derivative part of EJDx.eKρ is set to ⊥.

Consider some examples. The absolute value function can be implemented
through the term Ab = λx.max (oppx)x with the following semantic interpreta-
tion:

EJAbKρ(〈i, j〉) =

 〈i, j〉 if i > 0
〈−i,−j〉 if i < 0
〈[k−, k+], [−1, 1]j〉 otherwise,

where k− = max(i−,−i+), k+ = max(i+,−i−) with i = [i−, i+].
When the absolute value function is evaluated at 0, where it is not differen-

tiable, the derivative part of the semantic interpretation returns a partial value:
π2(EJAbKρ({0}, {1}) = [−1, 1]. This partial value coincides with the Clarke gra-
dient, equivalently the L-derivative, of the absolute value function.

The function |x−y|2 , is represented by the expression

Ab-dif = λx.y.max (xav 1/2(opp y))((oppx)av 1/2y)

whose semantics is the function:

EJAb-difKρ(〈i1, j1〉, 〈i2, j2〉) =
〈 i1−i22 , j1−j22 〉 if i1 > i2

〈 i2−i12 , j2−j12 〉 if i1 < j1

〈[k−, k+], [−1/2, 1/2](j1 − j2)〉 otherwise,

,

where k− = max(i−1 − i
+
2 , i
−
2 − i

+
1) and k+ = max(i+1 − i

−
2 , i

+
2 − i

−
1).

From JAb-difK it is possible to evaluate the partial derivative of the function
|x−y|

2 , not only along the axes x and y, but along any direction. Considering the
Euclidean distance, the derivative of the function at (0, 0) in the direction of the
unit vector (u/

√
u2 + v2, v/

√
u2 + v2) is given by

EJAb-difKρ(〈{0}, {u/
√
u2 + v2}〉, 〈{0}, {v/

√
u2 + v2}〉), that is the the interval

[−1/2, 1/2] u−v√
u2+v2

. Again this value coincides with the value of the Clarke gra-

dient of the function |x−y|2 at (0, 0) in the direction (u/
√
u2 + v2, v/

√
u2 + v2).

3.1 Logical relations characterization

In the present approach we choose to define the semantic domains in the simplest
possible way. As a consequence, our domains contain also points that are not
consistent with the intended meaning, for example, the domainDι→ι = (I×I)→
(I × I) contains also the product of two functions 〈f1, f2〉 where the derivative
part f2 is not necessarily linear in its second argument and is not necessarily
consistent with the value part, i.e., the function f1; moreover the value part f1
can be a function depending also on its second argument.

However the semantic interpretation of (non-expansive) PCDF expressions
will not have this pathological behaviour. A proof of this fact and a more precise
characterisation of the semantic interpretation of expressions can be obtained
through the technique of logical relations [18]. In particular we define a set of
logical relations on the semantic domains and prove that, for any non-expansive
PCDF expression e, the semantic interpretation of e satisfies these relations.
Using this method, we can establish a list of properties for the semantic inter-
pretation of PCDF expressions.

Definition 1. The following list of relations are defined on the domain Dι.

– Independence: A binary relation Riι consisting of the pairs of the form
(〈i, j1〉, 〈i, j2〉). The relation Riι is used to establish that, for a given function,
the value part of the result is independent from the derivative part of the
argument: f1(i, j1) = f1(i, j2).

– Sub-linearity: A family of relations Rl,rι indexed by a rational number
r ∈ [−1, 1]. The family Rl,rι consists of pairs of the form (〈i, j1〉, 〈i, j2〉)
where j1 v r · j2. These relations are used to establish the sublinearity of the
derivative part: f2(i, r · j) v r · f2(i, j).

– Consistency: A family of ternary relation Rd,rι indexed by a rational number
r ∈ (0, 2], consisting of triples of the form (〈i1, j1〉, 〈i2, j2〉, 〈i3, j3〉) with i3 v
i1 u i2 and (r · j3) consistent with (i1 − i2), that is the intervals (r · j3) and
(i1− i2) have a non-empty intersection. This relation is used to establish the
consistency of the derivative part of a function with respect to the value part.

The above relations are defined on the other ground domains Do and Dν as
the diagonal relations in two or three arguments, e.g., Rd,rν (l,m, n) iff l = m =
n. The relations are extended inductively to higher order domains by the usual
definition on logical relations: Riσ→τ (f, g) iff for every d1, d2 ∈ Dσ, Riσ(d1, d2)
implies Riτ (f(d1), g(d2)), and similarly for the other relations.

Proposition 1. For any closed expression e : σ, for any rational number r ∈
[−1, 1], the semantic interpretation EJeKρ of e, is self-related by Riσ, Rl,rσ , i.e.
Riσ(EJeKρ, EJeKρ), and similarly for Rl,rσ . Moreover, if the expression e : σ is
non-expansive, the semantic interpretation EJeKρ, is self-related by Rd,rσ .

We now show how the three relations ensure the three properties of indepen-
dence, sublinearity and consistency. To any element f = 〈f1, f2〉 in the domain
Dι→ι = (I × I)→ (I × I) we associate a partial function fv : I → I with

fv(x) =

{
y if f1(〈{x},⊥〉) = {y}
undefined if f1(〈{x},⊥〉) is a proper interval

and a total function

fd : I → I = λx.f2(〈{x}, {1}〉))

The preservation of the relations Riι, R
l,r
ι has the following straightforward

consequences:

Proposition 2. (i) For any function f = 〈f1, f2〉 in Dι→ι self-related by
Riι→ι, for every i, j1, j2, f1(〈i, j1〉) = f1(〈i, j2〉), the return value part is
independent from the derivative argument.

(ii) For any function f = 〈f1, f2〉 in Dι→ι self-related by Rl,rι→ι for every i, j,
and for every rational r ∈ [−1, 1], f2(〈i, r · j〉) v r · f2(〈i, j〉). It follows
that:

– (f2(〈i, {r}〉))/r v f2(〈i, {1}〉), i.e., the most precise approximation of
the L-derivative is obtained by evaluating the function with 1 as its
second argument,

– for every i, j, f2(〈i,−j〉) = −f2(〈i, j〉), i.e., the derivative part is an
odd function.

The preservation of the relation Rd,rι induces the following properties (see
the Appendix for the proof):

Proposition 3. For any function f in Dι→ι self-related by Rd,rι→ι:

(i) the function fv is non-expansive;
(ii) on the open sets where the functions fv is defined, the function fd is an

approximation to the L-derivative of the function fv;
(iii) if f is a maximal element of Dι→ι then fv is a total function and fd is the

associated L-derivative.

3.2 Subdomains

By definition, the logical relations are closed under directed lubs, and as a con-
sequence the sets of elements self-related by them are also closed under directed
lubs.

For any ground type σ the relations Riσ, Rl,rσ , Rd,rσ are closed under arbitrary
meets, meaning that if ∀j ∈ J . Riσ(dj , ej) then Riσ(

d
j∈J dj ,

d
j∈J ej) and simi-

larly for the other relations Rl,rσ , Rd,rσ . The proof is immediate for σ = o, ν, and
is a simple check for σ = ι. The following result shows that this closure property
holds also for σ = ι→ ι.

Proposition 4. The set of elements in Dι→ι self-related by any of the three
relations Riι→ι, R

l,r
ι→ι, and Rd,rι→ι is closed under arbitrary meets.

Proof. For the independence relation Riι→ι, the closure property is trivial to
check. For the consistency relation Rd,rι→ι, the closure under non-empty meets
follows immediately from the fact that this relation is downward closed. The
closure property for the sublinearity relation Rl,rι→ι is given in the Appendix.

We now employ the following result whose proof can be found in the Ap-
pendix.

Proposition 5. In a continuous Scott domain, a non-empty subset closed under
lubs of directed subsets and closed under non-empty meets is a continuous Scott
subdomain.

Corollary 1. If σ is a ground type or first order type, then the set of elements
in Dσ self-related by the three logical relations is a continuous Scott subdomain
of Dσ.

As we do not deal with second or higher order real types in this extended
abstract, we will not discuss the corresponding subdomains here.

3.3 Adequacy

As usual once an operational and denotational semantics are defined, it is nec-
essary to present an adequacy theorem stating that the two semantics agree.

Let us denote by [a, b] � Eval(e) the fact that there exits three integers
l,m, n such that e →? dig l mn e′ and [(l−m)/n, (l+m)/n] ⊂ (a, b). The proof
of the following theorem is presented in the Appendix.

Theorem 1 (Adequacy). For every closed term e with type ι, interval [a, b]
and environment ρ, we have:

[a, b]� Eval(e) iff [a, b]� π1(EJeKρ)

In the operational semantics that we have proposed, the calculus of the
derivative is performed through a sort of symbolic computation: the rewriting
rules specify how to evaluate the derivative of the primitive functions and the
application of the derivative rules essentially transforms a function expression
into the function expression representing the derivative. The denotational se-
mantics provides an alternative approach to the computation of the derivative,
which almost exactly coincides with the computation performed by Automatic
Differentiation. We can interpret our adequacy result as a proof that symbolic
computation of the derivative and the computation of the derivative through
Automatic Differentiation coincide. We remark in passing that, inspired by the
denotational semantics, it is possible to define an alternative operational seman-
tics that will perform the computation of the derivative in the same way that is
performed by Automatic Differentiation.

3.4 Function definability

We will show in the following theorem that any computable Lipschitz function
can be obtained in our framework as the limit, in the sup norm, of a sequence
of piecewise linear maps definable in PCDF such that every piecewise linear
map in the sequence gives lower and upper bounds for the function and the L-
derivative of the function is contained in the L-derivatives of the piecewise linear
maps, which converge to the classical derivative of the function wherever it is
continuously differentiable.

Theorem 2. For any maximal computable function f in Dι→ι preserving the
logical relations Riι→ι, R

l,r
ι→ι, R

d,r
ι→ι, there exists a closed PCDF expression f such

that:
∀x ∈ I. fv(x) = (EJfKρ)v(x) ∧ fd(x) = (EJfKρ)d(x)

The above definability result states that if we consider only the behaviour of
the domain functions on the total elements of Dι (i.e. the elements representing
completely defined real numbers) then PCDF is sufficiently rich to represent the
computable elements of Dι→ι.

We do not consider the problem of defining PCDF expressions whose seman-
tics coincides with domain functions also on partial elements. The reason for this
choice is that this later problem is technically more difficult and less interesting
from a practical point of view.

The proof of the above result is quite lengthy: we define a general methodol-
ogy to transform the information that can be extracted from a domain function
into a PCDF expression. The Appendix contains a description of the construc-
tion.

4 Conclusion

We have integrated, in a single language, exact real number computation with
the evaluation of the derivatives of function expressions.

The language has been designed using a minimal set of primitives sufficient
to define any computable (and differentiable) function. It can be seen as a the-
oretical basis for the implementation of exact real number computation in a
programming language. In a practical implementation, however, one needs both
to extend the set of primitive functions and to carefully redesign the reduction
strategy to increase both the usability of the language and the efficiency of the
computation.

The main result presented here is an adequate denotational semantics for dif-
ferentiable functions, which has required original ideas in developing the seman-
tics domains, and a definability result showing the expressivity of the language.

The present research can be extended in several directions. Some possible
future works are the following.

– An obvious problem to consider is whether the definability result presented
in the paper can be extended to a larger class of function domains. We claim

that the techniques presented here can be easily adapted to functions with
several arguments. This is not however the case when considering higher
order functions, whose definability is an open problem.

– A second direction for possible further research is the treatment of the second
derivative and more generally derivative of arbitrary order.

References

1. E. Bishop and D. Bridges. Constructive Analysis. Springer-Verlag, 1985.
2. F. H. Clarke. Optimization and Nonsmooth Analysis. Wiley, 1983.
3. E. A. Coddington and N. Levinson. Theory of Ordinary Differential Equations.

McGraw-Hill, 1955.
4. T. A. Davis and K. Sigmon. MATLAB Primer. CRC Press, seventh edition, 2005.
5. P. Di Gianantonio. An abstract data type for real numbers. Theoretical Computer

Science, 221:295-326, 1999.
6. A. Edalat. A continuous derivative for real-valued functions. In New Computa-

tional Paradigms, Changing Conceptions of What is Computable, pages 493–519.
Springer, 2008.

7. A. Edalat. A differential operator and weak topology for Lipschitz maps. Topology
and its Applications, 157,(9):1629-1650, June 2010.

8. A. Edalat, M. Escardó Integration in Real PCF. Information and Computation,
160:128–166, 2000.

9. A. Edalat, A. Lieutier. Domain theory and differential calculus (Functions of one
variable). Mathematical Structures in Computer Science, 14(6):771–802, December
2004.

10. A. Edalat, A. Lieutier, and D. Pattinson. A computational model for multi-variable
differential calculus. In Proc. FoSSaCS 2005, volume 3441 of LNCS, 3441: 505–519,
2005.

11. Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoret-
ical Computer Science, 309(1-3), 2003.

12. M. H. Escardó. PCF extended with real numbers. Theoretical Computer Science,
162(1):79–115, August 1996.

13. A. Griewank and A. Walther. Evaluating Derivatives. Siam, second edition, 2008.
14. www.doc.ic.ac.uk/exact-computation/.
15. K. Ko. Complexity Theory of Real Numbers. Birkhäuser, 1991.
16. G. Lebourg. Generic differentiability of lipschitzian functions. Transaction of AMS,

256:125–144, 1979.
17. O. Manzyiuk. A simply typed lambda calculus for forward automatic differentia-

tion. In Proc MFPS 12, ENTCS 259–273, 2012.
18. J. C. Mitchell. Foundations of Programming Languages. MIT Press, 1996.
19. P. J. Potts, A. Edalat, and M. Escardó. Semantics of exact real arithmetic. In

Twelfth Annual IEEE Symposium on Logic in Computer Science. IEEE, 1997.
20. M. B. Pour-El and J. I. Richards. Computability in Analysis and Physics. Springer-

Verlag, 1988.
21. K. Weihrauch. Computable Analysis (An Introduction). Springer, 2000.

Appendix

We give the details of several proofs.

4.1 Proof of Proposition 1

Proof. The proof is quite standard, and is based on the fact that the relations
Riσ, Rl,rσ , Rd,rσ are logical. First one proves that the semantic interpretation of
(non-expansive) constants are self-related by Rd,rσ , Riσ, and Rl,rσ . Then, to show
that the fixed-point operator preserves the relations, one shows that the bottom
elements are self-related by Riσ, Rl,rσ , and Rd,rσ , and that the relations are closed
under the lub of chains. Finally, by the basic lemma of logical relations, one
obtains the result. ut

4.2 Proof of Proposition 3

Proof. (i) Let x and y be two real numbers for which the function fv is defined.
For any rational r ≥ |x− y| we have that
Rd,rι (〈{x}, [−1, 1]〉, 〈{y}, [−1, 1]〉, 〈[x, y], [−1, 1]〉). Therefore
Rd,rι (f(〈{x}, [−1, 1]〉), f(〈{y}, [−1, 1]〉), f(〈[x, y], [−1, 1]〉)), which implies that

fv(x)− fv(y) ∈ r · f2(〈[x, y], [−1, 1]〉), and thus −1 ≤ fv(x)−fv(y)
x−y ≤ 1.

(ii) Given any x ∈ I and any open interval O containing fd(x) = f2(〈{x, }, {1}〉),
let [a, b] � {x} be a rational interval such that fv is define on [a, b] and
f2(〈[a, b], {1}〉) ⊆ O, and let r = b− a, we have
Rd,rι (〈{b}, [−1, 1]〉, 〈{a}, [−1, 1]〉, 〈[a, b], {1}〉), by repeating the arguments of the

previous point, it follows fv(b)−fv(a)
b−a ∈ f2(〈[a, b], {1}〉). By monotonicity of f

it follows that for any pair of rationals a′, b′ ∈ (a, b), we have: fv(b
′)−fv(a′)
b′−a′ ∈

f2(〈[a, b], {1}〉), and by continuity of fv for any pair of real numbers x, y ∈ (a, b)
fv(x)−fv(y)

x−y ∈ O.

(iii) If f is a maximal element Dι→ι, by point (i) the function fv is non-expansive
on the points where it is defined. It follows that if the function fv is not defined
at a given point x, it is always possible to construct a function f◦ such that
f v f◦ and f◦v defined on x, leading to a contradiction. Similar arguments can
be used to prove that fd is the L-derivative of fv and not only an approximation
of the L-derivative.

4.3 Proof of Proposition 4

The sublinearity relation Rl,rι→ι is closed under non-empty meets.

Proof. To show that sublinearity is closed under meets, assume that fk : I → I
with k ∈ K is a family of Scott continuous functions satisfying the sublinearity
fk(r[x, y]) ≥ rfk([x, y]) for all [x, y] ∈ I and some (rational) r ∈ [−1, 1]. We
show that the meet

d
k fk will also be sublinear.

We use the lower and upper parts of any f : I → I as f−, f+ : T → [−1, 1]
where T = {(x, y) ∈ [−1, 1] × [−1, 1] : x ≤ y}. Note that f− and f+ are
lower and upper semi-continuous respectively. Sublinearity of f is equivalent
to f+(r(x, y)) ≥ rf+((x, y)) and f−(r(x, y)) ≤ rf−((x, y)) for r ∈ [−1, 1] and
(x, y) ∈ T .

We have: (
d
k fi)

+ = g with g = lim sup g0 where g0 = supk∈K f
+
k and

similarly (
d
k fi)

− = h with h = lim inf h0 where h0 = infk∈K f
−
k .

The sublinearity condition for fk is equivalent to f+k (r(x, y)) ≥ rf+k ((x, y))
and f−k (r(x, y)) ≤ rf−k ((x, y)) for r ∈ [−1, 1] and (x, y) ∈ T .

By taking pointwise sup and inf respectively we get: g0(r(x, y)) ≥ rg0((x, y))
and h0(r(x, y)) ≤ rh0((x, y)). By taking limsup and liminf respectively we ob-
tain: g(r(x, y)) ≥ rg((x, y)) and h(r(x, y)) ≤ rh((x, y)) as required.

4.4 Proof of Proposition 5

In a continuous Scott domain, a non-empty subset closed under lubs of direct
subsets and closed under non-empty meets is a continuous Scott subdomain.

Proof. Let D be a continuous Scott domain and C ⊂ D a non-empty subset
with the above closure properties. Given an element of d ∈ D, denote by i(d)
the greatest lower bound (meet) in C of the set {c | d v c, c ∈ C}, if this set is
not empty, otherwise let i(d) be undefined.

Then i, regarded as a partial function from D to C, preserves the well below
relation �. In fact given two elements x, y ∈ D with y �D x and i(x) defined,
we check that i(y) �C i(x). Let A be a directed subset of elements in C, with
i(x) v

⊔
C A. Since C is closed under lub of directed sets,

⊔
C A =

⊔
D A, and by

construction of i, we have x v i(x). Thus, x v
⊔
D C, and, by hypothesis, there

exists a ∈ A such that y v a. Since i is monotone and coincides with the identity
on the elements of C, we have i(y) v i(a) = a and therefore i(y) �C i(x). It
follows that if a set B is a basis of D then i(B) forms is a basis for C. In fact
given an element x ∈ C, the set A = {a ∈ B | a� x}, is a directed set with lub
x, then i(A) is a directed set of elements well below i(x) = x, having x as lub.
Therefore C is a continuous dcpo, and since it has non-empty meets, it is also
consistently complete.

4.5 Proof of Adequacy Theorem 1

For every closed term e with type ι and environment ρ, we have:

[a, b]� Eval(e) iff [a, b]� π1(EJeKρ)

Proof. We use the technique of computability predicates to prove both the
soundness and the completeness of the operational semantics. Note that the
soundness of the operational semantics cannot be proved by simply showing
that the reduction rules preserve the denotational semantics, since this is simply
not true. A simple example being the expression (Dx. dig 0 1 2 e1) e2 that reduces

to dig 0 1 2 ((Dx. e1) e2). The elements EJ(Dx. dig 0 1 2 e1) e2Kρ and
EJdig 0 1 2 ((Dx. e1) e2)Kρ do not coincide on their second component (the first is
⊥, the other is above [−1/2, 1/2]. More generally, all the reduction rules for the
derivative operator do not preserve the semantics on the second element.

We define a computability predicate Comp for closed terms of type o, ν by
requiring that the denotational and operational semantics coincide, in the usual
way. A closed term e having type ι satisfies the predicate Compι if for every
closed rational interval [a, b] and environment ρ we have: [a, b] � Eval(e) iff
[a, b]� π1(EJeKρ)

The computability predicate is then extended, by induction on types, to
closed elements of any type, and, by closure, to arbitrary elements.

Using the standard techniques for computability predicate, it is possible to
prove that all constants are computable, and that λ-abstraction preserves the
computability of the expressions. Therefore all expressions not containing the
derivative operator are computable.

To prove that the computability predicate is satisfied by expressions con-
taining the derivative operator, we show, by structural induction on the non-
expansive expression e, that the expression Dx.e is also computable.

The proof considers many cases. As an example, we take the case where
e = min e1e2. By the induction hypothesis we can assume the computability of
Dx.e1 and Dx.e2. Since the expressions e1, e2, pif and av do not contain the
derivative operator, we can assume that they are computable.

We need to prove, for any computable expression e′, that
[a, b]� Eval((Dx.min e1e2)e′) iff [a, b]� π1(EJ(Dx.min e1e2)e′Kρ).

On the one hand, we have the following chain of implications:
[a, b]� Eval((Dx.min e1e2)e′) iff, by the denotational semantics rules,
[a, b]� Eval(pif (0<) (av 1 2 (opp e1[e′/x])(e2[e′/x]))

then (Dx. e1)e′ else (Dx. e2)e′)
iff, by computability of the expression right hand side
[a, b]� π1(EJpif (0<) (av 0 1 2 (opp e1[e′/x]) (e2[e′/x]))

then (Dx. e1)e′ else (Dx. e2)e′Kρ)

If we pose: EJe′Kρ = 〈i, j〉, EJe1Kρ[〈i,1〉/x] = 〈i1, j1〉, EJe1Kρ[〈i,j〉/x] = 〈i′1, j′1〉,
EJe2Kρ[〈i,1〉/x] = 〈i2, j2〉, EJe2Kρ[〈i,j〉/x] = 〈i′2, j′2〉.

by applying the denotational semantics rule we can derive that right hand
side in the last relation is equal to j1 if i′1 < i′2, to j2 if i′2 < i′1, and to j1 t j2
otherwise.

On the other hand, by the rules of denotational semantics:
π1(EJ(Dx.min e1e2)eKρ) = π2(EJmin e1e2Kρ[i,1〉/x]) which is equal to j1 if i1 < i2,
to j2 if i2 < i1, and to j1 t j2 otherwise.

Since EJe1K and EJe2K are self-related byRiσ, their value parts are independent
from the derivative part so i1 = i′1 and i2 = i′2, from which the result follows.

The other cases can be proved in a similar way. ut

4.6 Function definability

Here we will not give a detailed proof but present a general construction that
can be used to define, inside PCDF, any computable non-expansive function.
The presentation is quite lengthy and proceeds incrementally showing, in sev-
eral steps, how to define larger and larger classes of computable maximal ele-
ments in Dι→ι. Each step will introduce a new ingredient in the construction.
More precisely, we first present a construction that can deal with any piecewise
continuously differentiable function (i.e., a function that is continuously differen-
tiable except for a finite number of points at which the left and right derivatives
exist), then we extend it to treat functions that are piecewise continuously dif-
ferentiable except for a finite number of points (of essential discontinuities of the
derivative at which the left and right derivatives do not exist), and finally we
give a definability result for general Lipschitz maps.

Notation. Given two real numbers x, r we denote with x ± r the interval
having center in x and diameter 2r. Given a total function f , we denote by f ±r
the partial function λx.f(x)± r. Moreover, given a rational number c we denote
with ⊕c the weighted average operation on reals, that is x⊕cy = (1−c) ·x+c ·y,
and with Bc the functional
λl, f : I → I. λx : I. max(l(x)− c,min(f(x), l(x) + c)).
With some abuse of notation given a PCDF constant c representing a function
on reals, we will use the symbol c to denote the functional obtained by pointwise
application of the function c. For example, min denotes the functional
λf, g : ι→ ι . λx : ι .min (fx)(gx).

For start, we present a series of functions, and functionals definable by PCDF
expressions.

– It is easy to see that any non-expansive piecewise rational linear function
l is definable using the functions dig , opp , add ,min ,max , in the sense that
there exists a PCDF function expression l such that l = (EJlKρ)v and d l

d x =
(EJlKρ)d. For example a piecewise linear interpolation of the function λx.x3/2
coinciding with the function on the points with x equal to −1,−1/2, 0, 1/2, 1
can be defined as

λx.max (min (add 3 8 (dig 0 7 8x))(dig 0 1 8x))
(sub 3 8 (dig 0 7 8x))

We use l1, l2, . . . as metavariables over expressions defining piecewise rational
linear functions, with l1, l2, . . . denoting the corresponding functions on reals,
i.e., l1 = (EJl1Kρ)v

– In the following we will use the functional:

B = λl : ι→ ι. λp, q : ν. λf : ι→ ι. λx : ι.
max (sub p q (l x))(min (f x)(add p q (l x))).

Note that, given an expression l defining a (piecewise linear) function l,
EJB l p qKρfx is the interval (l(x) ± p

q) ∩ f(x), if the interval l(x) ± p
q and

f(x) intersect, otherwise EJB l p qKρfx coincides with one of the two bounds
of the interval l(x) ± p

q . The following diagram illustrates the behaviour of
the functional B on maximal points for a function preserving these points.

-0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8

-0.4

-0.3

-0.2

-0.1

-0

0.1

0.2

0.3

0.4

l

f

B(l,1/8,f)

On partial elements, EJB l p qKρf is a sort of projection of the function f on
the function λx . l(x)± p

q . Given an expression Ω denoting the completely un-

defined function, the value part of EJB l p qΩKρ) is the function λx . l(x)± p
q ,

while the derivative part (EJB l p qΩKρ)d is the completely undefined func-
tion.

– We will use also the functional:

L = λl : ι→ ι. λp, q : ν. λf : ι→ ι. λx : ι.(av (q − p) q (f x)x).

Given an expression l defining a piecewise linear function l, it is readily seen
that the value part of EJL l p qΩι→ιKρ is the function λx . (1− p

q) · l(x) ± p
q ,

while (EJL l p q Ωι→ιKρ)d is the function λx . (1− p
q) · d ld x (x) ± p

q .

It is easy to show that for any non-expansive function f : I → I there exists
a sequence of piecewise linear functions 〈li〉i∈N converging fast to f , in the sense
that for any i, we have f ∈ li ± 2−i+1.

Let exp : ν → ν be a suitable PCDF term implementing the function λn. 2n,
if the sequence of piecewise linear functions 〈li〉i∈N is definable in the sense that
there exists a term l such that l n defines the function ln, then the term
f = (Y λF.λn.B(l n) 1 (exp (n + 1)) (F(n + 1)))0 is such that:

EJfKρ =
⊔
i∈N
EJB(l 0) 1 2 (B(l 1) 1 4 (. . .B(l i) 1 2i+1 Ω) . . .)Kρ

It is then not difficult to see that f = (EJfKρ)v. However, (EJfKρ)d is the
bottom function, i.e., the completely undefined approximation of the derivative
of the function f . We now proceed in three steps of increasing complexity to
define various classes of Lipschitz functions in PCDF.

4.7 Piecewise continuously differentiable

If f : I → I is piecewise continuously differentiable, then there exists a sequence
of piecewise linear functions 〈li〉i∈N such that for all i the function l1⊕1/2 (l2⊕1/2

(. . . li ⊕1/2 0) . . .) approximates the function f with precision 2−i, both for the
value and for the derivative part. If the sequence of piecewise linear function is
definable by a term l then we can construct a term f such that:

EJfKρ =
⊔
i∈N
EJL(l 0) 1 2(L(l 1) 1 2(. . . L(l i) 1 2(Ω) . . .))Kρ

and one can prove that EJfKρ describes both the value part and the derivative
part of f .

4.8 Piecewise continuously differentiable except for isolated points

The above construction can be applied only if the function f : I → I, together
with its derivative, is globally approximable by a sequence of piecewise linear
functions. In general, if f is not piecewise continuously differentiable, this is not
always possible. For example consider f(x) = x2 · sin(1/x)/4, in [−1, 1]. Then
f has a Lipschitz constant 3/4 and is differentiable at every point, but in any
neighbourhood of 0 its derivative assumes all the values between −1/4, 1/4, i.e.,
the left and right derivatives at 0 do not exist. It follows that there is no piecewise
linear function, whose derivative part approximates the derivative of part of f
with an error smaller that 1/4. To overcome this, we now present a construction
where the problem of defining a function on the whole interval [−1, 1] is reduced
to the problem of defining suitable approximations to the function on smaller
and smaller intervals.

It works as follows: given a non-expansive function f : I → I, we first obtain
a piecewise linear function l0,0, and a rational number c0,0 ∈ [0, 1) such that
(1 − c0,0) · l0,0 globally approximates the value and derivative part of f with
an error c0,0. Given an expression l0,0 defining the function l0,0, an expression
defining f can be written in the form av (q− p) q l0,0 g0,0, where c0,0 = p/q and
g0,0 is a suitable expression defining the non-expansive function
g0,0 = (f−(1−c0,0)·l0,0)/c0,0. In other words we reduce the problem of defining f
to the problem of defining g0,0. At this stage we do not look for a global piecewise
linear approximation of g0,0, but we split the domain of g0,0 in two overlapping
intervals J1,0 and J1,0, and consider two functions f1,0 and f1,1 defined as the
least non-expansive functions that coincide with g0,0 on the intervals J1,0 and
J1,0 respectively. The function g0,0 can then be expressed as max (f1,0, f1,1). In
this way, the problem of defining g0,0, it is split into the problem of defining
two functions f1,0, f1,1 each of them having a complex behaviour just in one
restricted part of the domain and in the remaining part behaving as piecewise
linear functions. Corecursively, we apply the apply the procedure consider for
the function f to the functions f1,0 and f1,1, constructing an infinitary tree of
linear approximations, each of which considers the behaviour of the function f
in smaller and smaller intervals.

A more formal presentation of the construction is the following.

First we define two sequences of coverings, Ii, Ji, with i > 0, of the interval
I by rational intervals. To any pair i, j of non-negative integers with 2i > j ≥ 0,
we associate the real intervals

Ii,j = [(j − 2i−1)/2i−1, (j + 1− 2i−1)/2i−1],

and

Ji,j = [(2j − 1− 2i)/2i, (2j + 3− 2i)/2i] ∩ [−1, 1].

As a numerical example, the covering I2 is formed by the intervals

[−1,−1/2], [−1/2, 0], [0, 1/2], [1/2, 1]

while the overlapping covering J2 is formed by the intervals

[−1,−1/4], [−3/4, 1/4], [−1/4, 3/4], [1/4, 1].

By simultaneous induction on i ≥ 0 we construct three families of double
indexed maps fi,j , li,j and gi,j , and a double indexed family of rational ci,j as
follows:

– A family of functions fi,j from I to I, with 0 ≤ i and 0 ≤ j < 2i, is defined
by:

• f0,0 = fv
• fi+1,j is the smallest (wrt the real line order) non-expansive function

coinciding with the gi,bj/2c on the interval Ji+1,j , formally:
fi+1,j(x) = min (gi,bj/2c(x), x+ ai+1,j , −x+ bi+1,j).

where, denoting by J−i,j and J+
i,j , respectively, the left and right bound of

the interval Ji,j , we put ai,j = gi,bj/2c(J
−
i,j)−J

−
i,j and bi,j = gi,bj/2c(J

+
i,j)+

J+
i,j .

As anticipated above, the definability of gi,j to the definability of fi+1,2j and
fi+1,2j+1, each of them consider a different region portion of the function
domain of gi,j .

– A family of piecewise linear functions li,j and the rational numbers ci,j ∈
(0, 1], with 0 ≤ i and 0 ≤ j < 2i, such that: fi,j ∈ (1 − ci,j) · li,j ± ci,j and
d fi,j
d x ∈ (1− ci,j) · d li,jd x ± ci,j .

The functions li,j and the rationals ci,j are not uniquely defined, the con-
struction just chooses them in such a way that (1− ci,j) · li,j is a piecewise
approximation of, value and derivative part of, fi,j , with error ci,j .

– The family of functions gi,j from I to I, with 0 ≤ i and 0 ≤ j < 2i are
defined such that fi,j = li,j ⊕ci,j gi,j ; the conditions pose on the function li,j
assure that the function gi,j exists and it is non-expansive.

After having generated the approximation li,j of the functions fi,j , one is
left with the problem of defining the function gi,j .

As an example of the above construction, consider the function f = x2/2. We
can choose, in the first step of approximation, the function l0,0(x) = max (−x, x)
and the constant c0,0 = 1/2. This choice induces the functions
g0,0(x) = min ((x2+x), (x2−x)) and f1,0(x) = min ((x2+x), (x2−x), (−x+1/4).
Proceeding with the construction, using similar choices for the next steps, leads
to the function
f2,1(x) = min ((2x2 + 3x + 1), (2x2 + x), (2x2 − x), (x + 5/8), (−x + 1/8)). A
piecewise linear approximation of function f2,1, with precision 1/2 is given by
the function l2,1(x) = max (min (x+ 1/2, −x− 1/2), min (x,−x)). The following
diagram depicts the functions f2,1 and l2,1/2.

-0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

f21

l21 /2

Fig. 1. Functions used in approximating the square function

The function g2,1 with f2,1 = l2,1/2 + g2,1/2 and the function f3,2(x) =
min ((4x2 + 5x+ 3/2), (4x2 + 3x+ 1/2), (4x2 + x), (x+ 9/16), (−x− 3/16)) are
illustrated by the following diagram:

-0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

g
21

f32

Fig. 2. Approximation of the square function

Coming back to the general construction, at any point on the interval I, we
have that fi,j ≥ (1− ci,j) · li,j + ci,j ·max(fi+1,2j , fi+2,2j) while on the interval
Ji+1,2j ∩Ji+1,2j+1 equality holds: fi,j = (1−ci,j) · li,j +ci,j ·max(fi+1,2j , fi+2,2j).
Thus, the following infinitary form gives a correct approximation of the function

f :
l0,0 ⊕c0,0 max((l1,0 ⊕c1,0 max((l2,0 ⊕c2,0 max ldots),

(l2,1 ⊕c2,1 max ldots))),
(l1,1 ⊕c1,1 max((l2,2 ⊕c2,2 max . . .),

(l2,3 ⊕c2,3 max . . .)))).

If the families ci,j and li,j are definable, then it is possible to construct a PCDF
expression whose semantics coincides with the formula. Given a real number
x ∈ I, denote with 〈Ji,h(i)〉i∈N a sequence of J intervals converging to x such
that ∀i.h(i) = bh(i+ 1)/2c (if x is not a dyadic rational this sequence is unique,
if x is a dyadic rationals there are two such a sequences). The above formula
defines a function converging on x iff Πi∈Nci,h(i) = 0, for any such a sequence
(each level reduces the inaccuracy by a factor ci,j). If there exists an index k
such that the function f is continuously differentiable in any interval in the form
Jk,j containing x, then on these intervals f can be approximated with arbitrary
precision by a piecewise linear function and therefore there exists a choice for
the constants ci,j making the above construction converge on x. But if x is a
point of essential discontinuity for the derivative, there is a limit on the level
of the precision for any choice for the constants ci,j , and we need to consider
the next construction to obtain convergence to the value of the function and its
derivative at x.

4.9 General Lipschitz functions

In the previous construction, the finite approximations of the above displayed
formula define both the value part and the derivative part of the function with
the same level of precision. But there are non-expansive functions whose Clarke
gradients (L-derivatives) are partial elements at all points [16, 7]. When applied
to this class of functions the above construction can only lead to expressions
whose semantics is a partial function also for the value part. To define functions
in this class, we have to add an extra ingredient to the construction and to use
the “projection” operator B, which increases the information contained in the
value part of the partial function without necessarily modifying the information
contained in the derivative part. To apply the operator B, it is necessary to build
a list of piecewise linear functions l′i,j and rational numbers c′i,j , with 0 ≤ j ≤
2i − 1 satisfying the following three conditions: gi,j ∈ l′i,j ± c′i,j/4, c′0,0 · c0,0 ≤ 1

2

and c′i+1,j · ci+1,j ≤
c′i,j/2

2 , that is l′i,j is a piecewise linear approximation of the
function gi,j such that the value part of gi,j is approximated within an error
c′i,j/4, while there is no condition on the derivative part of l′i,j .

The function f can then be expressed as

l0,0 ⊕c0,0 (Bc′0,0 l
′
0,0(max (l1,0 ⊕c1,0 (Bc′1,0 l

′
1,0(max . . .))),

(l1,1 ⊕c1,1 (Bc′1,1 l
′
1,1(max . . .))))).

The conditions on the constants c′i,j are such that the expansion of the above

formula until the level i describes the value part of f with precision 2−i. The

conditions on l′i,j are such that a further application of the B operator determines
the value of the function with an error strictly smaller than the application above
it.

Given a maximal computable element f in the function domain Dι→ι, the
value part fv is a total functions. Moreover, by the computability of f , it is
possible to effectively generate, with an arbitrary precision, the graphs of the
functions fv and fd. Therefore it is possible to effectively generate the families
of rationals ci,j , c

′
i,j and the piecewise linear functions li,j , l

′
i,j of the construction

above. To ensure the convergence of the derivative part, we also require that given
a recursive enumeration of the finite elements below f , the rational number ci,j
is chosen as the largest number in the form k

2i that can be generated after
examining the first 2i elements in the enumeration of f . Since the construction
is effective, by Turing completeness of PCF, there exist two PCDF terms l, l′ :
ν → ν → ι → ι generating the above families li,j , l

′
i,j , and four PCDF terms

nc, dc, nc′, dc′ : ν → ν → ν generating numerators and denominators of the
rational numbers ci,j , c

′
i,j .

Let f : ν → ν → ι→ ι be the expression

f = Y λF : ν → ν → ι→ ι. λi, j : ι
L(l i j)(nc i j)(dc i j)(B(l′ i j))(nc′ i j)(dc′ i j)(max (F (i+ 1)(2j))

(F (i+ 1)(2j + 1)))

The expression f 0 0 defines the function f ; in the sense that for any real
number x ∈ I, we have fv(x) = (EJf0,0Kρ)v(x) and fd(x) = (EJf0,0Kρ)d(x).

Note that above definability result outlines a program expression that com-
putes a function similar to the tradition of numerical analysis: the function f is
expressed as the limit of a sequence of piecewise linear functions and the program
that computes the value of the function at a given point actually also computes
the values of the derivative at that point. Note moreover that the definability
constructions do not use the parallel if operator pif.

