
A TYPE ASSIGNMENT SYSTEM FOR THE GAME
SEMANTICS

PIETRO DI GIANANTONIO

Dipartimento di Matematica e Informatica
Università di Udine

ITALY
E-mail: digianantonio@dimi.uniud.it

GIANLUCA FRANCO

Dipartimento di Matematica e Informatica
Università di Udine

ITALY
E-mail: gfranco@dimi.uniud.it

In this paper an alternative description of the game semantics for the untyped
lambda calculus is given. More precisely, we introduce a finitary description of
lambda terms. This description turns out to be equivalent to a particular game
denotational semantics of the lambda calculus.

Introduction

The aim of this paper is to give an alternative description of the game se-
mantics (2,3). The main idea is to mimic, in the game semantics setting,
a duality existing in domain theory. In domain theory, the denotational se-
mantics of a language can be given in two forms: a term can be interpreted by
some point in a particular domain, or by a set of properties. The Stone-duality
theorems, for domain theory 1, tell us that these two alternative descriptions
are equivalent. In this setting, the properties of a term are normally called
“types” and a set of rules, that allow to derive the properties satisfied by
a term, is called “type assignment system”. In the literature type assign-
ment systems are mainly used in the semantics of lambda calculi (5,6). But,
in principle, they can be used as an alternative description of any kind of
denotational semantics, based on domain theory. Type assignment systems
provide a concrete finitary way for defining the semantics of a term.

In this paper we introduce a finitary description of λ-terms in a partic-
ular game model. We think that type assignment systems are useful in the
context of game semantics since they provide a more concrete and intuitive
account of the interpretation of terms given by game models. In fact, clas-
sically game semantics is given using a categorical definition. To derive the
concrete definition from the categorical one can be a tiring task.

ictcs98: submitted to World Scientific on January 23, 2005 1

In Section 1 a general class of extensional game models for the untyped
λ-calculus is introduced with the categorical semantics of the language. All
these models, as proved in 7, induce the same equational theory on λ-terms.
Hence a particular element of this class is chosen as the canonical model and
presented in Section 2. In Section 3 the main purpose of the paper is realized.
An alternative description of the interpretation of λ-terms in the game model
is given by means of a type assignment system. The equivalence between this
description and the categorical one is then stated in Section 4. Final remarks
and hints for future work are given in Section 5.

1 Game models for the λ-calculus

In this paper we will not give the basic definitions of the game semantics. We
refer to 3,2 for an exhaustive presentation of the subject.

We will use the categories of games G and K!(G), introduced in 3. These
categories allow for the construction of recursive objects, i.e. objects which
are fixed points of functors. A first method to construct reflexive objects is
introduced in 4. The aim of this method is to construct initial fixed points of
functors. In 7 the above method is extended to deal also with non-initial fixed
points, and, hence, allowing for the construction of game models of untyped
λ-calculus.

In the first method a fixed point D of a functor is obtained as the limit
of a chain of approximant games D0, D1, D2, . . ., where each Dn is a subgame
(4) of the game Dn+1 (written Dn � Dn+1). The extended method differs
from the first one in requiring a weaker relation between Dn and Dn+1: it
suffices that Dn is isomorphic to a subgame of Dn+1.

We briefly recall the extended method presented in 7. To do this we
introduce a new category of games: the category Ge.
Definition 1 Given games A and B an embedding f : A ↪→ B is a total
injective function f : MA →MB such that:

• λA = λB ◦ f

• f?(PA) = PB ∩ (f(A))?

• s ≈A s′ iff f?(s) ≈B f?(s′)

In the above we have used the notation f? to denote the natural extension
of f both to sequences and sets of sequences.
Definition 2 The category of games Ge has as objects games and as morph-
isms embeddings.

ictcs98: submitted to World Scientific on January 23, 2005 2

Proposition 3 The category Ge is ω-cocomplete.
Proof. Given an ω-chain 〈Dn, fn〉 with fn : Dn ↪→ Dn+1, its colimit is the
cocone 〈D∞, µn〉n∈ω‘, where D∞ is the game:

• MD∞ = (
⋃

n∈ω MDn
)/≡

where ≡ is the least equivalence relation such that

∀n ∈ ω ∀a ∈ Dn ∀b ∈ Dn+1. fn(a) = b ⇒ a ≡ b.

• λD∞([a]≡) = λDn
(a) if a ∈ Dn

• PD∞ =
⋃

n∈ω{[a1]≡[a2]≡ . . . [ap]≡ | a1a2 . . . ap ∈ PDn
}

• ≈D∞=
⋃

n∈ω {([a1]≡[a2]≡ . . . [ap]≡, [a′1]≡[a′2]≡ . . . [a
′
p]≡) |

(a1a2 . . . ap, a
′
1a
′
2 . . . a

′
p) ∈ ≈Dn

}

The colimit functions µn : Dn ↪→ D∞ are defined by µn(a) = [a]≡. ut

Several functors in G can be also defined in Ge. A sufficient condition for
this to happen is the following.
Definition 4 A functor F : G → G is e-extensible if for each pair of iso-
morphic objects A and B in Ge, F (A) and F (B) are isomorphic objects in
Ge.
Definition 5 Gi is the subcategory of Ge defined as follows:

• the objects of Gi are the same of Ge;

• the morphisms f : A→ B of Gi are the isomorphisms f : A ↪→ B of Ge.

Lemma 6 Let F : G → G be an e-extensible functor. We can define a derived
functor F i : Gi → Gi.
Proof. The action of F i on objects is the same of F . The action on morphisms
is defined in two steps.

1. First choose for each pair of objects A and B in Gi a “canonical” iso-
morphism fAB : A → B, in such a way that fAC = fBC ◦ fAB for every
A,B,C.

2. For each isomorphism g ∈ Gi(A,B),‘ let F i(g) : F (A) → F (B) be the
canonical isomorphism fF (A)F (B). ut

From the above we can state the following proposition.

ictcs98: submitted to World Scientific on January 23, 2005 3

Proposition 7 Let F : G → G be an e-extensible functor which is monotonic
w.r.t. �. We can define a functor F e : Ge → Ge as follows:

• F e(A) = F (A)

• given an embedding f : A ↪→ B, let f ′ : A ↪→ img f be the isomorphism
obtained restricting f to the image of f , and i : F (img f) → F (B) be the
inclusion function; then put F e(f) = i ◦ F i(f ′).

It is not difficult to prove that
Proposition 8 Every e-extensible functor F : G → G, which is continuous
w.r.t �, induces a continuous functor F e in Ge.

One can easily see that the functors &, ⊗, −◦, ! are e-extensible. Notice
that the functor (−◦)e is covariant in each of its arguments. In particular,
given games A and B with move sets MA and MB , the action of these functors
on the move sets is the following:

• MA⊗B = MA−◦B = MA&B = MA +MB = {(0, a) | a ∈ MA} ∪ {(1, b) |
b ∈MB};

• M!A =
∑

ω MA = ω ×MA = {(n, a) | n ∈ ω, a ∈MA}.

while the action on the embeddings is defined as follows. Let f : A ↪→ B and
g : A′ ↪→ B′ be two embeddings. Then:

• f ⊗ g = f & g = f−◦g = f + g

• !f = id× f

where × and + are respectively the product and coproduct functors in SET .
Each embedding f : A ↪→ B in Ge induces two morphisms f+ : A−◦B

and f− : B−◦A in G defined as follows.
Definition 9 Given an embedding f : A ↪→ B, put

f+ = {t ∈ PA−circB | t ∈ sf}

f− = {t′ ∈ PB−◦A | t′ ∈ sf}

where sf is the least set satisfying:

sf = {t a f(a) | t ∈ sf , a ∈MA} ∪ {t′f(a) a | t′ ∈ sf , a ∈MA} ∪ {ε}.

ictcs98: submitted to World Scientific on January 23, 2005 4

Since (f ◦ g)+ = f+ ◦ g+ and (f ◦ g)− = g− ◦ f− the category Ge is indeed
isomorphic to a subcategory of G and to a subcategory of Gop.

Now, using the well-known machinery, we can obtain fixed points of an
e-extensible functor F , continuous w.r.t. �, and hence solutions of the equa-
tion D ' F (D) in G.

Theorem 10 Given a game D and an embedding f : D ↪→ F (D), let
〈D∞, µn〉n∈ω be the colimit of the chain 〈(F e)n(D), (F e)n(f)〉n∈ω. Then,
the game D∞ is the fixed point of the functor F e. The isomorphic em-
beddings ϕ : D∞ ↪→ F e(D∞) and ψ : F e(D∞) ↪→ D∞ are given by
ϕ =

⊔
n∈ω F

e(µn) ◦ µ−1
n and ψ =

⊔
n∈ω µn ◦ F e(µn)−1 respectively, where

the lubs are taken in the category of partial embeddings.

2 A game model for the λβη-calculus

An extensional model for the untyped λ-calculus is an extensional reflexive
object in a cartesian closed category, that is an object D s.t. D ' D → D.
The category K!(G) is cartesian closed, the product functor is & and the
“functional space” A→ B is internalized by the game !A−◦B.

In K!(G) an extensional model for the untyped λ-calculus can be build as
follows:

Definition 11 Let D∗
0 be the game: D∗

0 = ({∗}, λ(∗) = OQ, {ε, ∗}, id) and
let f∗ : D∗

0 ↪→ (!D∗
0−◦D∗

0) be the embedding defined by f∗(∗) = (1, ∗). The
extensional reflexive object D∗ is defined to be the limit of the chain generated
by the embedding f∗ and the functor G(D) = (!)eD(−◦)eD.

We now give the standard denotational semantics for pure λ-terms.

Definition 12 Given a reflexive object D in the cartesian closed category
K!(G), and given a λ-term M , whose free variables are among the list ∆ =

{x1, . . . , xn}, its interpretation in D is the strategy [[M]]D∆ : !(

n︷ ︸︸ ︷
D & . . . & D)

−◦D defined inductively as follows:

[[xi]]D∆ = π∆
i ;

[[MN]]D∆ = ev ◦ 〈(ϕ ◦ [[M]]D∆) , [[N]]D∆〉;
[[λx.M]]D∆ = ψ ◦ Λ([[M]]D∆,x);

where π∆
i are the canonical projection morphisms, (ϕ,ψ) : D → (!D−◦D)

are the isomorphisms characterizing the reflexive object D, and ev, Λ denote
“evaluation” and “abstraction” in the cartesian closed category K!(G).

ictcs98: submitted to World Scientific on January 23, 2005 5

3 The type assignment system

In the game semantics, positions of games are particular instances of a com-
putation. If a position s belongs to the strategy interpreting the term M , it
means that the term M , in a suitable environment, can perform the compu-
tation steps described by s.

The underlying idea of the type assignment system we present, is to con-
sider positions, that is the instances of computation, as the properties (types)
to be used in describing programs. This approach is possible because the
set of instances of the computation that a program M can perform, describe
completely the strategy that interprets M .

In the specific case that we consider, we define a set of rules that allow to
derive judgments in the form

`∆ M : s

where M is a λ-term whose free variables are in the list ∆ = {x1, . . . xn} and

s is a position in the game !(

n︷ ︸︸ ︷
D∗ & . . .& D∗)−◦D∗.

It is worth noticing that the environment never appears in a judgment,
since it is included in the position itself. In fact, a position in the game

!(

n︷ ︸︸ ︷
D∗ & . . .& D∗) −◦D∗ can contain also the moves describing the interaction

of a term with the environment. The traditional form of the judgment for
the type assignment system, that is Γ ` M : s, with Γ a description of the
environment, cannot be used in our case. This because, using the above
traditional form of judgment, a term is described by an extensional function
from the values of the free variables of the term to the value of the term itself.
Since the category of games is not concrete, this extensional description is not
adequate.

In order to give a type assignment system, it is convenient to define a
suitable notation for the moves of the game model, i.e. D∗. We choose to
indicate moves by sequences of labels, and in this case, we use juxtaposition
to indicate sequence concatenation.

Notation Let a, b be moves of games A and B respectively, and i ∈ ω.
Then we indicate with la and rb the moves (0, a) and (1, b) in the game A−◦B;
with ia the move (i, a) of the game !A; if i < n, then, we indicate with ia also

the obvious move in the game (

n︷ ︸︸ ︷
A & . . . & A).

Using the construction presented in the proof of Proposition 3, moves in

ictcs98: submitted to World Scientific on January 23, 2005 6

the game D∗ are equivalence classes of moves in the games D∗
i , i ∈ ω. Using

the above notation, each move in D∗
i can be denoted by a finite sequence of

labels ending with ∗. Moreover the move a∗ inD∗
i belongs to the same equival-

ence class of the move ar∗ in D∗
i+1. In order to have a unique representation

for each move in D∗, we denote the equivalence class, containing the moves
a∗, ar∗, arr∗, . . . in D∗

i , D∗
i+1, D

∗
i+2, . . . respectively, by the infinite sequence

arω; that is we denote moves in D∗ by infinite sequences of labels in the set
{l, r} ∪ ω, having just a finite set of labels different from r. Notice that, as
a consequence, a move a ∈ D∗ and the corresponding move ϕ(a) ∈ !D∗−◦D∗

are denoted in the same way.
For what concerns positions, we will use the symbol · to indicate concat-

enation of positions. The use of two different symbolisms for concatenation,
one for moves and one for positions, allow us to omit parenthesis.

In order to present the type assignment system we need to define the
following (partial) functions on sequences of moves.
Definition 13 1. Let s be a sequence of moves of the game D∗ (not neces-

sarily giving rise to a valid position), let ∆ = {x1, . . . xn} be a list of vari-
ables with n ≥ 1, and let 0 < i ≤ n be a natural number. The sequences

cci
∆(s) and cci

∆(s) of moves of the game !(

n︷ ︸︸ ︷
D∗ & . . . & D∗)−◦D∗, are

defined as follows:

(a) cci
∆(ε) = cci

∆(ε) = ε

(b) cci
∆(a · s′) = ra · l0ia · cci

∆(s′)

(c) cci
∆(a · s′) = l0ia · ra · cci

∆(s′)

2. Let λ be the function from moves in the game !(

n+1︷ ︸︸ ︷
D∗ & . . . & D∗)−◦D∗

to moves in !(

n︷ ︸︸ ︷
D∗ & . . . & D∗)−◦(!D∗−◦D∗) defined as follows:

λ(a) =

a if a = ljia′ and i ≤ n
rlja′ if a = lj(n+ 1)a′

ra if a = ra′

Let λ? be the extension of λ to positions.

ictcs98: submitted to World Scientific on January 23, 2005 7

3. Let s be a sequence of moves in the game !(

n︷ ︸︸ ︷
D∗ & . . . & D∗)

−◦ (!D∗−◦D∗), t1, . . . , tm be sequences of moves in the game

!(

n︷ ︸︸ ︷
D∗ & . . . & D∗) −◦D∗ and j ≤ n, we indicate with (s|t1| . . . |tm, j)

a sequence of the game !(

n︷ ︸︸ ︷
D∗ & . . . & D∗)−◦D∗, defined as follows:

(a) (ε|ε| . . . |ε, i) = ε;

(b) (rra · s|t1| . . . |tm, 0) = ra · (s|t1| . . . tm, 0);

(c) (rlia · s|t1| . . . |ra · t′i| . . . |tm, 0) = (s|t1| . . . |t′i| . . . |tm, i);

(d) (rlia · s|t1| . . . |ra · t′i| . . . |tm, i) = (s|t1| . . . |t′i| . . . |tm, 0);

(e) (lhja · s|t1| . . . |tm, 0) = l(2h+ 1)ja · (s|t1| . . . |tm, 0);

(f) (s|t1| . . . |lhja · t′i| . . . |tm, i) = lh(2p(i, j))a · (s|t1| . . . |t′i| . . . |tm, i)

where p : ω × ω → ω is a pairing function, that is a bijection between
ω×ω and ω. Take, for example, the function λx.λy.(2x+ 1)2y. Observe
that the sequence (s|t1| . . . |tm, j) is not always defined. If it is defined we
write (s|t1| . . . |tm, j) ↓.
Some explanation for the definitions above. Observe that if s is a

valid position in the game D∗, then cci
∆(s) is a valid position in the game

!(

n︷ ︸︸ ︷
D∗ & . . . & D∗) −◦D∗. Moreover one can easily prove that cci

∆(s) is a
position of the “copy-cat” strategy on the ith argument (2), and that every
position of the copy-cat strategy on the ith argument can be obtained in this
way.

It is not difficult to observe that the function λ defines the “curry-

ing” isomorphism between the games !(

n+1︷ ︸︸ ︷
D∗ & . . . & D∗)−◦D∗ and the game

!(

n︷ ︸︸ ︷
D∗ & . . . & D∗) −◦(!D∗−◦D∗).

The position (s|t1| . . . |tm, 0) is the result, as defined by game semantics,
of the interaction between the position s, seen as the instance of computation
of a function, and the positions t1, . . . , tm, seen as several instances of com-
putation of the argument of s. Since a function can interrogate its argument
several times, more than one instance of computation for the argument is ne-
cessary. The instance of computation s, t1, . . . , tm can also interact with an

ictcs98: submitted to World Scientific on January 23, 2005 8

environment represented by the game !(

n︷ ︸︸ ︷
D∗ & . . . & D∗). In the expression

(s|t1| . . . |tm, i) the index i is necessary to indicate which instance of compu-
tation has to move.

Rule (b) considers the case where s has to move and makes a move a on
the result; in this case a appears also on the result of the interaction. Rule (c)
considers the case where s has to move and makes a move a on the ith copy
of the argument. If ti can make the same move a, then there is an interaction
between function and arguments, the two instances of a are canceled and the
control is passed to the ith copy of the argument. If s and ti do not agree
on the move to make, it means that there cannot be any interaction between
these particular instances of computation. Rule (d) is the dual of rule (c);
it considers the case where ti has to move and makes a move a. If s can
make the same move a then there is an interaction between function and
arguments, the two instances of a are cancelled and the control is given to the
function. Rule (e) considers the case where s has to move and makes a move
a in correspondence of the hth copy of the jth variable of the environment.
In this case, the move a appears also on the result of the interaction, but in
a different copy of the environment. Rule (f) is similar to the rule (e), and
considers the case where the ith copy of the argument is in control.
Definition 14 Let M,N be λ-terms and let ∆ be a list of variables. We give
the following type assignment rules in a natural deduction system style:

s ∈ PD∗

`∆ xi : cci
∆(s)

(var)

`∆,x M : s

`∆ λx.M : λ?s
(λ)

`∆ M : s `∆ N : t1 . . . `∆ N : tm

`∆ MN : (s|t1 . . . |tm, 0)
(app)

the side condition of the rule (app) being that (s|t1| . . . |tm, 0) ↓.

4 Equivalence of semantics

We shall show now that game denotational semantics and the semantics given
by the type assignment system are equivalent.
Theorem 15 For every λ-term M whose free variables are among the list

ictcs98: submitted to World Scientific on January 23, 2005 9

∆ = {x1, . . . , xn}, we have: [[M]]D
∗

∆ ≈ {s | `∆ M : s}.
Proof. By induction on the structure of M .

• M ≡ xi. In this case [[xi]]D
∗

∆ = π∆
i . By explicating the categorical

definition of π∆
i : !(

n︷ ︸︸ ︷
D∗ & . . . & D∗)−◦D∗, one can observe that π∆

i is
the “copy-cat” strategy on the ith argument, that is the same strategy
defined by the type assignment system.

• M ≡ λx.P . In this case [[λx.P]]D
∗

∆ = ψ ◦ Λ([[P]]D
∗

∆,x).

In our sequence notation for moves, we use the same sequence to denote a
move d in D∗ and the equivalent (unfolded) move in !D∗−◦D∗. It follows
that, in our notation, the strategies ψ ◦ Λ([[P]]D∆,x) and Λ([[P]]D∆,x) are
denoted in the same way.

It is not difficult to prove that the isomorphism between the game

!(

n+1︷ ︸︸ ︷
D∗ & . . . & D∗) −◦D∗ and the game !(

n︷ ︸︸ ︷
D∗ & . . . & D∗)−◦(!D∗−◦D∗)

defined by the function Λ coincides with the one defined by the function
λ?.

• M ≡ PQ. In this case we have: [[PQ]]D
∗

∆ = ev ◦ 〈(ϕ ◦ [[P]]D
∗

∆) , [[Q]]D
∗

∆ 〉.
By the same arguments used in the previous point, in our notation the
strategies ϕ ◦ [[P]]D

∗

∆ and [[P]]D
∗

∆ are denoted in the same way. The re-
maining part of the proof can be obtained by explicating the categorical
definition of ev. ut

5 Final remarks

This case study, shows that also in the game setting it is possible to give a
finitary description of the denotational semantics of the untyped λ-calculus.
It is immediate to extend the methodology developed in this paper to all the
models in the extensional class described in Section 1. It would be interesting
to extend it also to other contexts, e.g. the language PCF, the lazy λ-calculus.

This purpose is the natural development of this work and we plan to
achieve it in future papers.

References

1. S. Abramsky. Domain theory in logical form. In Annals of Pure and
Applied Logic, volume 51, pages 1-77, 1991.

ictcs98: submitted to World Scientific on January 23, 2005 10

2. S. Abramsky and R. Jagadeesan. Games and full completeness for mul-
tiplicative linear logic. Journal of Symbolic Logic, 59(2):543-574, June
1994.

3. S. Abramsky and R. Jagadeesan, and P. Malacaria. Full abstraction for
PCF. Ftp-available at http://www.dcs.ed.ac.uk/home/samson, 1995.

4. S. Abramsky and G. McCusker. Games for recursive types. In I.C.Mackie
C.L. Hankin and R. Nagarajan, editors, Theory and Formal Methods of
Computing 1994: Proceedings of the Second Imperial College Department
of Computing Workshop on Theory and Formal Methods. Imperial Col-
lege Press, October 1995.

5. H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter model
and the completeness of type assignment. Journal of Symbolic Logic,
48(4):931-940, 1983.

6. M. Coppo, M. Dezani-Ciancaglini, F. Honsell, and G. Longo. Extended
type structures and filter λ-models. In G. Lolli G. Longo and A. Marcja,
editors, Logic Colloquium ’82. Elsevier Science Publishers, 1984.

7. P. Di Gianantonio, G. Franco, and F. Honsell. Game se-
mantics for the untyped lambda calculus. Ftp-available at
http://www.dimi.uniud.it/~pietro/Papers/paper arg.html, 1998.

ictcs98: submitted to World Scientific on January 23, 2005 11

