
Game Semantics for the Pure Lazy λ-calculus ?

Pietro Di Gianantonio

Dipartimento di Matematica e Informatica, Università di Udine
via delle Scienze 206 I-33100 Udine Italy
e-mail: digianantonio@dimi.uniud.it

Abstract. In this paper we present a fully abstract game model for
the pure lazy λ-calculus, i.e. the lazy λ-calculus without constants. In
order to obtain this result we introduce a new category of games, the
monotonic games, whose main characteristic consists in having an order
relation on moves.

1 Introduction

The aim of this paper is to present a fully abstract model, based on game se-
mantics, for the lazy λ-calculus. The λ-calculus we consider is the untyped one,
with a lazy, call-by-name, reduction strategy. The model we construct lies in the
category of monotonic games introduced in this paper. This new category is de-
rived from the one defined by Abramsky Jagadeesan and Malacaria in [AJM94].

This paper is quite similar to the article [AM95a]. It has the same aims
and uses a similar model, but there is also an important difference: the lazy
λ-calculus considered in [AM95a] contains a constant C that, in the operational
semantics, is able to perform a sequential test for convergence. The introduction
of the constant C is essential in order to obtain a full definability result and, as
a consequence, the full abstraction of the model. Similarly in [AO93], through
syntactic methods, it was obtained a fully abstract model for the lazy λ-calculus
extended with the constant C; while the problem of finding a fully abstract
model for the pure lazy λ-calculus was left open.

In this paper we show that it is possible to have a fully abstract model for
the pure lazy λ-calculus without constants. In order to obtain this result, we
need to introduce a new category of games that we call monotonic games and
indicate with GM. The category GM differs from the more standard category
of AJM-games G in several aspects. In GM, moves are questions or answers
and are ordered according to a notion of strength. Intuitively, a question a is
stronger than a question b if it asks for more information. This means that if
question a can receive an answer, then also b can receive an answer, or, from
another point of view, a requires more work than b to be fulfilled. Similarly, an
answer is stronger than another if it gives more information. Using this notion of
? Research partially supported by Esprit Working Group TYPES and TMR Network

LINEAR
c© Springer-Verlag

strength, we impose some new restrictions on the way that a play can evolve and
in the way that a strategy can behave. Intuitively, we ask that a play proceeds
with stronger and stronger questions, and that a strategy preserves the strength
order relation. By these restrictions, in our game λ-model strategies are forced
to behave as interpretations of λ-terms, and hence we have a fully complete and
fully abstract model.

2 The calculus

We define here the language λl , together with its operational semantics. Lan-
guage λl is a lazy λ-calculus, its set of terms constructed from a set of variables
V ar(3 x) by the grammar:

M ::= x |MM | λx.M

The operational semantics is given by a big-step reduction relation, M ⇓ N ,
evaluating a term to a weak head normal form. The strategy of evaluation is
lazy and call-by-name.

λx.M ⇓ λx.M

M ⇓ λx.P P [N/x] ⇓ Q
MN ⇓ Q

The above reduction strategy gives rise to a contextual pre-order (vl) on
closed λ-terms (Λ0) defined by:

M vl N ⇔ (∀C[] ∈ Λ0 . C[M] ⇓⇒ C[N] ⇓)

We indicate with ≈l the equivalence relation induced by vl.
The following properties will be used:

– the lazy reduction strategy converges on any term M β-equivalent to a λ-
abstraction;

– the relation ≈l is a λβ-theory.

The above properties follow immediately from the fact that there exist ad-
equate models for the lazy λ-calculus (see [AO93,AM95a,BPR98]).

3 The categories of monotonic games

In this section, we define the two categories of games employed in this article.
These two categories are closely related to the categories G and K!(G) presented
in [AJM94]. They are defined following similar patterns; essentially, they only

differ with respect to the strength order relation on moves. We begin by giving
the basic definitions.

As usual, we consider games between two participants: the Player and the
Opponent. A play consists in an alternate sequence of moves, while each move
consists in posing a question (∈ MQ) or giving an answer (∈ MA). Before
giving the definition of games, we introduce the notation that will be used in
the following.

– We use the metavariables A,B,C to range on games, the metavariables
s, t, r, q to range on plays and the metavariables a, b, c to range on moves.

– The empty sequence is denoted by ε, concatenation of sequences is denoted
by juxtaposition, the prefix relation between sequences is denoted by v.

– Given a sequence s of moves in M and a subset M ′ of M , s�M ′ denotes the
subsequence of s formed by elements contained in M ′, and |s| denotes the
length of s.

– The function nl (nesting level) from plays to integers is defined as follows:

nl(ε) = 0
nl(sa) = |s�MQ | − |sa�MA |

In a play questions and answers match like opened and closed parenthesis in
an expression, the value nl(sa) gives the nested level of questions at which
the move a lies in the sequence sa. Note that, in the above definition of
nl(sa), the move a is “counted” only if it is an answer; as a consequence,
the function nl has the same value on a question and on the corresponding
answer.

Definition 1. A game A is a tuple (MA, λA,≺A, PA,≈A) where

– MA is a set of moves,
– λA : MA → {O,P}×{Q,A} is the labelling function: it tells us if a move is

taken by the Opponent or by the Player, and if it is a Question or an Answer.
We can decompose λA into λOP

A : MA → {O,P} and λQA
A : MA → {Q,A}

and put λA = 〈λOP
A , λQA

A 〉. We denote by − the function which exchanges
Player and Opponent, and Question and Answer i.e. O = P , P = O, Q = A

and A = Q. We also denote with λOP
A the function defined by λOP

A (a) =
λOP

A (a) and with λA the function 〈λOP
A , λQA

A 〉.
– ≺A⊆ (MA ×MA) is a strict order relation on the set of moves.
– PA is the set of plays of the game A, that is a non-empty and prefix-closed

subset of the set M~
A , where M~

A is the set of all sequences of moves which
satisfy the following conditions:
• s = as′ ⇒ λA(a) = OQ, a play starts with a question made by the

Opponent.
• s = rabt⇒ λOP

A (a) = λOP
A (b), Player and Opponent alternate.

• s = rt⇒ nl(r) ≥ (0), it is possible to play an answer only if there exists
a pending question.

• s = qarbt ∨ nl(qa) = nl(qarb) ⇒ a ≺A b, a question is weaker than the
corresponding answer, if an answer a is followed by a new question b,
then b is stronger than a, and this condition recursively apply to nested
moves.

– ≈A is an equivalence relation on PA which satisfies the following properties:
• s ≈A ε ⇒ s = ε
• sa ≈A s′a′ ⇒ s ≈A s′

• s ≈A s′ ∧ sa ∈ PA ⇒ ∃a′ . sa ≈A s′a′

• sa ≈A s′a′ ∧ sarb ≈A s′a′r′b′

⇒ ((a ≺A b⇒ a′ ≺A b′) ∧ (b ≺A a⇒ b′ ≺A a′))

Definition 2 (Strategies).
A strategy σ in a game A is a non-empty set of plays of even length such

that σ ∪ dom(σ) is prefix-closed, where dom(σ) = {t ∈ PA | ∃a . ta ∈ σ}.
A strategy can be seen as a set of rules which tells the Player which move to

make after the last move by the Opponent.

In this paper we shall consider strategies that are deterministic, history-free
and monotone. A strategy is history-free if it depends only on the last move by
the Opponent; it is monotone if, in some particular cases, it respects the partial
order ≺ (see bellow).

Before giving the definition of monotone strategy, we need to introduce two
new concepts: the set of derived questions and the set of derived answers. The
intuitive idea is the following: if, in a play s, a question a of the Opponent is
followed by a question b of the Player, one can consider b an effect of question a,
since in order to answer to a, the Player needs to know the answer to b. Moreover,
if after receiving an answer c to b the Player asks a second question b′, this
means that the information given by c was not sufficient and new information is
required; that is, also b′ can be considered a direct consequence of a. The above
argument can be repeated until a receives an answer, in this way defining the set
of the derived questions of question a. Formally, the set of the derived questions
of a question a in a play s is defined by:

drv(s, a) = {b | b ∈MQ, s = s′arbs′′, nl(r) = 0, ∀r′ ⊆ r . nl(r′) ≥ 0}

Similarly, one can associate to an answer a the set of answers generated thanks
to the information given by a, and define the set of the derived answers of an
answer a in play s

drv(s, a) = {b | b ∈MA, s = s′arbs′′, nl(r) = 0, ∀r′ ⊆ r . nl(r) ≤ 0}

The function drv can be extended to strategies. Given a strategy σ and an
Opponent move a, the set of moves derived from a in strategy σ is defined by:

drv(σ, a) =
⋃
s∈σ

drv(s, a)

Definition 3 (Deterministic, history-free and monotone strategies).
A strategy σ for a game A is deterministic if:

sb, sc ∈ σ ⇒ b = c

The strategy σ is history-free if:

sab, t ∈ σ ∧ ta ∈ PA ⇒ tab ∈ σ

The strategy σ is monotone if:

s ∈ σ ∧ sa ∈ PA ∧ a′ ≺A a ∧ drv(σ, a′) 6= ∅
⇒ ∃b. (sab ∈ σ ∧ ∀b′ ∈ drv(σ, a′) . b′ ≺A b)

In the following we implicitly assume strategies to be deterministic, history
free and monotone.

The condition of monotonicity requires that if a strategy σ reacts to a ques-
tion a with another question b (or to an answer a with an answer b), then σ needs
to react to any move stronger than a with a move that is stronger than b (and
stronger that any other moves derived from a). The notion of derived moves is
essential in order to assure that the composition of two monotonic strategies is
a monotonic strategies.

The condition of monotonicity is quite strong. In particular, there are “few”
finite monotone strategies: in general, a monotone strategy cannot be approx-
imated by a chain of finite and monotone strategies. This shortage of finite
strategies is necessary in order to have a full definability result. In game se-
mantics the interpretation of a solvable λ-term is always an infinite object.
In [KNO00,KNO99] the semantic interpretations of λ-terms are characterised
as almost everywhere copy-cat strategies. On the game λ-models we are going
to construct, the condition of monotonicity essentially forces the behaviour of
strategies to be almost everywhere copy-cat strategies.

The equivalence relation on plays ≈ generates a relation ≈@ and a partial
equivalence relation ≈ on strategies in the following way.

Definition 4 (Order-enrichment). Given strategies σ and τ we write σ ≈@ τ
iff

sab ∈ σ ∧ s′ ∈ τ ∧ sa ≈ s′a′ =⇒ ∃b′.(s′a′b′ ∈ τ ∧ sab ≈ s′a′b′)

The relation ≈ on strategies is the reflexive closure of the relation ≈@

It is easy to check that ≈ is a partial equivalence relation. It is not an equi-
valence since it might lack reflexivity. If σ is a strategy for a game A such that
σ ≈ σ, we write σ : A. It is also immediate that ≈@ defines a partial order on
the equivalence classes of strategies.

Definition 5 (Tensor product).
Given games A and B the tensor product A ⊗ B is the game defined as

follows:

– MA⊗B = MA +MB;
– λA⊗B = [λA, λB];
– ≺A⊗B = ≺A ∪ ≺B;
– PA⊗B ⊆ M~

A⊗B is the set of plays, s, satisfying the projection condition:
s�MA

∈ PA and s�MB
∈ PB (the projections on each component are plays for

the games A and B respectively);
– s ≈A⊗B s′ iff s�A≈A s′ �A ∧ s�B≈B s′ �B ∧ ∀i.(si ∈MA ⇔ s′i ∈MA).

Here + denotes disjoint union of sets, that is A + B = {inl(a) | a ∈ A} ∪
{inr(b) | b ∈ B}, and [−,−] is the usual (unique) decomposition of a function
defined on disjoint unions.

One should notice that, differently from the standard definition of [AJM94],
it is not necessarily to impose the Stack discipline, which says that in a play every
answer must be in the same component game as the corresponding question. The
stack discipline is forced by monotonicity condition on plays, in fact a question a
and the corresponding answer b have the same nested level, therefore a ≺A⊗B b,
and by the definition of ≺A⊗B , a and b lie in the same component. It is also
useful to observe that if sab ∈ PA⊗B , and a, b are in different components then
λQA(a) = λQA(b). As a consequence, in a product game, only the Opponent can
switch component, and this can happen only by reacting to a question of the
Player with another question, or by giving an answer in the correct component.

Definition 6 (Unit). The unit element for the tensor product is given by the
empty game I = (∅,∅,∅, {ε}, {(ε, ε)}).

Definition 7 (Linear implication). Given games A and B the compound
game A (B is defined as follows:

– MA(B = MA +MB

– λA(B = [λA, λB]
– ≺A⊗B = ≺A ∪ ≺B

– PA(B ⊆M~
A(B is the set of plays, s, which satisfy the Projection condition:

s�MA
∈ PA and s�MB

∈ PB

– s ≈A(B s′ iff s�A≈A s′ �A ∧ s�B≈B s′ �B ∧∀i . (si ∈MA ⇔ s′i ∈MA)

By repeating the arguments used for the tensor product, it is not difficult to
see that in a “linear implication game” only the Player can switch component,
and this can happen only by reacting to question of the Opponent with another
question, or by giving an answer in the correct component.

Definition 8 (Exponential). Given a game A the game !A is defined as fol-
lows:

– M!A = N×MA =
∑

i∈N MA

– λ!A(〈i, a〉) = λA(a)
– (i, a) ≺!A (j, b) iff i = j and a ≺A b

– P!A ⊆M~
!A is the set of plays, s, which satisfy the conditions:

∀i ∈ N . s�Ai∈ PAi

– s ≈!A s′ iff there exists a permutation of α on N such that:
• π∗1(s) = α∗(π∗1(s′))
• ∀i ∈ N . (π∗2(s′ �α(i)) ≈ π∗2(s�i))

where α∗ denotes the pointwise extension of the function α to sequence of
naturals. π1 and π2 are the projections of N×MA and s�i is an abbreviation
of s�Ai .

Definition 9 (The category of games GM).
The category GM has as objects games and as morphisms, between games

A and B, the equivalence classes, w.r.t. the relation ≈A(B, of deterministic,
history-free and monotone strategies σ : A (B. We denote the equivalence
class of σ by [σ].

The identity for each game A is given by the (equivalence class) of the copy-
cat strategy, recursively defined as follows,

idA = {sa′a′′ ∈ PA(A | s ∈ idA, {a′, a′′} = {inl(a), inr(a)}} ∪ {ε}

Composition is given by the extension to equivalence classes of the following
composition of strategies. Given strategies σ : A (B and τ : B (C, τ ◦ σ :
A (C is defined by

τ ◦ σ = {s�(A,C) | s ∈ (MA +MB +MC)∗ & s�(A,B)∈ σ, s�(B,C)∈ τ}even

where with Seven denote the set of plays in S having even length.

The correctness of the above definition follows, in part, from the correctness
of the definition of AJM-games. In addition we need to prove that:

– idA is a monotone strategy,
– the composition of two monotone strategies is again a monotone strategy.

The monotonicity of idA follows immediately from the fact that for every pair
of moves a ∈ MP

A , b ∈ MO
A , drv(idA, inl(a)) = {inr(a)} and drv(idA, inr(b)) =

{inl(b)}. The preservation of monotonicity by strategy composition follows easily
from the fact that for every pair of strategies σ : A (B and τ : B (C
and for every pair of moves a ∈ MP

A and c ∈ MO
C , if a ∈ drv(τ ◦ σ, c) then

there exists a chain b1, . . . b2n+1 such that b1 ∈ drv(τ, c), a ∈ drv(σ, b2n+1),
∀i]in{0 . . . n} . b2i ∈ drv(σ, b2i−1), b2i+1 ∈ drv(τ, b2i).

The constructions introduced in Definitions 5, 7 and 8 can be made to be
functorial.

Definition 10. Given two strategies σ : A (B and σ′ : A′ (B′ the strategies
σ⊗σ′ : (A⊗A′) ((B⊗B′), σ (σ′ : (A (A′) ((B (B′), !σ :!A (!B
are recursively defined as follows:

σ ⊗ σ′ = {sab ∈ P(A⊗A′) ((B⊗B′)

| s ∈ σ ⊗ σ′, sab�MA∪MB
∈ σ, sab�MA′∪MB′∈ σ′} ∪ {ε}

σ (σ′ = {sab ∈ P(A(A′) ((B(B′)

| s ∈ σ (σ′, sab�MA∪MB
∈ σ, sab�MA′∪MB′∈ σ′} ∪ {ε}

!σ = {s ∈ P!A(!B | ∀i . s�MAi
∪MBi

∈ σ}

It is not difficult to check that the above definitions are correct and that ⊗
and I indeed provide a categorical tensor product and its unit.

The category GM is monoidal closed, but not Cartesian closed. Analogously
to what happens in AJM-games, a Cartesian closed category of games can be
obtained by taking the co-Kleisli category K!(GM) over the co-monad (!,der, δ),
where for each game A the strategies derA : !A (A and δA : !A (!!A are
defined as follows:

– derA = [{s ∈ P!A(A | s�(!A)0= s�A}]
– δA = [{s ∈ P!A(!!A | s �(!A)p(i,j)

= s �(!(!A)i)j
}] where p : N × N → N is a

pairing function

Hence one can easily see that the following definitions are well posed.

Definition 11 (A Cartesian closed category of games).
The category K!(GM) has as objects games and as morphisms between games

A and B the equivalence classes of history-free strategies in the game !A (B.

In order to give semantics to the lazy λ-calculus, it is necessary to define the
lifting constructor.

Definition 12 (Lifting).
Given a game A, the lifted game A⊥ is defined as follows:

– MA⊥ = MA + {◦, •}
– λA⊥ = [λA, {◦ → OQ, • → PA}]
– ≺A⊥ = ≺A ∪{〈b, a〉 | a ∈M, b ∈ {◦, •}} ∪ {〈◦, •〉}
– PA⊥ = {ε, ◦} ∪ {◦•s | s ∈ PA}
– s ≈A⊥ s′ iff s = s′ or

s = ◦•t and s′ = ◦•t′ and t ≈A t′

Note that the above definition cannot be made functorial, at least not in a
standard way. Given a strategy σ : A → B, strategy σ⊥ : A⊥ → B⊥ is usually
defined ([AM95a]) by:

σ⊥ = {◦A◦B•B•As| s ∈ σ} ∪ {ε, ◦A◦B}

In the category GM, with the above definition, σ⊥ is not necessarily a monotone
strategy. In fact, the initial behaviour of σ⊥ (◦A◦B•B•A ∈ σ⊥) imposes condi-
tions on the future behaviour of the strategy that are not necessarily satisfied.

However, given any game A having a single initial move a, it is possible to
define two strategies: upA : A (A⊥ and dnA : A⊥ (A as follows:

upA = {◦A⊥•A⊥s| s ∈ idA} ∪ {ε}

dnA = {a◦A⊥•A⊥s ∈ P!(A⊥(A | as ∈ idA} ∪ {ε, a◦A⊥}
It is not difficult to prove that the above strategies are well defined and that
dnA ◦ upA ≈ idA.

In order to define a model for the lazy λ calculus, the functoriality of the
lifting constructor is not necessary, the existence of the strategies, dnA and upA

suffices.

4 Solution of recursive game equations

The categories of games GM and K!(GM) allow for the existence of recursive
objects, i.e. objects that are fixed points of game constructors. We present the
method proposed by Abramsky and McCusker ([AM95b]) for defining recursive
games. This method allows to define initial fixed points for a large set of functors
and it follows the pattern used for building initial fixed points in the context of
information systems. First a complete partial order E on games is introduced.

Definition 13. Let A,B be games, A is a sub-game of B (A E B) if

– MA ⊆ MB;
– λA = λB �MA

;
– ≺A = ≺B�MA

;
– PA = PB ∩M~

A ;
– s ≈A s′ iff s ≈B s′ and s ∈ PA.

One can easily see that the sub-game relation defines a complete partial order
on games. Hence a game constructor F which is continuous with respect to E
has a (minimal) fixed point D = F (D) given by

⊔
n∈N F

n(I). Notice that we
have indeed an identity between D and F (D) and that we do not need the game
constructor F to be a functor; as a result we can also apply this method to the
lifting game constructor.

One can easily see that the game constructors ⊗, (, !, ()⊥ and their com-
positions are continuous with respect to E; therefore, the method applies to
them.

5 Lazy λ-models in K!(GM)

A standard way to construct a model for the lazy λ-calculus consists in taking the
initial fixed-point of the functor F (D) = (D → D)⊥ [AO93], [AM95a], [BPR98],
[EHR92]. Here we use the same technique. We denote with D the least fixed-
point of the game constructor: F (A) = (A→ A)⊥ = (!A (A)⊥ in the category
of monotonic games (D =

⋃
Fn(I)). We denote with ϕ :!D ((!D (D)

the morphism dn!D(D ◦ derD and with ψ :!(!D (D) (D the morphism
up!D(D ◦ der!D(D.

The morphisms ϕ and ψ define a retraction between D and !D (D such
that ψ ◦⊥ 6≈D ⊥, where with ⊥ we indicate the smallest strategy {ε}. It follows
that the tuple D = 〈D,ϕ, ψ〉 defines a categorical model of the lazy λ-calculus.

Definition 14. The interpretation of a λ-term M (whose free variables are
among the list Γ = {x1, . . . , xn}) in the model D = 〈D,ϕ, ψ〉 is strategy [[M]]Γ :

(

|Γ |︷ ︸︸ ︷
!D ⊗ · · ·⊗ !D) → D defined inductively as follows:

[[xi]]Γ = πΓ
i ;

[[MN]]Γ = ev ◦ 〈(ϕ ◦ [[M]]Γ) , [[N]]Γ 〉;
[[λx.M]]Γ = ψ ◦ Λ([[M]]Γ,x);

where πΓ
i are the canonical projection morphisms, ev and Λ denote “evaluation”

and “abstraction” in the Cartesian closed category K!(GM).

It is useful to give some intuitive explanations concerning the plays in the
game λ-model D. In game D the Opponent can be identified with the environ-
ment, while the Player can be identified with a program (λ-term) interrogated
by the Opponent. A possible play s in game D proceeds as follows: the initial
move of s is a request of the Opponent to know if the Player is a λ-abstraction;
the Player fails to reply if it is a strongly unsolvable term, otherwise it answers
(positively) to the question. After that, the play proceeds by a consecutive ques-
tion of the Opponent asking if there is another λ-abstraction inside the first
λ-abstraction. Again the Player may fail to answer, if it is an unsolvable term
of order 1, or it may answer, if it contains two λ-abstractions. This time how-
ever, the Player can also pose a question to the Opponent; this happens if the
Player is in the form λx . xM1 . . .Mm. In this case, the Player contains a second
λ-abstraction depending on value (behaviour) of x (the first argument passed
by the Opponent). In particular, in the above case, the Player needs to check
whether x contains m + 1 λ-abstractions. In reaction to the questions of the
Player, on the argument x, the Opponent can reply by posing questions on the
arguments passed to x; in this case, the Player will answer according to the
terms Mi. The plays can proceed with questions and answer in an arbitrary
nested level, with the Opponent asking information on the deeper structure of
the Player.

The order relation≺D models the fact that consecutive questions, at the same
nested level, ask for more and more λ-abstractions. The condition of monoton-
icity on plays models the fact that the questions posed by of a λ-term (Player)
at nested level 1 always concern the argument appearing as head variable.

More formally, we present a set of results describing the theory induced by
the game λ-model D. Since D is a λ model and since the interpretation of a
λ-abstraction is never equivalent to strategy ⊥, one immediately has:

Proposition 1. For any pair of closed λ-terms M , N , if M ⇓ N then [[M]] ≈D

[[N]] 6= ⊥.

The proof of adequacy need to be more complex. In general sophisticated
proof techniques, such as the computability method, the invariants relations or
the approximation theorem, are needed to prove the adequacy of a model. In

this case we can use a previous result concerning the games semantics of the
untyped λ-calculus. In this way we are also able to characterize precisely the
theory induced by D.

In [DGF00], a complete characterisation of the theories induced by game
models in the category G of games and history free strategies has been car-
ried out. In particular it has been shown that every categorical game model
〈A,ϕA, ψA〉, such that ψA ◦ ⊥ 6= ⊥, induces the theory LT . In theory LT
two terms are identified if and only if they have the same Lévy-Longo tree
[L7́5,Lon83]. We briefly recall the definitions.

Definition 15. Let Σ = {λx1 . . . xn.⊥ | n ∈ N}
⋃
{T}

⋃
{λx1 . . . xn.y | n ∈ N},

with x1, . . . , xn, y ∈ V ar
Lévy-Longo tree associated to λ-term M , LLT (M), is a Σ-labelled infinitary

tree defined informally as follows:
– LLT (M) = T if M is unsolvable of order ∞, that is for each natural

numbers n there exists a λ-term λx1 . . . xn.M
′ β-equivalent to M .

– LLT (M) = λx1 . . . xn.⊥ if M is unsolvable of order n
– LLT (M) = λx1 . . . xn.y

/ \
LLT (M1) . . . LLT (Mm)

if M is solvable and has principal head normal form λx1 . . . xn.yM1 . . .Mm.

The arguments used in [DGF00] can be straightforwardly applied also to cat-
egory GM. In particular, through an application of the Approximation Theorem
it is possible to derive that:

Proposition 2. For any pair of closed λ-terms M , N , if LLT (M) ⇓ LLT (N)
then [[M]] ≈D [[N]].

Proposition 3 (Adequacy and Soundness). For any pair of closed λ-terms
M , N :

– if [[M]] 6≈D ⊥ then M ⇓;
– if [[M]] ≈@ D[[N]] then M vl N .

Proof. By Proposition 2, if a λ-term M is such that [[M]] 6≈D ⊥, then M is
not strongly unsolvable, and the lazy reduction strategy converges on M (see
Section 2). The second point is readily proved observing that denotational
semantics is compositional and monotonic, therefore for every closed context
C[], if [[M]] ≈@ D[[N]], then [[C[M]]] ≈@ D[[[N]]] and therefore C[M] ⇓ ⇒ C[N] ⇓.

ut

5.1 Extensional collapse

Theory LT is strictly weaker than theory λl; for example, the terms λx.xx and
λx.x(λy.xy) have different Lévy-Longo trees but they are equated in λl. In order
to obtain a fully abstract model, we need to interpret λ-terms in the category
EM, defined as an extensional collapse of category GM. We need to use the
Sierpinski game, that is the game I⊥.

Definition 16 (Intrinsic pre-order). Give a game A, the intrinsic pre-order
�A on the strategies for A is defined by:

σ1 .A σ2 iff ∀τ : A (I⊥ . τ ◦ σ1 ≈@ I⊥τ ◦ σ2

In the above expression we implicitly coerce the strategies in A into I (A.
We indicate with 'A the partial equivalence relation induced by .A.
The category EM has as objects games and as morphism equivalence classes

w.r.t. ' of strategies.

It is not difficult to verify that intrinsic pre-order is preserved by all the
categorical constructions presented above. Therefore, the category EM can be
used in modeling the λ-calculus. In particular, the game λ-model D with the
interpretation of Definition 14 gives rise to a λ-model also inside the category
EM.

6 Full-abstraction

As usual, the proof of full-abstraction splits in two proofs.

Theorem 1 (Soundness). For any pair of closed λ-terms M , N , we have:

[[M]] .D [[N]] ⇒ M vl N

Proof. It is immediate to check that the only strategy 'D-equivalent to ⊥
is strategy ⊥ itself. It follows that model D is adequate also in category EM. By
the compositionality of the interpretation, soundness follows immediately. ut

In order to prove completeness, some preliminary results need to be presen-
ted.

Proposition 4. The following properties hold in the game λ-model D:

(i) Every question has one only possible answer and every answer has one only
possible consecutive question. Formally, for every pair of plays sab, tab′ ∈ PD

if λQA
D (b) = λQA

D (b′) = λQA
D (a) then b = b′.

(ii) For every move a ∈ MD, the set of predecessors of a, w.r.t. the order ≺D,
is a finite and linearly ordered set.

(iii) With respect to the order ≺D, every question move has one successor, the
corresponding answer; while every answer move a has infinitely many imme-
diate successors which are the consecutive question at the same nested level,
and an infinite number of questions at the next nested level (these questions
are the initial moves of a subcomponent !D of game D).

(iv) For every strategy σ : D and for every move a ∈ MD the set drv(σ, a) is
linearly order w.r.t. ≺D

Proof. The first three points can be proved by induction on the chain of games
Fn(I). Point (iv) follows from point (i). ut

Lemma 1. Any strategy α : D → I⊥ can be extended to a strategy αD : D → D
such that for any strategy σ : D, ◦ : • ∈ α ◦ σ if and only if ◦ : • ∈ αD ◦ σ

Proof. Since game D → I⊥ is a sub-game of game D → D, it is sufficient to
extend α to a monotone strategy on game D → D, which can be done incre-
mentally. Let α0, . . . , αn, . . . be an infinite chain of strategies constructed in the
following way:
α0 = α
αi+1 = αi∪ {sab ∈ PD→D | s ∈ αi, sa ∈ PD→D,⋃

a′∈MO,a′≺a drv(αi, a
′) 6= ∅,

b minimal upper bound in MP of
⋃

a′∈M0,a′≺a drv(αi, a
′)}.

In the above definition the choice of the element b is not necessarily unique.
In some cases the minimal upper bounds of

⋃
a′∈M0,a′≺a drv(αi, a

′) can form a
countable set: the initial questions or answers in the some subcomponent !D of
game D. In these cases, almost any possible choice gives rise to an equivalent
(w.r.t. ≈D) strategy; some care have to be taken when the move a is itself an
initial question or answer in some other subcomponent !D of game D, in which
case it is sufficient to choose for b the same index as for the move a.

Strategy αD is finally defined as αD =
⋃

n∈N αn. ut

It is interesting to observe that if one performs the above construction start-
ing from strategy α = {ε, ◦◦, ◦◦••}, one obtains a strategy αD ≈D idD.

Proposition 5 (Definability). For any play s in game D such that nl(s) = 0,
there exists a closed λ-term M such that s ∈ [[M]] and [[M]] ≈@ σ for any strategy
σ with s ∈ σ.

To the above proposition, we just give an informal and intuitive proof. A
formal proof will require the introduction of several new concepts and will be
more difficult to grasp.

We will associate to play s a Lévy-Longo tree or equivalently a λ-term that
represents a Lévy-Longo tree. In order to do that, we decompose play s in several
levels, each level determining a node of the Lévy-Longo tree.

We need to introduce some notation. Given a play t and an interval I of
natural numbers, we denote with t�I the subsequence of t formed by the moves
whose nested level is a value in the interval I.

Sequence s�[0,1] is a play contained in strategy σ. In fact, sequence s�[0,1] de-
scribes the behaviour of strategy σ on the hypothesis that the Opponent answers
immediately to questions posed by the Player (without posing nested questions).
Since, in game D, the Opponent is always allowed to answer immediately to the
questions of the Player, the sequence s �[0,1] is a play. Since in s �[0,1] the beha-
viour of the Player, in reaction to the last move of the Opponent, is the same
that in s, and since σ is a history free strategy, it follows that s�[0,1]∈ σ.

Play s�[0,1] can be in one of the following forms:

– the Player always answers to the questions of the Opponent

– the Player answers for n times to the questions of the Opponent, then at
the n+ 1 question q of the Opponent, the Player replays posing a question.
In this case, the Player is in the position to make the second move in a
game having form: !D ((. . . (!D︸ ︷︷ ︸

n

(D) . . .) and it can choose to pose a

question in one of the n instances of D staying on the left of an arrow. After
that, the monotonicity condition on plays forces the Player to react to the
answer of the Opponent by either posing a consecutive question in the same
component either by giving an answer to question q. In all cases, after having
posedm consecutive questions in the same component, the Player will answer
to question q. The condition of monotonicity on strategies now forces play
s �[0,1] to proceed in only one possible way. At the consecutive question of
the Opponent the Player needs to reply with a move that is stronger (w.r.t
the ≺D order) to the last question posed by the Player (qp). This implies
that the Player needs to pose the question consecutive to question qp. At
the answer of the Opponent the Player, by the monotonicity condition on
strategies, needs to reply with an answer (only one answer available). And
the previous argument applies to all consecutive moves.

In the first case above, play s has all moves at the nested level 0, and it is possible
to check that: s ∈ [[λx1 . . . xn.Ω]] and that [[λx1 . . . xn.Ω]] ≈@σ. On the second
case, it is possible to check that: s �[0,1]∈ [[λx1 . . . xn.xiΩ . . . Ω︸ ︷︷ ︸

m

]]. Moreover, it is

possible to prove that [[λx1 . . . xn.xiΩ . . .Ω]] ≈@σ; this can be done proving, by
induction on the length of plays, that the monotonicity condition forces strategy
σ to behave in a copy-cat way.

Sequence s�[2,∞] is a play in a game in the form !D (!D . . . ((!D⊗. . .⊗!D),
where the instances of D, on the left of the (arrow, denote variables that can
be interrogated by the Player, and the instances of D on the right of the (
arrow denote the arguments of the head-variable. The first move in s �[2,∞] is
a question of the Opponent asking if one of the arguments of the head variable
is a λ-abstraction and s �[2,3] is a play in game !D (!D . . . ((!D ⊗ . . .⊗!D)
defining the external structure of one argument of the head-variable. It follows
that there exists a λ-term P1 = λx1 . . . xn.xiΩ . . . (λxj1 . . . xjnj .xkΩ . . . Ω) . . . Ω
such that s�[0,3]∈ [[P]] and [[P]] ≈@σ.

The above analysis can be repeated for the consecutive levels of nested moves,
each slice s �[2i,2i+1] representing a play where the Opponent interrogates the
Player in order to know the structure of some subterms of the Player. In this
way play s determines a Lévy-Longo tree approximation of strategy σ at which
s belongs.

From the above propositions one can finally conclude:

Theorem 2 (Completeness). For any pair of closed λ-terms M , N , we have:

M vl N ⇒ [[M]] .D [[N]]

Proof. Suppose there exists a strategy α such that α ◦ [[M]] 6= ⊥, by Lemma
1, there exists a minimal strategy αD such that αD ◦ [[M]] 6= ⊥. Let ◦s• be the
(initial) sequence of moves generated by in the interaction between the strategies
αD and [[M]]. Play ◦s• is contained in strategy αD : D → D, while play t = ◦•◦s•
is contained in strategy up ◦ αD : D. Let P be the term defining the minimal
strategy containing the play t. By a simple calculation it follows that [[PM]] 6= ⊥
and the following chain of implications is immediate: [[PM]] 6= ⊥ ⇒ PM ⇓ ⇒
PN ⇓ ⇒ [[PN]] 6= ⊥ ⇒ αD ◦ [[N]] 6= ⊥ ⇒ α ◦ [[N]] 6= ⊥. ut

References

[AJM94] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for pcf (ex-
tended abstract). In Theoretical Aspects of Computer software. International
Symposium TACS ’94, volume 789 of LNCS. Springer, 1994.

[AM95a] S. Abramsky and G. McCusker. Games and full abstraction for the lazy
λ-calculus. In Proceedings LICS ’95, 1995.

[AM95b] S. Abramsky and G. McCusker. Games for recursive types. In I. C. Mackie
C. L. Hankin and R. Nagarajan, editors, Theory and Formal Methods of
Computing 1994: Proceedings of the Second Imperial College Department of
Computing Workshop on Theory and Formal Methods. Imperial College Press,
October 1995.

[AO93] S. Abramsky and C.H.L. Ong. Full abstraction in the lazy λ-calculus. In-
formation and Computation, 105:159–267, 1993.

[BPR98] O. Bastonero, A. Pravato, and S Ronchi. Structures for lazy semantics.
In Programming Concepts and Methods, PROCOMET’98. Chapman & Hall,
1998.

[DGF00] P. Di Gianantonio and G. Franco. The fine structure of game lambda-
models. In Conference on the Foundation of Software Technology and Theor-
etical Computer Science (FSTTS ’00), volume 1974 of LNCS, pages 429–441.
Springer, 2000.

[EHR92] L. Egidi, F. Honsell, and S Ronchi. Operational, denotational and logical
description: A case study. Fundamenta Informaticae, 16(2):149–170, 1992.

[KNO99] A. D. Ker, H. Nickau, and C. H. L. Ong. A universal innocent game model for
the Böhm tree lambda theory. In Computer Science Logic: Proceedings of the
8th Annual Conference of the EACSL Madrid, Spain, volume 1683 of Lecture
Notes in Computer Science, pages 405–419. Springer, September 1999.

[KNO00] A. D. Ker, H. Nickau, and C. H. L. Ong. Innocent game models of untyped
lambda calculus. To appear in Theoretical Computer Science, 2000.

[L7́5] J.J. Lévy. An algebraic interpretation of λ-calculus and a labelled λ-calculus.
In Lambda Calculus and Computer Science, volume 37 of LNCS, pages 147–
165. Springer-Verlag, 1975.

[Lon83] G. Longo. Set-theoretical models of λ-calculus: theories, expansions and iso-
morphisms. Annals of Pure and Applied Logic, 24:153–188, 1983.

