
Oracle Game Semantics for the nu-alculus?

Pietro Di Gianantonio Marino Miculan

Dipartimento di Matematica e Informatica, Università di Udine
via delle Scienze 206, 33100 Udine, Italy

digianantonio@dimi.uniud.it miculan@dimi.uniud.it

Abstract. The long-standing problem of giving fully abstract semantics
to the nu-calculus has been solved only recently with game models à la
Hyland-Ong in the universe of Fraenkel-Mostowski sets. However, these
models are still quite complicated, mainly because they aim to ensure
at once both the equivariance of strategies, and the possibility of having
strategies generating new names.
In this paper, we present an alternative, and somehow simpler, game
semantics for the nu-calculus, endorsing the “object-oriented” view of
references. The idea is to deal first with equivariance, and then with
name generation. More precisely, we define a game model where terms
are interpreted by (equivariant) strategies parametrized by some oracle,
which can be seen as an “external supplier” of fresh names to be interro-
gated on the need. The oracle is provided at a second stage, when a model
of complete strategies is defined by means of an extensional equivalence.

1 Introduction

Name creation and name passing are well-known and pervasive aspects of many
computational paradigms. In languages with local variables and store, such as
Idealized Algol or Standard ML, a declaration creates new references (storage
cells) that can be passed around. Most modern process algebras, especially those
deriving from the π-calculus, are built on the notion of name.

In order to study abstractly the problem of local names, Pitts and Stark
introduced the nu-calculus [13], a simply typed call-by-value λ-calculus with a
type for names. Names can be only created, compared and passed, in accordance
to the intuition that they form a countable set without any internal structure.

Despite its simplicity, giving the nu-calculus a precise (i.e., fully abstract)
model is very subtle. The characterization of the observational equivalence is
difficult due to the interplay between higher-order functions and name creation.
For this reason, standard techniques based on functor categories do not suffice,
although these have been successful in modeling first-order process calculi with
names, such as the π-calculus with strong or weak congruence [4,15]. Stark [14]
describes models based on the functor category SetI , on its subcategory known
as Schanuel topos, and on categories with relations. This latter model is fully
abstract for first order types, but not for higher types; in particular, the decid-
ability of observational equivalence for higher types is still an open question.
? Work supported by EU project FP6-IST-510996 types.

mailto:digianantonio@dimi.uniud.it
mailto:miculan@dimi.uniud.it

Recently, two different models based on game semantics have been proposed.
Laird [8] presents a fully abstract model for the νσ-calculus, an extension of
the nu-calculus with stores; this model is not fully abstract for the pure nu-
calculus. Abramsky et al. [1] present the first fully abstract model for the origi-
nal nu-calculus. A key feature of both models in [1,8] is that they use Fraenkel-
Mostowski sets, which have been cogently advocated by Gabbay and Pitts as a
simple yet expressive setting for modeling datatypes with names [5,12]. Infor-
mally, FM-sets can be seen as sets built using also a basic set of atoms, and
where all constructions are closed under any permutation of the atoms. As a
consequence we can compare two atoms, but we cannot choose a specific atom,
because a choice function is not closed under permutation.

The resulting models are fully abstract but nevertheless they are quite com-
plicated. The problem is that these models aim to capture at once both the “sta-
bility” of terms and function under permutation of names, and the possibility
of generating fresh names. The tension between these antithetical requirements
is the source of the complexity of these models, because specific structure is
required to keep track of the already generated names.

In this work, we give a fully-abstract model for the nu-calculus following a
different approach. The key observation is that the two characteristic issues of nu-
calculus, namely stability under permutations and generation of fresh names, are
quite orthogonal and can be dealt with separately. Thus, the interpretation of a
term of the nu-calculus can be factorized into a strategy free of name generation,
and a separate strategy specialized in generating names. In other words, when
generation of new names is singled out and managed on its own, the rest of the
calculus is interpreted quite easily in a restricted class of “good” strategies.

- For “good” strategies, all names must appear as equivalent: the set of names
does not have any internal structure; we can only check whether two names are
the same. Thus good strategies must be invariant under name permutations.

- Good strategies cannot create new names directly; the creation of new names
is delegated to the environment (the Opponent). A fresh name is created by
calling an “external function” that at each call returns a different value.

A clear advantage of this method is that it is very close to “real world” computing
situations; e.g. Lisp and Unix provide the function gensym to generate names,
which other programs can only compare and move around.

Let us describe these steps in more detail. The first step is to rule out strate-
gies that discriminate between names. We define a category of games and equiv-
ariant strategies, that is strategies “stable” under permutation of names. An
elegant way to enforce this condition is to build games in FM-sets, as in [1,8], or
more simply in G-set theory where G is the group of permutations of names.

The second step is to impose that names are generated by the environment,
or by the Opponent. Informally, we assume that there exists an oracle that
can be interrogated to supply names. Formally, we interpret the nu-calculus
assuming that in any context there exists an oracle variable with type1 1 → ν.
1 We use the game 1 → ν instead of ν for technical reasons, due to the call by value

evaluation strategy of the nu-calculus.

2

The interpretation of new constructor of the nu-calculus is then straightforwardly
defined as the strategy that interrogates the oracle variable for a (new) name,
receives a name and returns it. In this approach all the different instances of
new in a term M refer to the same oracle variable; thus, it is easy to keep
track of the different calls of new and to assure that each one generates a new
name. Thus, the (equivariant) strategy σ interpreting a term M will contain
explicitly the interrogations to the oracle variable. As usual for strategies, σ
must consider all possible behaviour for the oracle, also “incorrect” ones which
generate a name more than once. The “effective” strategy describing M is then
obtained by composing σ with any “good” oracle strategy δ in game 1→ ν that
replies to each question with a different name. The strategy δ does not satisfy
the equivariance restriction that other strategies must satisfy.

In order to compare our model with the previous game models for the nu-
calculus [1,8], it is useful to recall two different approaches to game semantics
for languages with references, such as Idealized Algol.

The model presented in this paper is close in spirit to the game model for
Idealized Algol presented by Abramsky and McCusker [2], where variables are
treated in a parametric way using the so-called object oriented interpretation:
for each variable there is an associated strategy (“cell”) giving the interpreta-
tion to methods of accessing the variable. This is analogous to our treatment
of new with its associated oracle strategy. This approach to Idealized Algol is
sometimes called the bad variable approach, because for definability (and hence
full abstraction) to work, the language must be expressive enough so that “bad
variables” are definable. The standard Idealized Algol does not have such ex-
pressiveness, hence a bad variable constructor (called mkvar) must be explicitly
added to the language. To be precise, the “bad variable” model is equationally,
but not inequationally, fully asbtract for Idealized-Algol-without-mkvar.

In contrast Ong [11] presents a good variable game semantics for Idealized
Algol where the mkvar constructor is not necessary. That model is similar, in
the kind of the definition used, with the game models for names presented in [1].

Comparing these two approaches, we find the “bad variable” approach con-
ceptually more attractive and mathematically cleaner: it does so largely by hiding
states in a remarkably effective way. The disadvantage is the need of the extra
constant mkvar. In contrast, the “good variable” approach makes state explicit
in the model construction; hence it is more complicated, and so, less attractive
from a practical point of view. The advantage is that it does lead to a fully
abstract model for languages without the need for mkvar. However, it is worth
pointing out that in the case of the nu-calculus, as we present in this paper,
we can use a parametric (object oriented) interpretation for names without the
need of extending the language with any spurious constant.

Synopsis. In Section 2 we recall the nu-calculus. In Section 3 we introduce the
category of G-games and equivariant strategies, which will be used in Section 4
for giving a first model of the nu-calculus; although incorrect, this model is useful
for proving a general definability result which will be inherited by a second,
correct, model. The suitable category of “games with an oracle” is introduced
in Section 5; in Section 6 we will define a decidable congruence relations on

3

(x : A) ∈ Γ
s, Γ ` x : A

(var)
s, Γ, x : A `M : B

s, Γ ` λx : A.M : A→ B
(abs)

s, Γ `M : A→ B s, Γ ` N : A

s, Γ `MN : B
(app)

s, Γ ` true : o
(tt),

s, Γ ` false : o
(ff)

s, Γ `M : o s, Γ ` N1 : A s, Γ ` N2 : A

s, Γ ` if M then N1 else N2 : A
(ite)

n ∈ s
s, Γ ` n : ν

(n)
s, Γ ` new : ν

(new)
s, Γ `M : ν s, Γ ` N : ν

s, Γ `M = N : o
(Eq)

Fig. 1. Typing system of nu-calculus.

strategies of this category, sufficient to obtain a correct categorical model of nu-
calculus, and a coarser one which generates the fully-abstract model. Conclusions
are in Section 7. Appendix A recalls briefly call-by-value game semantics.

2 The nu-calculus

The nu-calculus is a call-by-value simply typed λ-calculus, extended with dy-
namic creation of references [13]. The types are defined as follows:

A,B ::= ν | o | A→ B

The only ground types are that of names ν, and that of Booleans o. Terms are de-
fined as follows, where n ranges over a set of abstract namesN = {n0, n1, n2, . . . }:

M ::= x | λx:A.M |MM | true | false | if M then M else M | n | new |M = N

Names form a infinite, enumerable set with no internal structure; one may think
of names as natural numbers. Thus names can be only created (by new, which
generates a different name each time is evaluated), compared (by =) and passed
(used as arguments of a function). (We adopt the presentation with the new
constructor, because it turns out to be simpler to model in our approach.)

The typing system for nu-calculus is a simple extension of the usual one for
λ-calculus. The typing judgment has the form

s, Γ `M : A

where s is a list of all distinct names. The typing rules are in Figure 1; notice
that comparison is restricted to terms of type ν.

Expressions are closed terms (but possibly with free names). An expression
is in canonical form, or a value, if it is either a boolean constant, an abstraction,
a variable, or a name. For any type A and list of names s, we define the sets

ExpA(s) , {M | s, ∅ `M : A} CanA(s) , {C | C ∈ ExpA(s), C canonical}

Operational Semantics. Similarly to Standard ML, the nu-calculus has a call-
by-value reduction strategy. The operational semantics needs to keep track of
the already generated names; therefore, evaluation judgments have the form

s `M ⇓ (s1)C

4

C ∈ CanA(s)

s ` C ⇓ ()C
(Can)

n 6∈ s
s ` new ⇓ (n)n

(New)

s `M ⇓ (s1)λx:A.M ′ s, s1 ` N ⇓ (s2)V s, s1, s2 `M ′{V/x} ⇓ (s3)R

s `MN ⇓ (s1, s2, s3)R
(App)

s `M1 ⇓ (s1)n s, s1 `M2 ⇓ (s2)n

s `M1 = M2 ⇓ (s1, s2)true
(EqTrue)

s `M1 ⇓ (s1)n s, s1 `M2 ⇓ (s2)m (n 6= m)

s `M1 = M2 ⇓ (s1, s2)false
(EqFalse)

s `M ⇓ (s1)true s, s1 `M1 ⇓ (s2)V

s ` if M then M1 else M2 ⇓ (s1, s2)V
(IfTrue)

s `M ⇓ (s1)false s, s1 `M2 ⇓ (s2)V

s ` if M then M1 else M2 ⇓ (s1, s2)V
(IfFalse)

Fig. 2. Operational semantics of the nu-calculus.

where s, s1 are list of all different names, and M ∈ ExpA(s) and C ∈ CanA(s, s1).
The intuitive interpretation is: if the names on the list s are already present (i.e.,
allocated), then the term M reduces to value C, generating the names in the list
s1. The rules for the operational semantics are in Figure 2.

Observational equivalence. As usual the reductions strategy induces an
observational equivalence on (possibly open) terms. Informally, two terms are
observational equivalent if they are not distinguishable by observing their be-
haviour; so, two observationally equivalent terms can be freely interchanged.

In the nu-calculus, we can restrict to observers (i.e., contexts) of boolean
type. A program P is a closed term of boolean type (i.e., s, ∅ ` P : o, for some
s); a program context P [−] is a program with zero or more occurrences of an
hole [−]; if M is some closed term, we denote by P [M] the program obtained by
filling the hole with M .

Definition 1 (Observational Equivalence). For M1,M2 ∈ ExpA(s), we say
that M1 and M2 are observationally equivalent (written s ` M1 ≈A M2) if for
all program contexts P [−] and b ∈ {true, false}:

(∃s1.s ` P [M1] ⇓ (s1)b) ⇐⇒ (∃s2.s ` P [M2] ⇓ (s2)b)

Remark 1. Often the nu-calculus, and similar nominal calculi, have a ν binder
instead of the constant new. The informal meaning of a term νx.M is “generate a
new, fresh name and assign it to the variable x in the scope M”. The operational
semantics of this binder is given by the following rule:

s, n `M ⇓ (s1)C
s ` νn.M ⇓ (s1, n)C

(Local)

In other words ν creates and binds a name before evaluating the expression; new
just evaluates to a fresh name. The two formulations are equivalent; in fact, the

5

following operational equivalences hold:

s ` new ≈ν νn.n s ` νn.M ≈A (λx:ν.M)new

In our approach we find simpler to model the constructor new, hence we chose
this presentation. Still, we will use “νx.M” as a shorthand for (λx:ν.M)new.
Also, for s = n1 . . . nk, we define νs.M = νn1. . . . νnk.M .

Due to its finitary nature, one may expect that the operational equivalence
is simple; however, there are some subtleties, such as the following equivalences:

– νn.νn′.(n = n′) ≈o false
– νn.(λx : ν.(x = n)) ≈ν→o λx : ν. false
– νn.νn′.(λf : ν → o.(fn = fn′)) ≈(ν→o)→o λf. true

where the equality “M = N” between booleans is a syntactic shorthand for
the term if M then N else if N then false else true.

3 G-games

In this section we present the first step of our approach, that is a theory of
games with names. Since this theory is a simple derivation of standard games
for call-by-value λ-calculus, we start recalling the basic definition in the spirit of
Honda and Yoshida [6] in a formulation closer to Laurent [9]. See Appendix A
for a more detailed presentation of game semantics.

Definition 2 (Arenas). An arena is a triple A = 〈MA, λA,`A〉 where MA

is a set of moves; λA : MA → {PQ, PA, OQ, OA} is a labelling function that
indicates whether a given move is a P-move or an O-move, and whether it is
a question (Q) or an answer (A); and `A is the justification relation, that is
a relation on MA ×MA, denoted by m1 `A m2, and a subset of MA, of initial
moves, denoted by `A m, satisfying the following conditions:

(i) Every initial move is an P-answer.
(ii) If m `A m′ then m and m′ are moves by different players.

(iii) If m `A m′ and m is an answer then m′ is a question (“Answers may only
justify questions.”).

Example 1. The simplest arena is the empty arena 0 = 〈∅, ∅, ∅〉, the singleton
arena is defined by 1 = 〈{∗}, {(∗,PA)},`1〉 where `1 ∗.

In the following we will use also the Boolean arena o having two moves {t, f},
both initial, and the arena of names ν = (Mν , λν ,`ν), where Mν is the set of
names N , {n0, n1, . . . }; for all x ∈Mν : λν(x) = PA and `ν x.

Set-like constructions (product, coproduct, function space. . .) can be defined
on arenas (or better, on prearenas). Arenas, and higher-order prearenas, are
inhabited by strategies, which can be informally described as sets of plays (i.e.,
lists of alternating player/opponent moves); see Appendix A for details.

An important feature of strategies (of the correct type) is that they can be
composed like functions; this justifies the following definition:

6

Definition 3. The category G of games and strategies has arenas as objects,
and innocent strategies in the prearena A ⇀ B as morphisms from A to B. The
category Gt is the subcategory of G of total strategies only.

It is a standard result of game semantics [6,9] that the category Gt has 0 as initial
object, 1 as terminal object, × as binary product. One can observe instead that
G does not have binary product.

In giving the semantics of the nu-calculus, we use Moggi’s approach with
computational monads [10]. Therefore, we have now to define a strong monad T :
Gt −→ Gt with T -exponentials. The construction is the following. The inclusion
functor I : Gt ↪→ G has as a right adjoint the lift-functor L(A) = A⊥ with unit
upA : A→ A⊥ and counit dnA. The associated monad T = 〈LI, LdnI : (LI)2 →
LI, up : Id→ LI〉 is a strong monad with a tensorial strengh tA,B : A× TB →
T (A × B). For every pair of arenas A,B the T -exponential (TB)A is a arena
such that for every arena C there is a natural bijection between Gt(C ×A, TB)
and Gt(C, (TB)A); in our case (TB)A is simply the arena A→ B.
Proposition 1. The category Gt, with the strong monad T , is a λc-model.

The Kleisli category (Gt)T coincides with the category G. We will interpret
terms as morphisms in the category G, mainly because strategies in G(A,B) can
be described more simply than the corresponding strategies in Gt(A, TB).

G-games We present now a theory of games “up-to permutations” of names.
Arenas can be defined by set-like constructions, possibly involving the arena

of names ν. Thus moves in these arenas are nested pairs whose final elements can
be names. Intuitively, a name is equivalent to any other, the only relevant feature
being they are all distinguished. It follows that plays or strategies differing just
for a permutation of names involved should be considered isomorphic, and hence
indistinguishable by other strategies.

In order to enforce the condition that functions (i.e., strategies) are stable
under permutations of names, we need to define how a permutation on names in-
duces a corresponding action on moves and plays. The simplest way to formalize
this idea is via the notion of G-sets.

Definition 4 (G-sets). Let G be a group. A (left) G-set is a pair (X, ·X) where
X is a set and ·X : G×X → X is a (left) G-action, that is

id ·X x = x π1 ·X (π2 ·X x) = (π1π2) ·X x

An equivariant function f : (X, ·X) → (Y, ·Y) between G-sets is a function
f : X → Y such that f(π ·X x) = π ·Y f(x) for all x ∈ X and π ∈ G.

The G-sets and equivariant functions form a category denoted by BG.

In this paper we are interested in G-sets where the group of action G is the
group, Gε of permutations on the set of names N , or one of the subgroups of
Gε, denoted by Gs, formed by the permutations for which the names in a list s
are fixed-points.

Intuitively, for a permutation π ∈ Gs, the action π ·X − is the operation
renaming the names appearing in the elements of X, according to π.

It is easy to see that the basic constructions in Set can be readily lifted to
BG (In fact, BG is a topos). Let X = (X, ·X) and Y = (Y, ·Y) be two G-sets:

7

(i) Cartesian product: X × Y , (X × Y, ·) where π · (x, y) , (π ·X x, π ·Y y).
The G-set 1 = ({∗}, {(π, ∗) 7→ ∗}) is the terminal object in BG.

(ii) Coproduct: X+Y , (X+Y, ·) where π ·inX(x) , inX(π ·X x), π ·inY (y) ,
inY (π ·Y y). The G-set 0 = (∅, ∅) is the initial object in BG.

(iii) Finite lists: X∗ = (X∗, ·), where for any sequence (x1, . . . , xn), we define
π · (x1, . . . , xn) = (π ·X x1, . . . , π ·X xn).

(iv) Function space: Y X , (Y X , ·), where for f : X → Y we define π·f : X → Y
as the function (π · f)(x) = π ·Y f(π−1 ·X x).

(v) We say that (X, ·X) is a G-subset of (Y, ·Y) if X ⊆ Y and for all π ∈ G, x ∈
X : π ·X x = π ·Y x. Notice that if an element y ∈ Y belongs to X, then
the whole orbit of y is in X: for all π ∈ G : π ·Y y ∈ X.

Remark 2. The category BG of G-sets is similar to that of Fraenkel-Mostowski
sets with finite support, or nominal sets, used in [5,12,1]; the main difference is
that only elements with finite support are considered there. We can enforce the
“finite support” condition by restricting to the category of continuous G-sets,
i.e. G-sets (X, ·) whose action · : G×X → X is required to be continuous when
X and G are endowed with the discrete and Baire topology respectively.

The category of continuous G-sets is a full subcategory of G-sets, and closed
under usual object constructions (product, coproduct, . . .). In fact, all types
of nu-calculus are interpreted as continuous G-sets. Therefore, we can use both
categories for the constructions presented in this paper. However, in order to
keep the theory as simple as possible we prefer to avoid the conditions about
finite support, and hence we work in the category of generic G-sets.

Now we apply G-sets to the definition of (pre)arenas and strategies.
Definition 5 (G-arena and G-strategies). Given a group G, a G-(pre)arena
is a (pre)arena A = 〈MA, λA,`A〉 with the additional condition that MA is a
G-set of moves, and λA : MA → {PQ, PA, OQ, OA} is an equivariant function
(where the action of the G-set {PQ, PA, OQ, OA} is the identity).

A G-strategy σ on the G-prearena A is a strategy σ with the additional
condition that σ is a G-subset of positions.

It is almost immediate to see that the composition of G-strategies is a G-strategy.
Thus we can lift the definition of categories of games to this setting:

Definition 6. Given a group G, we denote by GG the category of G-arenas and
innocent G-strategies, and by GGt the category of G-arenas and total, innocent
G-strategies.

Also the construction of products, and of the strong monad T as above, can be
lifted to these categories of G-games.

The definition of G-arena is almost the same of FM-arena in [1], and of ν-
arena in [8]. On the other hand the definition of G-strategy is quite different
from the corresponding definitions in [1,8]. Our definition of G-strategy is sim-
ply the translation, inside G-set theory, of the standard definition of strategy.
As a consequence, a G-strategy cannot make any choice among the names not
belonging to the list s, and so cannot generate any fresh name, as shown in the
next example.

8

Example 2. The arena of names ν of Example 1 can be obviously endowed with
a Gs-action π ·ν x , π(x), becoming thus a Gs-arena. Note that there is only one
(never answering) Gε-strategy in the prearena 1 ⇀ ν. In fact if ∗n ∈ σ : 1 ⇀ ν
then also π · (∗n) = ∗(π ·ν n) ∈ σ since σ is a Gε-subset of moves, and thus
for all n′ ∈ N : ∗n′ ∈ σ, which contradicts the determinacy condition. By the
same arguments, the Gs-strategies on the prearena 1 ⇀ ν can only answer with
a name in s to the initial move of the opponents .

In [1,8] strategies are allowed to choose a fresh name. This is obtained by relaxing
the determinacy condition and allowing strategies with multiple choice: in order
to choose a fresh name, a strategy chooses all available fresh names.

4 A game semantics for the nu-calculus by translation

In this section we use the categories introduced in Section 3 for defining a first,
albeit incorrect, game semantics for the nu-calculus. This semantics is given by
translating the nu-calculus into a traditional CBV λ-calculus. By a standard
construction of the monadic approach to denotational semantics [10,14], it is
possible to define a model of this CBV λ-calculus (and hence, to interpret the
nu-calculus) in the categories G and GsG. However, as we will see in Section 6,
only the latter will give rise to a fully-abstract model, via an extensional collapse.

As target language, let us consider a CBV λ-calculus L, built from the ground
types o, ν, 1, where 1 is the singleton type inhabited only by the constant (). The
expressions of L coincide with those of the nu-calculus, with the exception of
the constructor new, which is omitted, and the constant (), which is introduced.

We define the translation L−M from terms in context of the nu-calculus to
terms in contexts of L, as follows:

Ls, Γ `M : AM , g : 1→ ν, Γ `M [(g())/new] : A

where g is a variable, reminiscent of the gensym() function in Unix or Lisp.
Then, the monadic interpretations L in the categories of games G and GsG

is readily defined. The interpretation of ground types o, ν, 1 of L is simply the
G-arenas o, ν, 1; functional types are interpreted as usual.

The interpretation of an L-term M , with names contained in a list s, in
a context Jx1 : A1, . . . xn : An `M : BKL is a Gs-strategy from the arena A1 ×
. . .×An to the arena B. According to the monadic approach we need to define
a morphism for each basic constant; in particular a names n, contained in a
list s, is interpreted by the strategies answering with n to any intial move of
the Opponent. The constructor (constant) “=” is interpreted by a strategy eq :
ν × ν ⇀ o checking for the equality between two names. It is immediate to
check that eq is equivariant and so it is a Gs-strategy. Moreover, in order to
interpret the test functions it is necessary to define a family of total strategies
condA : (o × A × A) ⇀ A. Exploiting the fact that GsGt has coproducts and
that o = 1 + 1, condA can be defined as iA; [π1, π2] where iA is the natural
isomorphism between (A×A) + (A×A) and (1 + 1)×A×A = o×A×A.

9

The semantics of the nu-calculus judgement s, Γ ` M : A in the category G
(or GsG) is then defined by:

Js, Γ `M : AKt , JLs, Γ `M : AMKL

It is important to notice that this “semantics-by-translation” approach ex-
ploits the peculiarity of game semantics of being an intensional model; it will
not work so easily in extensional semantic models, such as domain theory. With-
out introducing explicit additional machinery for bookkeeping names (like, e.g.,
global stores), semantics-by-translations in extensional models will interpret all
occurrences of new with the same value, and hence terms with different oper-
ational behaviours may be identified in the model. This does not happen in
intensional models based on games: there are no unwanted identifications of
terms caused by substitution of each occurrence of new with a call to g.

Example 3. The two terms (νx1νx2.x1 = x2) and (νx1νx2.true) are behaviourally
different, however they will be identified by the semantic-by-translation in any
extensional model of CBV λ-calculus. Instead, the strategy

J` (νx1νx2.x1 = x2) : oKt = J` (λx1λx2.x1 = x2) new new : oKt
= Jg : 1→ ν ` (λx1λx2.x1 = x2) g() g() : oKL

is different from the strategy

J` (νx1νx2.true) : oKt = J` (λx1λx2.true) new new : oKt
= Jg : 1→ ν ` (λx1λx2.true) g() g() : oKL

Both strategies interrogate the environment twice asking for a name (g()), and
while the second strategy always returns the answer true the first strategy checks
whether the Opponent has been “coherent” in his behaviour, returning false if the
Opponent returns two different values. So we exploit the fact that strategies con-
sider any possible behaviour the Opponent, also behaviours that are inconsistent.

The strategy

J` (λx.x = x) newKt = Jg : 1→ ν ` (λx.x = x) g()KL

is equal to the strategy

J` (λx.true) newKt = Jg : 1→ ν ` (λx.true) g()KL

In fact the first strategy interrogates just once the environment asking for the
name g() and returns the value true. ut

However, the model makes too many distinction between terms and fails
to be correct. For example, J` trueKt 6= J` (λx.true)newKt, because the model
counts how many times the term new has been called. Another wrong inequality
is J` new = newKt 6= J` (λx1λx2.false) new newKt, because the model does not
force the different evaluations of new to have distinct behaviour.

10

As we will see in Section 6, a correct model of the nu-calculus can be ob-
tained by supplying a correct interpretation for the parameter g; this amounts
to provide an oracle strategy generating a new name each time it is interrogated,
or from another point of view, this ammount to take a restricted (and decidable)
form of extensional collapse between strategies.

A motivation for introducing this first, incorrect, model is that the definabil-
ity theorem for this semantics is an immediate result: it suffices to rephrase some
already known results. Moreover it will be simple to transport the definability
result from this semantics to the correct one, later on.

Definition 7. A strategy σ is totally defined if for every even length position
s ∈ σ there exists a move m such that sm ∈ σ.

A strategy σ in GsG is compact if the set of its P-views is generated by
transposing a finite set of sequences (i.e. the set of the orbits of P-views is finite).

Proposition 2 (Definability).

(i) For any list of names s, for all arenas A1, . . . , An, B definable in L and
for every compact and totally defined Gs-strategy σ : (A1× . . .×An) ⇀ B,
there exists a L-term M such that Jx1 : A1, . . . , xn : An `M : BKL = σ.

(ii) For any list of names s, for all arenas A1, . . . , An, B definable in the nu-
calculus and for every compact and totally defined Gs-strategy
σ : ((1→ ν)×A1 × . . .×An) ⇀ B, there exists a term M such that
Js, x1:A1, . . . , xn:An `M :BKt = σ.

Proof. (i) This point can be proved by standard techniques, in particular rephras-
ing the corresponding proof for CBV λ-calculus in [6]. Briefly we associate defin-
able strategies to terms in a finite canonical form. There main difference being
that [6] uses case statements having a natural number n as first argument, thus
making a finite choice depending on the value of n; in our case we have to con-
sider a case statement that takes, as first argument, a list s of names and makes
a finite choice depending on the repetions of names in the list s.
(ii) Follows directly from (i). ut

5 Games with Oracle

In the previous section we have introduced the main idea of our approach,
namely, the creation of new names is delegated to an “oracle” outside the game.
Every time a new name is needed (i.e., new is evaluated), this oracle is asked to
generate the name. Thus an oracle can be seen as a parameter g of type 1→ ν.
However in order to have a correct model we need to explicitly supply the oracle
in such a way that the required identities hold.

The idea of working with parametrized morphisms can be formalized using
the simple slice construction. We recall here the basic definition from [7].

Definition 8. Given a category C with binary products and E ∈ C, the simple
slice category C�E is defined as follows:

11

(i) Obj(C�E) , Obj(C), and C�E(A,B) , C(E ×A,B);
(ii) the identity map on A in C�E is the projection π′ : E ×A→ A in C;

(iii) given f : A → B and g : B → C in C�E, their composition is defined as
g • f , g ◦ 〈π, f〉 (where ◦ is the composition in C):

For any E ∈ C, there is an immersion functor E∗ : C −→ C�E defined as follows:

(i) E∗(A) , A for every A ∈ C,
(ii) E∗(f) , f ◦ π′ for every f ∈ C(A,B).

It is easy to check that if C has finite products, then C�E has finite products,
which are also preserved by E∗.

Using this construction we define family of categories of Gs-games parametric
on the object ν⊥ = 1→ ν, which will be used for the semantics of nu-calculus.

Definition 9 (Os-games). Given a list of names s, the category of total oracle
games is OsGt , GsGt�ν⊥; thus, the objects are Gs-arenas while the morphism
from A to B are total, innocent Gs-strategies in the Gs-prearena ((1→ ν)×A) ⇀
B.

A similar construction of parametric games can be applied also to the cate-
gory GsG of general Gs-strategies; however, since GsG does not have products,
the construction is a little more involved.

Let us consider the strong monad T : GsGt −→ GsGt as defined in Section 3,
with strength t. We define a functor T ′ , T�ν⊥ : OsGt −→ OsGt as follows:

– T ′(A) , TA,
– T ′(f) , Tf ◦ tν⊥,A, for every f ∈ OsGt(A,B).

By general results about simple slice categories and strong functors [7], it turns
out that also this functor T ′ is strong. Thus, we simply define the category OsG
as the Kleisli category (OsGt)T ′ ; the construction is necessary for our aims, but
we do not present its explicit definition. As one can expect, morphisms from A
to B in OsG are (isomorphic to) Gs-strategies (1→ ν)×A ⇀ B.

(1→ ν) ⇀ ν
O ∗
P ∗
O n1

...
...

P ∗
O nk
P ni

Notice that finally, in the category OsG, there are strate-
gies from 1 to ν whose answer are not limited to the names in
the list s. Indeed, an Os-strategy in the Os-prearena 1 ⇀ ν
is a Gs-strategy in the Gs-prearena (1 → ν) × 1 ⇀ ν,
i.e. (1 → ν) ⇀ ν. A play in a strategy of this prearena can
interrogate the oracle several times, receiving several names
n1, . . . , nk, and finally can return any ni picked among them,
as in the figure aside. If we apply a permutation to such a
play, we still obtain a legal play; hence, an Os-strategy 1→ ν
is a set of plays of this kind, closed under any permutation of
names.

Using the monadic approach we can directly define the interpretation J KO of
the nu-calculus in the Kleisli categoriesOsG = (OsGt)T ′ . We define Js, Γ `M : AKO
as the Os-strategies is given by a standard monadic approach: the interpretation
of types is that given in Section 4, the morphisms eq and condA are given by

12

the immersion through the functor (1 → ν)∗ of the corresponding morphisms
in GsG. Finally the interpretation of new is given by an OsG-morphism from
1 to ν, i.e. an OsGt-morphism 1 → ν⊥, i.e. a total G-strategy in the prearena
(1→ ν)× 1 ⇀ ν⊥. Therefore, we interpret new simply as the first projection.

It is straighforward to prove that for every term in a context s, Γ `M : A we
have that the two strategies Js, Γ `M : AKt and Js, Γ `M : AKO are the same.
It follows that also this second semantics is not correct; we need to provide an
oracle to obtain a correct semantics, as we are going to see next.

6 Categorical quotienting

We consider two different quotients on the set of morphisms of OsG, that is, two
different congruence relations on strategies: a finer and decidable one, sufficient
to obtain a correct categorical model of nu-calculus, and a coarser one generating
the fully abstract model. Some definitions are here required.

Definition 10. Given a list of name s and an injective function ls : N → N\s,
the s-oracle strategy δls : 1 ⇀ ν⊥ = 1 ⇀ (1→ ν) is composed of the subsequences
of the infinite sequence ∗ ∗ ∗ ls(0) ∗ ls(1) ∗ ls(2) ∗

1 ⇀ (1 → ν)
O ∗
P ∗
O ∗
P ls(0)
O ∗
P ls(1)
O ∗
P ls(2)

...
...

The table aside shows in which component of the arena
each of the moves in δls lies. Every time the strategy δls is
interrogated, it generates a new name, not contained in the
list s. Obviously the strategy δls is not innocent (and not
even a Gs-strategy). Formally, we could define a suitable
category of games and (history dependent) strategies, with
δls a morphism in it. For sake of simplicity, we can avoid to
introduce this further category, because the only place we
need to consider δls is the next definition: the constructions
used there (i.e., product, composition and equality) are the
usual ones from the standard set-theoretic treatment [6],
where strategies are seen just as sets of plays. Strategies are seen as sets of play
also in the following definition.

Definition 11. Given a list of name s and an injective function ls : N → N\s,
two OsG (OsGt) morphisms σ, τ from A to B, i.e. two (total) Gs-strategies in
((1 → ν) × A) ⇀ B, are equivalent, written σ ∼=s τ , if the Gs subset of plays
generated by σ ◦ (δls × idA) and τ ◦ (δls × idA) are equal, in other words, if the
set of GS-orbits of elements in σ ◦ (δls × idA) is equal to the set of GS-orbits of
elements in τ ◦ (δls × idA).

It is immediate to see that the relation ∼=s is independent from the chosen
injective function ls. An alternative characterization of the equivalence ∼=s is the
following σ ∼=s τ iff for any s-oracle strategy δls and play p in σ◦(δls× idA) there
exits an s-oracle strategy δl′s such that the play p is contained in τ ◦ (δl′s × idA),
and vice versa.

The relation ∼=s is decidable on finite strategies, in fact, the supports of these
strategies are finite and hence there is only a finite number of permutations to
check. Hence, models in OsG still can be effective.

13

The proof that ∼=s respects the composition • can be derived using the al-
ternative characterization of ∼=s and following property. For any pair of OsG
morphism, σ : A → B, τ : B → C, for any s-oracle strategy δls , and play p in
(τ •σ) ◦ (δls × idA) there exist two injective functions l′s, l

′′
s : N → N \ s ranging

over disjoint sets of names such that p is a play in (τ ◦(δl′s× idB))◦(σ◦(δls× idA))
and vice versa, for any pair of injective functions l′s, l

′′
s : N → N \ s ranging

over disjoint set of names, and for any play p in (τ ◦ (δl′s × idB))◦ (σ ◦ (δls × idA))
there exists s-oracle strategy δls such that p is contained in (τ • σ) ◦ (δls × idA).

It is not difficult to show that ∼=s respects also the cartesian product × in
OsGt, and the strong monad T ′. We define the quotient category ÕsG, whose
objects are G-arenas and whose arrows are equivalence classes of strategies.
It follows that ÕsG is a monadic model of the CBV λ-calculus, inducing the
interpretation of the nu-calculus as previously given on OsG. We denote with
J KfOs the semantic interpretation of the nu calculus in ÕsG.

In several aspects the model ÕsG is similar to the categories of ν-strategies
and S-strategies presented in [1,8]; in all cases, strategies are equivalence classes
closed by Gs-actions.

The category ÕsG yields a correct and adequate model of the nu-calculus (as
proved by the next proposition) and it is a categorical model in the sense of [14].

Proposition 3. 1. (Correctness) For every closed term M , if s ` M ⇓ (s1)V
then Js `M : AKfOs = Js ` νs1.V : AKfOs .

2. (Adequacy) For every closed term M of type o, ∃s1 . s ` M ⇓ (s1)true if and
only if Js `M : oKfOs = J` true : oKfOs .

3. (Definability) For every arenas A1, . . . , An, B definable in the nu-calculus and
for every compact and totally defined OsG morphism σ : A1 × · · · ×An → B,
there exists a nu-calculus term M such that Jx1:A1, . . . , xn:An `M :BK eO = σ.

Proof. 1. Correctness can be proved by structural inductions on the derivation
of s `M ⇓ (s1)V . Here we consider only the case of the rule (EqFalse) which
is the only rule that is not valid in the model on OsG. By inductive hypoth-
esis we have that J` νs.M1 : νKfOε = J` νss1.n : νKfOε and J` νss1.M2 : νKfOε =
J` νss1s2.m : νKfOε , it follows that J` νs.M1 = M2 : oKfOε = J` νss1s2.n = m : oKfOε ,
moreover one readily sees that J` νss1s2.n = m : oKfOε ≈ J` νss1s2.false : oKfOε
from which the thesis.

2. Since in the nu-calculus every boolean term converges, from correctness it fol-
lows that s ` M ⇓ (s1)true if and only if Js `M : oKfOs = Js, s1 ` true : oKfOs ,
moreover we have Js, s1 ` trueK eO ≈ J` trueK eO, from which the thesis.

3. From Proposition 2. ut

As usual in game semantics, to obtain a fully abstract model we need to perform
the extensional collapse of the model OsG.

Definition 12. (i) We say that an OsG morphism σ : 1 → o, i.e. a Gs-
strategy in the arena (1 → ν) × 1 ⇀ o, is truthful if 〈δls , id1〉;σ for some
(or, equivalently any) injective function ls : N → N \ s) contains the play
∗t.

14

(ii) Two OsG morphisms σ, τ from A → B are extensionally equal, written
σ ≈s τ , if for every pair of OsG morphism ρ : 1 → A, ξ : B → o we have
that ξ ◦ σ ◦ ρ is truthful iff ξ ◦ τ ◦ ρ is truthful.

It is not difficult to prove that ∼=s⊆≈s, that ≈s respects the composition
of morphisms, the cartesian product × in OsGt, and the strong monad T ′. We
define the quotient category ÔsG whose morphisms are equivalence classes of
strategies with respect to ≈s. It follows that ÔsG is a quotient category of ÕsG
and thus inheriting from it the semantic interpretation of the nu-calculus. We
denote with J KcOs this interpretation.

Finally we can state our main result of full abstraction:

Theorem 1. For every pair of typing judgments s, ∅ `M1 : A, s, ∅ `M2 : A,

s `M1 ≈sA M2 ⇐⇒ Js, ∅ `M1 : AKcOs = Js, ∅ `M2 : AKcOs
Proof. It follows from the previous Proposition 3 by standard proof techniques.
In particular the implication ⇒ follows from the definability result; the implica-
tion ⇐ follows from the adequacy result. ut

7 Conclusions

In this paper we have presented, considering the concrete case of the nu-calculus
as example, what we think to be a general recipe to deal with names and name
creation in a game semantics. The basic step of this approach are the following:

1. take your favorite category of games G;
2. repeat the construction of G (definition of games and strategies) inside the

theory of Gs-sets instead of the ordinary set theory, thus obtaining a category
GsG; define the arena of “names” by taking as moves the set of atoms.

3. delegate the creation of names to the environment, through the interrogation
of an external parameter; this can be formalized using a slice category of GsG.

4. perform the extensional collapse in the slice category, by suppling a strategy
creating a sequence of unique names.

Of course there is no guarantee that this recipe will work also in other contexts:
it is always necessary to check that the required categorical properties enjoyed by
the category G are preserved in this tour. However we think that this method has
the advantage of using just simple notions of game semantics, and it is general
enough to be applied also to other calculi featuring generation of fresh names.

References

1. S. Abramsky, D. Ghica, A. Murawski, C.-H. Ong, and I. Stark. Nominal games and
full abstraction for the nu-calculus. In Proc. LICS, pages 150–159. IEEE, 2004.

2. S. Abramsky, G. McCusker. Lineary, sharing and state: a fully abstract game
semantics for Idealized Algol. In Algol-like Languages. (Birkhauser), 317–348, 1997.

3. S. Abramsky and G. McCusker. Full abstraction for idealized algol with passive
expressions. Theor. Comput. Sci., 227(1-2):3–42, 1999.

15

4. M. Fiore, E. Moggi, and D. Sangiorgi. A fully-abstract model for the π-calculus.
In Proc. 11th LICS. IEEE, 1996.

5. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects of Computing, 13:341–363, 2002.

6. K. Honda and N. Yoshida. Game-theoretic analysis of call-by-value computation.
Theor. Comput. Sci., 221(1-2):393–456, 1999.

7. B. Jacobs. Parameters and parametrization in specification using distributive cat-
egories. Fund. Informaticae, 24(3), 1995.

8. J. Laird. A game semantics of local names and good variables. In I. Walukiewicz,
editor, Proc. FoSSaCS, volume 2987 of LNCS, pages 289–303. Springer, 2004.

9. O. Laurent. Polarized proof-nets and λµ-calculus. Theor. Comput. Sci.,
290(1):161–188, 2003.

10. E. Moggi. Notions of computation and monads. Informa. Compu., 1, 1993.

11. C.-H. L. Ong. Observational equivalence of 3rd-order idealized algol is decidable.
In Proc. LICS, pages 245–256. IEEE Computer Society, 2002.

12. A. M. Pitts. Nominal logic, a first order theory of names and binding. Information
and Computation, 186:165–193, 2003.

13. A. M. Pitts and I. D. B. Stark. Observable properties of higher order functions
that dynamically create local names, or “what’s new?” In Proc. MFCS, volume
711 of Lecture Notes in Computer Science, pages 122–141. Springer, 1993.

14. I. Stark. Categorical models for local names. Lisp and Symbolic Computation,
9(1):77–107, 1996.

15. I. Stark. A fully abstract domain model for the π-calculus. In Proc. LICS’96, pages
36–42. IEEE, 1996.

A Call by value game semantics

In this section we recall the main definition of call by value game semantics,
using ideas by Honda and Yoshida [6] in a formulation closer to Laurent [9].

An arena is a triple A = 〈MA, λA,`A〉 where MA is a set of moves; λA :
MA → {PQ, PA, OQ, OA} is a labelling function that indicates whether a given
move is a P-move or an O-move, and whether it is a question (Q) or an answer
(A); and `A is the justification relation, that is a relation on MA×MA, denoted
by m1 `A m2, and a subset IA ⊆ MA of initial moves, denoted by `A m,
satisfying the following conditions:

(i) Every initial move is an P-answer.
(ii) If m `A m′ then m and m′ are moves by different players.

(iii) If m `A m′ and m is an answer then m′ is a question (“Answers may only
justify questions.”).

We write IA for the set MA \ IA of non initial moves of A, and (−) for the
function that inverts the P/O-designation of a move, so that e.g. PQ = OQ and
OA = PA etc.

16

Let A and B be arenas. The product arena A×B is a sort of smash union
of the arena graphs of A and B. Formally:

MA×B = (IA × IB) + IB + IA λA×B(m) =

PA if m ∈ IA × IB
λA(m) if m ∈ IA
λB(m) if m ∈ IB

`A×B m ⇐⇒ m = (a, b)
m `A×B n ⇐⇒ m `A n ∨ m `B n ∨ (m = (a, b) ∧ (a `A n ∨ b `B n)).

Given an arena A, we write A for the arena obtained by inverting the P/O-label
of each move in A. Then, roughly speaking, the function space prearena
A ⇀ B is obtained by grafting B just under the initial moves of A. The precise
definition is the following:

MA⇀B = MA +MB λA⇀B(m) =

OQ if m ∈ IA
λA(m) if m ∈ IA
λB(m) if m ∈MB

`A⇀B m ⇐⇒ `A m
m `A⇀B n ⇐⇒ (`A m ∧ `B n) ∨ m `A n ∨ m `B n.

Notice that the functions space prearena is not an arena since initial moves are
O-question. The function space arena A→ B is obtained by adding an initial
P-answer to the functions space prearena.

MA→B = {∗}+MA⇀B λA→B = {(∗,PA)} ∪ λA⇀B

`A→B m ⇐⇒ m = ∗
m `A→B n ⇐⇒ (m = ∗ ∧ `A⇀B n) ∨ m `A⇀B n

The notion of prearena has been introduced because strategies and composition
of strategies can be defined more naturally using prearenas, than arenas.

The lifted arena A⊥ is obtained from A by adding two moves, namely, ⊥PA,
which is the new initial move, and ⊥OQ, which is a O-question, such that ⊥PA

justifies ⊥OQ which justifies each initial move of A, and moves from A inherit
the relation `A. Observe that A⊥ is isomorphic to 1→ A.

For example, the arena 1 → ν = ν⊥ is (Mν ∪ {∗1, ∗2}, λ,`) where for all
x ∈Mν , λ(x) = PA, λ(∗1) = PA, λ(∗2) = OQ, and ` ∗1 ` ∗2 ` x.

Justified sequences and strategies. A justified sequence over a prearena
A is a finite sequence of alternating moves such that, except the first move which
is initial, every move m has a justification pointer (or simply pointer) to some
earlier move m− satisfying m− `A m; we say that m is explicitly justified by m−.
A question (respectively answer) in a justified sequence s is said to be pending
just in case no answer (respectively question) in s is explicitly justified by it. We
define the P-view psq of a justified sequence s as :

psmq = psqm if m is a P-move
psm0 umq = psqm0m if the O-move m is explicitly justified by m0

17

In psm0 umq the pointer from m to m0 is retained, similarly for the pointer
from m in psmq in case m is a P-move.

Definition 13. A justified sequence s over A is said to be a legal position (or
a play) just in case it satisfies:

Visibility: Every P-move (respectively non-initial O-move) is explicitly justified
by some move that appears in the P-view (respectively O-view) at that point.

Well-Bracketing: Every answer is explicitly justified by the last pending ques-
tion at that point.

Finally, a strategy σ for a (pre)arena A is defined to be a non-empty, prefix-
closed set of legal positions of A satisfying:

1. For any odd-length s ∈ σ, if sm is a legal position then sm ∈ σ.
2. (Determinacy) For any even-length s, if sm and sm′ are in σ then m = m′.

A strategy is said to be innocent [6] if for any odd-length sm ∈ σ and for any
even-length s′ ∈ σ such that psq = ps′q, we have s′m ∈ σ. That is to say, σ is
completely determined by a partial function f (say), which maps P-views p to
justified P-moves (i.e. f(p) is a P-move together with a pointer to some move
in p). We write fσ for the minimal such function that defines σ. We say that an
innocent strategy σ is compact just in case fσ is a finite function (or equivalently
σ contains only finitely many odd-length P-views).

A strategy σ : A ⇀ B is said to be total if it replies to every initial move in
A with an initial move in B.

Composition of strategies. For arenas A1, A2 and A3, a local sequence over
(A1, A2, A3) is a sequence u of elements from the set MA1 + MA2 + MA3 such
that every element m in u other than the first (which must be initial in A1) has
a pointer to some earlier element m− satisfying:

(i) for i = 2, 3, if m is initial in Ai then m− is initial in Ai−1

(ii) if m is non-initial in Ai, then m− is in Ai and m− `Ai m

further u satisfies locality : If m′ and m′′ occur consecutively in s such that
m′ ∈ MAi and m′′ ∈ MAj then |i− j| ≤ 1. We write L(A1, A2, A3) for the set
of local sequences over (A1, A2, A3).

Now suppose σ and τ are strategies over prearenas A ⇀ B and B ⇀ C
respectively. The set of interaction sequences arising from σ and τ , written
ISeq(σ, τ), consists of local sequences u ∈ L(A,B,C) such that

(i) u � (A,B) ∈ σ,
(ii) u � (B,C) ∈ τ ,

where u � (A′, A′′), called the (A′, A′′)-component of u, is the subsequence of u
consisting of moves from the prearenaA′ ⇀ A′′. We can now define the composite
strategy σ ; τ over A ⇀ C:

σ ; τ = {u � (A,C) | u ∈ ISeq(σ, τ)}.

18

In u � (A,C) the pointer of every initial A-move is to the unique initial C-
move. By standard arguments it is possible to show that composition preserves
innocence and totality [6].

19

	Oracle Game Semantics for the nu-alculus

