
A Golden Ratio Notation for the Real Numbers

Pietro Di Gianantonio

dip. di Matematica e Informatica, Università di Udine

via delle Scienze 206 I-33100 Udine Italy

email: pietro@dimi.uniud.it

Abstract

Several methods to perform exact computations on real numbers have been proposed in the literature. In some

of these methods real numbers are represented by infinite (lazy) strings of digits. It is a well known fact that,

when this approach is taken, the standard digit notation cannot be used. New forms of digit notations are

necessary. The usual solution to this representation problem consists in adding new digits in the notation, quite

often negative digits. In this article we present an alternative solution. It consists in using non natural numbers

as “base”, that is, in using a positional digit notation where the ratio between the weight of two consecutive

digits is not necessarily a natural number, as in the standard case, but it can be a rational or even an irrational

number. We discuss in full detail one particular example of this form of notation: namely the one having two

digits (0 and 1) and the golden ratio as base. This choice is motivated by the pleasing properties enjoyed by

the golden ratio notation. In particular, the algorithms for the arithmetic operations are quite simple when this

notation is used.

AMS Subject Classification (1991): 65Y99.

CR Subject Classification (1991): F.2.1, G.1.0.

Keywords & Phrases: real number computability, digit notation, golden ratio.

Note: Work funded by the Human Capital and Mobility fellowship program EuroFocs.

1. Introduction

In the ordinary practice, computations on real numbers are performed by approximating real numbers
by a subset of the rational numbers and by approximating the arithmetic on real numbers by a limited
precision arithmetic on rationals. This is not the only possible way to compute on real numbers. Also
a form of exact computation is feasible. In this case the results of the computations can be obtained
with arbitrary precision. The exact computation on real numbers has been studied by several authors.
Here we just mention Boehm and Cartwright ([2, 3]), Ko ([9]), Martin-Löf ([12]), Vuillemin ([16]) and
Weihrauch ([17]).

In [2] and [6] an approach to real number computation via lazy functional languages is considered.
In this approach a real number is represented by an infinite lazy sequence of digits. A real function
is implemented by a lazy program that receives as input a lazy stream of digits, the argument, and
generates as output a lazy stream representing the result. The computation proceeds as follows: the
program examines a finite number of digits of the argument, starting from the most meaningful ones.
When the argument is known with a sufficient precision some digits of the output are generated, then
some more digits of the input are examined in order to compute new digits of the output, and so on.
Each digit of the output needs to be correct. The exact result is the limit of the computation.

Lazy functional languages are not the only possible approach to computability on infinite streams.
Several authors used the digit notation for reals and a different approach to the computability, as for
example Turing machine in [15], [17] [18] or approximations spaces in [14].



2. Digit Notations for Reals. 2

The standard digit notation is not suitable for the lazy computation described above. The usual
solution to this problem consists in adding new digits to the notation, often negative digits. In this
work we present an alternative solution. It consists in employing a different form of notation for
real numbers, namely a digit notation where the “base” is not a natural number. That is we use a
positional digit notation where the ratio between the weight of two consecutive digits is not necessarily
a natural number, as in the standard case, but it can be a real number. Among all possible notations
of this form we choose one that is particularly interesting. It uses two digits and the golden ratio as
base. The reason for this choice is that this notation permits simple algorithms for the arithmetic
operations.

The outline of the paper is as follows. In section 2 we present several forms of digit notation and
we explain why the standard notation cannot be used for exact computation on reals. In section 3 the
golden base notation is introduced. In section 4 we present the algorithms for the arithmetic operations
working on the golden base notation. In section 5 we investigate the problem of whether there exist
other bases for a binary notation which permit simple algorithms for the arithmetic operations.

2. Digit Notations for Reals.

In analysis the real numbers are defined in a plethora of different ways: Cauchy sequences of rational
numbers, Cauchy sequences of decimal rationals, Dedekind cuts in the field of rationals, infinite decimal
expansions, and so on. Classically all these notations are equivalent and we can study analysis without
worrying about which notation for real numbers we are currently using. If we intend to compute on
real numbers this is not any more true and some care has to be taken in choosing the notation: for
instance Dedekind cuts and Cauchy sequences turn out not to be equivalent notations. In this paper
we concentrate on the digit notations for real numbers. Also in this case some care has to be taken in
the notation used. The classical digit notation of real numbers can be defined as follows:

Definition 1 Given a natural number b > 1 a digit notation with base b of a real number x is given
by a sequence of integers z0 :z1 :z2 : . . ., such that:
i) ∀i ≥ 1 . 0 ≤ zi < b
ii) x =

∑

i∈IN zi × b−i

Here the integer part of a real is denoted by a single integer number instead of using a finite string
of digits. We make this change to the classical notation for simplicity reasons. None of the results we
present is affected by this change.

As mentioned in the introduction a simple method to compute on real numbers consists in using
a lazy functional language. In this approach a real number is implemented by a program that lazily
generate a stream of integers denoting it. A real number is said computable if it can be implemented
by a program. It is not difficult to prove that this notion of computability is independent from
the base number. A function between real numbers is implemented by a program that receives as
input lazy streams (or, more precisely, programs generating lazy streams) denoting the arguments
and generates as output a lazy stream denoting the result. A function is said computable, in a given
notation, if it can be implemented by a program. A problem here arises. All notations in Definition 1,
independently from the base used, are not suitable for real number computation. Using them even
the most fundamental functions such as addition or multiplication are not computable.

Here is a simple example that illustrates the inadequacy of the standard decimal notation. We show
that no algorithm can compute multiplication by 3. A hypothetical algorithm for this function will
not be able to generate the first digit of the result when it receives as input the stream 0 : 3 : 3 : 3 . . .
denoting the number 1/3. The result of the multiplication is 1. 1 can be denoted in two ways, namely
by 1:0 :0 :0... or by 0:9 :9 :9... . If the algorithm generates 1 as the first digit, this must happen after
the algorithm has examined a finite number of digits of the argument. Let us suppose that the first



2. Digit Notations for Reals. 3

n digits have been examined before generating 1. Then the algorithm generates 1 as first digit also

when it receives as input the stream 0:

n
︷ ︸︸ ︷

3:3 : . . . :3 :0 :0 . . .. But this in incorrect since the exact result
should then be a stream having the first digit equal to 0. An analogous argument can be made if the
algorithm generates 0 as first digit.

Similar examples show that also the other arithmetic operations are not computable. Clearly the
problem presented above is not caused by the choice of 10 as base number. The same problem would
arise for any other base.

A more general explanation for the inadequacy of the standard digit notation is the following: in
a digit notation all the streams starting with 0 denote numbers contained in the closed interval [0, 1]
and all the streams starting with 1 denote numbers contained in the closed interval [1, 2]. To generate
the first digit of a real number x we have therefore to decide whether x is a number smaller or bigger
than 1. Consider the case of x being the result of an arithmetic function with argument y. If we
know a sufficient number of digits of y we are able to approximate x with an arbitrary precision
(that is, given an arbitrary natural number n we are able to determine a rational number a s. t.
a−1/n < x < a+1/n), but still it can be the case that we are not able to decide whether x is smaller
or bigger than 1 and so we are not able to generate the first digit of x.

The introduction of signed-digits, is a simple way to overcome these difficulties. The standard
interpretation can be extended to streams of positive and negative digits. For example the string
0:+4:−5:−3:+2 denotes the rational number (+4×10−1)+(−5×10−2)+(−3×10−3)+(+2×10−4).
Formally we have the following definition

Definition 2 Given a natural number b > 1 a signed-digit notation with base b of a real number x is
given by a sequence of integers z0 :z1 :z2 : . . ., such that:
i) ∀i ≥ 1 . − b < zi < b
ii) x =

∑

i∈IN zi × b−i

The negative digit notation was first proposed by Leslie [11] and independently by Cauchy [5]. This
notation has also been proposed for hardware implementation in order to avoid the propagation of
the carry [1].

Going back to the previous example we show how the introduction of signed-digits solves the
computational difficulties. The algorithm for multiplication by 3 can safely generate 1, as first digit,
after having read the first two digits of the stream 0 : 3 : .... Observe that if the input becomes
0:3 :−9:−9... = 1/5 it is still possible to generate the exact result by the stream 1:−4:0 :0 :0 : ... = 3/5.
If the input becomes 0:3 :9 :9 :9 : ... = 2/5 the output can become 1:2 :0 :0 :0 : ... .

With the signed-digits notation a stream starting with 0 denotes a real number contained in the
interval [−1, 1] while a stream starting with 1 denotes a real number contained in the interval [0, 2].
In this notation in order to generate the first digit of a real number x it is not necessary to decide
whether x is smaller or bigger than 1. To generate the first digit of x it is sufficient to know its
value with precision 1/2. If x is the result of an arithmetic function then to approximate its value
with precision 1/2 is sufficient to examine just a finite number of digits of the function’s arguments.
Perfectly similar considerations hold for the successive digits, to generate each of them it is sufficient
to know the value of x with a given precision and this can always be done examining a finite number
of digits of the arguments. It follows that with the signed-digit notation all the arithmetic functions
are computable.

It is possible to prove that all the signed-digit notations (independently from the base used) are
computationally equivalent, in the sense that they characterize the same class of computable reals
and computable real functions. In fact for any pair of signed-digit notations there exists an effective



3. Golden base notation. 4

translation. That is, there exists a program that, when it receives as input a stream denoting a real
x in the first notation, gives as output a stream denoting the same real x in the second notation.
Therefore we can define a real function computable if it is computable w.r.t. one signed-digit notation.

It is interesting to notice that also if the the standard notations and the signed-digit notations are
different with respect to the computability of functions, nevertheless they characterize the same class
of computable reals.

3. Golden base notation.

The simplest signed digit notation is the one having base 2 and using three digits {−1, 0, 1}. In this
section we consider the problem of whether there exist notions for the real numbers making use of just
two digits, 0 and 1, and suitable for the real number computation. It turns out that such notations
exist, moreover there are countably many of them. We single out, among these, one that we think to
be optimal w.r.t. the simplicity of the algorithms for the arithmetic operations.

A preliminary remark here is appropriate. By the words base of a digit notation we mean the ratio
between the weights of two consecutive digits in the notation. More explicitly: if the base is b, the
finite string of digits a0 : . . . :an denotes the number

∑

i≤n ai/bi. Normally base and number of digits
in a notation coincide. The distinction between the two concepts is therefore often blurred. But
nothing prevents us from defining notations where base and number of digits are different, like in the
signed-digit notation. And nothing prevents us from choosing as base a number that is not natural.
Rational or even irrational numbers can legitimately be chosen as bases. The only restriction is that
the base has to be a (computable) number strictly larger than 1 and smaller than the number of digits
in the notation.

Exploiting this idea it is possible to define a collection of real number notations.

Definition 3 Given natural number d and a computable real number b with 1 < b < d, a digit
representation with d digits and base b of a real number x is given by a sequence of integers z0 :z1 :z2 :
. . ., such that:
i) ∀i ≥ 1 . 0 ≤ zi < d
ii) x =

∑

i∈IN zi × b−i

A notation for reals of the above form will be called real-base notation. The use of irrational numbers
as base is not new. For example, real-base notations have been already studied in [13]. The real-base
notation can be generalized further. If the base of a digit notation is an imaginary number then a
string of digits represents a complex number. Every complex number can then be represented by a
single string of digits, if we choose a suitable base. Moreover using an imaginary base notation it is
possible to obtain algorithms for the arithmetic operations on complex numbers that are quite similar
to the standard algorithms on real numbers. An historical excursion on different number notations
can be found in Knuth [8].

It is possible to prove that all real-base notations are computationally equivalent to the signed-digit
notations. Again the prove can be given exhibiting, for any possible pair of notations, a program
implementing an effective translation between them.

It follows that there are infinitely many notations using two digits and suitable for real number
computation. Brouwer was probably the first one to notice the computational difficulties of the
standard binary notation. He suggested as solution the use of a binary notation with base 3/2 [4]. In
corollary 13 we prove that the binary notation with base 3/2 is not the most convenient choice in order
to obtain simple algorithms for the arithmetic operations. We claim that the simplest algorithms for
the arithmetic operations are obtained when the value of the base is the golden ratio, that is the
number φ = (

√
5 + 1)/2. An intuitive and partial explanation for this fact is the following. With the



4. Algorithms for Arithmetic Operations. 5

golden ratio as base, the stream 0:1 :1 :0 :0 :0 : . . . denotes the number 1 (here with 0:0 :0 . . . we indicate
the stream with all elements equal to 0). It follows that in the golden ratio notation it is possible to
rewrite a group of digits in a stream without altering the value denoted by the stream. For example
the number 1 is denoted by each one of the following streams: “1 : 0 : 0 : 0 . . .”, “0 : 1 : 1 : 0 : 0 : 0 . . .”,
“0 : 1 : 0 : 1 : 1 : 0 : 0 : 0 . . .”. Exploiting identities of this kind it is possible to obtain algorithms for the
arithmetic operations. The golden ratio is the only admissible value for a base, for which the identity
1 :0 :0 :0 . . . = 0:1 :1 :0 :0 :0 . . . holds.

It is interesting to observe that in the fractional point notation, with the golden ratio as base,
each natural number can be represented by a finite string of digits. In fact, the natural number 1 is
represented by the string 1.0 but it is also represented by the string 0.11. It follows that the natural
number 2 is represented by 1.11 (1.11 = 1.00 + 0.11 = 1 + 1). Again we can rewrite 1.11 as 10.01
and therefore the natural number 3 is represented by the string 11.01 or by the string 100.01. Going
on in this way we have 4 = 101.01 = 100.1111, 5 = 101.1111 = 110.0111, 6 = 111.0111 = 1010.0001,
7 = 1011.0001 = 1100.0001 and so on.

In the following we use a representation for the reals slightly different from the one given in Defini-
tion 3. In that representation the first digit is an arbitrary integer (with no limitation) and represent
the integer part of the real number denoted by the stream. It is a kind of fixed-point representation.
The representation we are going to define is more on the spirit of a floating-point (exponent-mantissa)
representation. It has the advantage that the algorithms for the arithmetic operations are simpler to
define with it. We will use the following notation: the greek letters α, β and γ will range on binary
streams (streams of binary digits), αi will denote the i+1 digit of α and α|i will denote the substream
αi :αi+1 : . . ..

Definition 4 In the golden notation the stream z : α, with z integer number and α binary stream
(∀i ∈ IN . αi ∈ {0, 1}), denotes the real number [[z :α]]f defined by:

[[z :α]]f = (−1 +
∑

i∈IN

αi × φ−i−1) × φ2z

The first term −1 in the above formula has been introduced in order to represent negative numbers.
Note that the more conventional notation with sign, mantissa and exponent cannot be used. In fact
in order to establish the sign of a number we have to decide if the number is smaller or bigger that
0. Using the arguments presented at page 2 one can prove that no algorithm for addition can always
decide the sign of its result.

4. Algorithms for Arithmetic Operations.

In the following we describe the algorithms for the arithmetic operations in the golden ratio notation.
For each operation we define two algorithms. The first one works on a simplified notation for the real
numbers. The second one works on the full notation of Definition 4. The simplified notation uses only
binary streams to represent reals.

Definition 5 In the simplified notation the binary stream α = α0 : α1 : . . . denotes the real number
[[α]]s defined by:

[[α]]s =
∑

i∈IN

αi × φ−i−1

Using the simplified notation we can denote just a subset of the real numbers: all real numbers
contained in the interval [0, φ]. This interval is not closed for the arithmetic operations therefore an



4. Algorithms for Arithmetic Operations. 6

overflow problem arises. To solve this problem the algorithms for the simplified notation yield results
of the arithmetic operations divided by fixed factor, φ or φ2 depending from the operations.

The algorithms are described by a set of rewriting rules over streams of digits. The notation used
is quite similar to the one used in the lazy functional programming language Miranda [7] to define
functions on lazy streams. The algorithms for the full notation derive from the ones for the simplified
notation.

4.1 Addition
The algorithm executes the computation from left to right (from the most meaningful digits to the
least meaningful ones) and uses a carry consisting of two digits. At each step, the algorithm needs to
examine at most two digits of each addend in order to determine which step to execute.

Formally we define a function A having the following behaviour:
i) The arguments of A are two binary streams α and β (the addends), and two binary digits a, b (the
carry).
ii) The following equality holds:

[[A(α, β, a, b)]]s = ([[α]]s + [[β]]s + a/φ + b/φ2)/φ2

Definition 6 The function A implementing the addition in the simplified notation is defined by the
following set of rewriting rules:

A(0 :α, 0:β, 0, b) ⇒ 0:A(α, β, b, 0)
A(0 :0 :α, 0:β, 1, b) ⇒ 0:A(b :α, β, 1, 1)
A(0 :1 :α, 0:1 :β, 1, 1) ⇒ 1:0 :A(α, β, 0, 1)
A(0 :0 :α, 1:0 :β, 1, 0) ⇒ 0:1 :A(α, β, 1, 0)
A(0 :α, 1:β, 1, 1) ⇒ 1:A(α, β, 0, 0)
A(1 :α, 1:β, 1, b) ⇒ 1:A(α, β, b, 1)

A(1 :α, 0:β, a, b) ⇒ A(0 :α, 1:β, a, b)
A(a :α, 1:β, 0, b) ⇒ A(a :α, 0:β, 1, b)
A(a1 :1 :α, a2 :0 :β, a3, b) ⇒ A(a1 :0 :α, a2 :1 :β, a3, b)
A(a1 :b :α, a2 :1 :β, a3, 0) ⇒ A(a1 :b :α, a2 :0 :β, a3, 1)

The interesting part of the algorithm is described by the first 6 rewriting rules, the last 4 rules just
permute digits having equal weights. It is interesting to observe that in the above set of rewriting
rules there is a duality between 0 and 1. If we substitute in all rules each digit 0 with 1 and vice-versa
we obtain an equivalent set of rules for addition.

Proposition 1 i) A is a well defined function: for every α, β, a, b there is one and only one stream
γ such that: A(α, β, a, b) ⇒ γ.

ii) A has the intended behaviour, that is:

[[A(α, β, a, b)]]s = ([[α]]s + [[β]]s + a/φ + b/φ2)/φ2

Proof. i) It is not difficult to prove by induction and case analysis that for each natural number
n and for each α, β, a, b there exists a unique string c0 : . . . : cn−1 having length n and there exists
α′, β′, a′, b′ such that: A(α, β, a, b) ⇒ c0 : . . . :cn−1 :A(α′, β′, a′, b′).

ii) We prove by induction on the natural number n that for any pair of binary streams α, β and for
any pair of binary digits a, b we have:



4. Algorithms for Arithmetic Operations. 7

| [[A(α, β, a, b)]]s − ([[α]]s + [[β]]s + a/φ + b/φ2)/φ2 | ≤ φ1−n

The base step of the induction can be proved by a simple calculation.

Next we need to prove that if the inequality holds for n then it holds also for n + 1. The proof
of this inductive step is done by case analysis. One proves that the inductive step is valid for each
possible value of the first two digits of the addends α, β and for each possible value of the two digits
of carry a, b. Here we consider the case when α = 0:α|1 , β = 1:β|1 , a = 1 and b = 1. In this case the
fifth rewriting rule has to be applied. We can write:
| [[A(0 :α|1 , 1:β|1 , 1, 1)]]s − ([[0 :α|1 ]]s + [[1 :β|1 ]]s + 1/φ + 1/φ2)/φ2 |
= | [[1 :A(α|1 , β|1 , 0, 0)]]s − ([[α|1 ]]s/φ + 1/φ + [[β|1 ]]s/φ + 1)/φ2 |
= | 1/φ + [[A(α|1 , β|1 , 0, 0)]]s/φ − (φ + [[α|1 ]]s/φ + [[β|1 ]]s/φ)/φ2 |
= | [[A(α|1 , β|1 , 0, 0)]]s − ([[α|1 ]]s + [[β|1 ]]s)/φ2 | /φ

≤ φ1−n/φ = φ1−(n+1) by inductive hypothesis.

The proofs for the other cases can be reduced to this one or follow a similar pattern. ⊓⊔

We present the rewriting rules of the function A in a different form. In doing so we show how
our algorithm for the addition can be executed with pen and paper and we highlight the similarit-
ies between our algorithm and the standard one we learned at primary school. Differently form the
standard algorithm, our algorithm proceeds from left to right (from the most meaningful digits to the
less meaningful ones) and uses a carry composed by two digits. It is described by the rules:

0 a
+ 0 α1 α2 . . .
= 0 β1 β2 . . .

. . . c′c −−
⇒

a 0
+ α1 α2 α3 . . .
= β1 β2 β3 . . .

. . . c′c 0 −−

1 0
+ 0 α1 α2 . . .
= 0 β1 β2 . . .

. . . c′c −−
⇒

1 1
+ α1 α2 α3 . . .
= β1 β2 β3 . . .

. . . c′c 0 −−

1 1
+ 0 1 α2 . . .
= 0 1 β2 . . .

. . . c′c −−
⇒

0 1
+ α2 α3 α4 . . .
= β2 β3 β4 . . .

. . . c′c 1 0−−

1 0
+ 1 0 α2 . . .
= 0 0 β2 . . .

. . . c′c −−
⇒

1 0
+ α2 α3 α4 . . .
= β2 β3 β4 . . .

. . . c′c 0 1−−

1 1
+ 1 α1 α2 . . .
= 0 β1 β2 . . .

. . . c′c −−
⇒

0 0
+ α1 α2 α3 . . .
= β1 β2 β3 . . .

. . . c′c 1 −−

1 a
+ 1 α1 α2 . . .
= 1 β1 β2 . . .

. . . c′c −−
⇒

a 1
+ α1 α2 α3 . . .
= β1 β2 β3 . . .

. . . c′c 1 −−



4. Algorithms for Arithmetic Operations. 8

In these rules the top two digits are the carry, the next two streams are the parts of the addends
not yet examined, the string under the line is the result generated so far. As usual, digits on the same
column have equal weight. The two dashes “−−” stand for two digits of the result not yet generated.
This means that the last generated digit of the result has a weight that is a factor φ3 bigger than the
one of the firsts digits of the addends not yet examined. For the sake of brevity we did not write the
rules that permute digits having equal weight. From another point of view we can think that each
one of the given rules subsumes all the rules that can be obtained from it by permuting digits having
identical weitght.

We sketch here an informal proof of correctness for the algorithm. The proof consists in showing
that each rule is correct. For example we can justify the fifth rule by:

1 1
+ 1 α1 α2 . . .
= 0 β1 β2 . . .

. . . c′c −−

⇒
1 0 0

+ 1 α1 α2 . . .
= 0 β2 β2 . . .

. . . c′c −−
since 001 = 100

⇒
1 1 0

+ 0 α1 α2 . . .
= 0 β2 β2 . . .

. . . c′c −−
by associativity and commutativity of addition

⇒
1 0 0 0

+ 0 α1 α2 . . .
= 0 β2 β2 . . .

. . . c′c −−
since 001 = 100

⇒
0 0

+ α1 α2 α3 . . .
= β1 β2 β3 . . .

. . . c′c 1−−
All other rules can be justified in a similar way.

Definition 7 The function A′ implementing addition in the full notation is defined by:

A′(z :α, z :β) ⇒ (z+1):A(α, β, 1, 0)
A′(z :α, t :β) ⇒ A′((z+1):1 :0 :α, t :β) if z < t
A′(z :α, t :β) ⇒ A′(z :α, (t+1):1 :0 :β) if t < z

The correctness of the above algorithm follows easily from the lemma:

Lemma 2 For every integer z and binary streams α, β the following two equalities hold:

[[A′(z :α, z :β)]]f = [[z :α]]f + [[z :β]]f

[[z :α]]f = [[(z+1):1 :0 :α]]f

Proof.



4. Algorithms for Arithmetic Operations. 9

[[A′(z :α, z :β)]]f = [[(z+1):A(α, β, 1, 0)]]f
= (−1 + [[A(α, β, 1, 0)]]s) × φ2z+2

= (−1 + ([[α]]s + [[β]]s + 1/φ)/φ2) × φ2z+2

= (−φ2 + [[α]]s + [[β]]s + 1/φ) × φ2z

= (−φ − 1 + [[α]]s + [[β]]s + 1/φ) × φ2z

= (−1 − 1/φ − 1 + [[α]]s + [[β]]s + 1/φ) × φ2z

= (−1 + [[α]]s) × φ2z + (−1 + [[β]]s) × φ2z

= [[z :α]]f + [[z :β]]f

[[(z+1):1 :0 :α]]f = (−1 + [[1 :0 :α]]s) × φ2z+2

= (−1 + 1/φ + [[α]]s/φ2) × φ2z+2

= (−φ2 + φ + [[α]]s) × φ2z

= (−1 + [[α]]s) × φ2z

= [[z :α]]f
⊓⊔

4.2 Subtraction.
We first define a function C that “complements” a binary stream:

Definition 8 The function C is defined by:

C(1 :α) ⇒ 0:C(α)
C(0 :α) ⇒ 1:C(α)

Proposition 3 For every binary stream α

[[C(α)]]s = φ − [[α]]s

Proof. It follows from the equalities:

[[α]]s + [[C(α)]]s =
∑

i∈IN+

1/φi = 1/(1 − φ−1) = φ

⊓⊔

Definition 9 The function C′ that evaluates the inverse of a real number is defined by:

C′(z :α) ⇒ (z+1):C1(α)
C1(0 :α) ⇒ 1:1 :0 :C(α)
C1(1 :0 :α) ⇒ 1:0 :C1(α)
C1(1 :1 :α) ⇒ 1:0 :0 :1 :C(α)

Proposition 4 For every integer number z and binary stream α we have;

[[C′(z :α)]]f = −[[z :α]]f

Proof. It is easy to check that the proposition is true if for every binary stream α:

−1 + [[C1(α)]]s = −(−1 + [[α]]s)/φ2



4. Algorithms for Arithmetic Operations. 10

that is:

[[C1(α)]]s = 1 + 1/φ2 − [[α]]s/φ2

We prove by induction on n that for every natural number n and every stream α we have:

| [[C1(α)]]s − (1 + 1/φ2 − [[α]]s/φ2) |≤ φ1−n

The base step can be proved by a simple calculation. The inductive step can be proved by case analysis
on the first two digits of α. Here we consider the case α = 1:0 :α|2 , we have:
| [[C1(1 :0 :α|2)]]s − (1 + 1/φ2 − [[1 :0 :α|2 ]]s/φ2) |
= | [[1 :0 :C1(α|2)]]s − 1 − 1/φ2 + 1/φ3 + [[α|2 ]]s/φ4 |
= | 1/φ + [[C1(α|2)]]s/φ2 − (1/φ + 1/φ2) − (1/φ3 + 1/φ4) + 1/φ3 + [[α|2 ]]s/φ4 |
= | [[C1(α|2)]]s − (1 + 1/φ2 − [[α|2 ]]s/φ2) | /φ2

≤ φ1−n/φ2 < φ1−(n+1) (by inductive hypothesis).

The other cases are simpler. ⊓⊔

We give here also an algorithm for subtraction that does not use the inverse function C′.

Definition 10 The function S′ implementing the subtraction in the full notation is defined by:

S′(z :α, z :β) ⇒ (z+1):A(α, C(β), 1, 1)
S′(z :α, t :β) ⇒ S′((z+1):1 :0 :α, t :β) if z < t
S′(z :α, t :β) ⇒ S′(z :α, (t+1):1 :0 :β) if t < z

The correctness of the algorithm derives from the following lemma:

Lemma 5 For every integer z and binary streams α, β the following equality holds:

[[S′(z :α, z :β)]]f = [[z :α]]f − [[z :β]]f

Proof.
[[S′(z :α, z :β)]]f = [[(z+1):A(α, C(β), 1, 1)]]f

= (−1 + [[A(α, C(β), 1, 1)]]s) × φ2z+2

= (−1 + ([[α]]s + [[C(β)]]s + 1)/φ2) × φ2z+2

= (−1 + ([[α]]s + φ − [[β]]s + 1)/φ2) × φ2z+2

= (−1 + ([[α]]s − [[β]]s + φ2)/φ2) × φ2z+2

= ([[α]]s − [[β]]s) × φ2z

= (−1 + [[α]]s) × φ2z − (−1 + [[β]]s) × φ2z

= [[z :α]]f − [[z :β]]f .
⊓⊔

4.3 Multiplication.
An easy way to obtain an algorithm for multiplication is to reduce multiplication to a series of
additions.

Definition 11 The function P implementing the multiplication in the simplified notation is defined
by:



4. Algorithms for Arithmetic Operations. 11

P (0 :α, β) ⇒ 0:P (α, β))
P (α, 0:β) ⇒ 0:P (α, β))
P (1 :0 :α, 1:0 :β) ⇒ 0:A(A(α, β, 0, 0), 0:P (α, β), 1, 0)
P (1 :1 :α, 1:0 :β) ⇒ A(A(0 :α, β, 0, 0), 0:0 :P (α, β), 1, 0)
P (1 :0 :α, 1:1 :β) ⇒ A(A(α, 0:β, 0, 0), 0:0 :P (α, β), 1, 0)
P (1 :1 :α, 1:1 :β) ⇒ A(A(α, β, 0, 0), 0:0 :P (α, β), 1, 1)

Proposition 6 i) P is a well defined function between binary streams.
ii) For every pair of binary streams α, β:

[[P (α, β)]]s =
[[α]]s × [[β]]s

φ2

Proof. The proof is very similar to the corresponding one for addition. We just sketch it. Point i)
is easy. To prove point ii) one proves that for that for every natural number n and for every pair of
streams α, β the following equality holds:

| [[P (α, β)]]s −
[[α]]s × [[β]]s

φ2
| ≤ φ1−n

This can be proved by induction on n and case analysis on the first two digits of α and β. ⊓⊔

Definition 12 The function P ′ implementing the product in the full notation is defined by:

P ′(z :α, t :β) ⇒ (z + t + 2):A(P (α, β), C(A(α, β, 0, 0)), 1, 0)

Proposition 7 For every pair of integers z, t and for every pair of binary streams α, β we have:

[[P ′(z :α, t :β)]]f = [[z :α]]f × [[t :β]]f

Proof.

[[P ′(t :α, t :β)]]f
= [[(z + t + 2):A(P (α, β), C(A(α, β, 0, 0)), 1, 0)]]f
= (−1 + [[A(P (α, β), C(A(α, β, 0, 0)), 1, 0)]]s) × φ2z+2t+4

= (−1 + ([[(P (α, β)]]s + [[C(A(α, β, 0, 0))]]s + 1/φ)/φ2) × φ2z+2t+4

= (−1 + ([[α]]s × [[β]]s)/φ2 + (φ − ([[α]]s + [[β]]s)/φ2) + 1/φ)/φ2) × φ2z+2t+4

= (−φ4 + [[α]]s × [[β]]s + φ3 − [[α]]s − [[β]]s + φ) × φ2z+2t

= (−φ4 + φ3 + φ + [[α]]s × [[β]]s − [[α]]s − [[β]]s) × φ2z+2t

= ((−φ3 − φ − 1) + φ3 + φ + [[α]]s × [[β]]s − [[α]]s − [[β]]s) × φ2z+2t

= (−1 + [[α]]s × [[β]]s − [[α]]s − [[β]]s) × φ2z+2t

= (−1 + [[α]]s) × (−1 + [[β]]s) × φ2z+2t

= [[z :α]]f × [[t :β]]f . ⊓⊔

The time necessary to evaluate the first n digits of the product using the algorithm described above
is proportional to n2. Using the algorithm of Karatsuba ([8]) it is possible to obtained an incremental
algorithm for the multiplication having a time complexity of order n1.89 ([10]).

4.4 Division.
Following the approach used for the other operations we first define an algorithm valid for the simplified
notation.



4. Algorithms for Arithmetic Operations. 12

Definition 13 The function D implementing the division in the simplified notation is defined by:

D(α, 1:β) ⇒ D1(0 :0 :α, C(β))
D1(0 :0 :α, β) ⇒ D2(A(α, 0:β, 0, 0), 0:α, β)
D1(0 :1 :α, β) ⇒ D2(A(α, 0:β, 1, 1), 1:α, β)
D1(1 :0 :α, β) ⇒ D2(A(α, 1:β, 1, 1), α, β)
D2(0 :0 :γ, α, β) ⇒ 0:D1(α, β)
D2(0 :1 :0 :γ, α, β) ⇒ 0:D1(α, β)
D2(0 :1 :1 :γ, α, β) ⇒ 1:D1(0 :0 :γ, β)
D2(1 :γ, α, β) ⇒ 1:D1(γ, β)

As we will prove in the following [[D(α, β)]]s = [[α]]s/([[β]]s × φ). There is a restriction on the arguments
of the function D. D(α, β) is defined only if β = 1 :β|1 . This restriction garanties that the result of
the division is small enough to be represented in the simplified notation.

The above algorithm is based on the Euclidean algorithm for division. The idea is the following: in
order to evaluate the first digit of [[α]]s/([[β]]s × φ) we consider the value [[α]]s − [[β]]s and we determine
if this number is larger than zero or if it smaller than 1/φ2. In the first case we can safely generate 1
as first digit followed by the result of the division of ([[α]]s − [[β]]s) by [[β]]s. In the second case we can
safely generate 0 as first digit followed by the result of the division of [[α]]s by [[β]]s. The algorithm is
defined by few rewriting rules, but its correctness is quite difficult to prove. To reduce the number of
rewriting rules employed many arithmetic properties need to be used.

Proposition 8 For every pair of binary streams α, β, if β = 1:β|1 , we have:

i) there exists a unique stream γ such that: D(α, β) ⇒ γ;

ii) the following equality holds:

[[D(α, β)]]s =
[[α]]s

[[β]]s × φ

Proof. First of all observe there is no rule for the function D1 when the first argument has form
1:1 :α|2 , so to prove that the algorithm converges we need to prove that such a case never occurs.

Lemma 9 For every integer number n and for every pair of binary streams α, β, if β = 1:β|1 then,
i) there exist unique δ0 : . . . :δn−1, α′, β′ s.t.:
D(α, β) ⇒ δ0 : . . . :δn−1 :D1(α

′, β′), moreover,

• α′ 6= 1:1 :α′
|2

• [[α′]]s + [[β′]]s/φ2 ≤ 2/φ

ii) there exist unique δ0 : . . . :δn−1, α′, β′, γ′ s.t.,
D(α, β) ⇒ δ0 : . . . :δn−1 :D2(γ

′, α′, β′) moreover,

• γ′ 6= 1:1 :1 :γ′
|3

• [[γ′]]s + [[β′]]s/φ4 ≤ 2/φ

• and

– either γ′ = 1:γ′
|1



4. Algorithms for Arithmetic Operations. 13

– either α′ 6= 1:1 :α′
|2 and [[γ′]]s = [[α′]]s/φ + [[β′]]s/φ3

Proof. The proof is by induction on n. It is immediate to prove that point i) holds for n = 0. Next
we prove that if point i) holds for n then also point ii) holds for n. By inductive hypothesis there exist
unique δ0 : . . . :δn−1, α′ and β′ s.t.:
D(α, β) ⇒ δ0 : . . . : δn−1 : D1(α

′, β′) and α′ 6= 1 : 1 : α′
|2 , therefore it is possible to apply a (unique)

rewriting rule and obtain: D(α, β) ⇒ δ0 : . . . : δn−1 : D2(γ
′′, α′′, β′′). The proof that the restrictions

on the values of α′′, β′′ and γ′′ hold is done by case analysis on the initial digits of the stream of α′.
The cases to consider are: α′ = 0 : 0 : α′

|2 , α′ = 0 : 1 : 0 : α′
|3 , α′ = 0 : 1 : 1 : α′

|3 and α′ = 1 : 0 : α′
|2 .

Here we consider the second and the third case only. The proofs for the remaining cases follow a
similar pattern. If α′ = 0 : 1 : 0 : α′

|3 then D1(α
′, β′) ⇒ D2(A(0 : α′

|3 , 0 : β′, 1, 1), 1 : 0 : α′
|3 , β′)). Let

α′′ = 1:0 :α′
|3 , β′′ = β′ and γ′′ = A(0 :α′

|3 , 0:β′, 1, 1). Obviously α′′ 6= 1:1 :α′′
|2 , moreover we have:

[[γ′′]]s = [[A(0 :α′
|3 , 0:β′, 1, 1)]]s

= [[α′
|3 ]]s/φ3 + [[β′]]s/φ3 + 1/φ3 + 1/φ4

= 1/φ2 + [[α′
|3 ]]s/φ3 + [[β′]]s/φ3

= [[α′]]s + [[β′]]s/φ3

= [[α′]]s + [[β′]]s/φ2 − [[β′]]s/φ4

≤ 2/φ − [[β′]]s/φ4 (by inductive hypothesis)

therefore: [[γ′′]]s + [[β′′]]s/φ4 ≤ 2/φ and [[γ′′]]s = [[α′′]]s + [[β′′]]s/φ3.

We prove by absurdity that: γ′′ 6= 1 : 1 : 1 : γ′′
|3 . If γ′′ = 1 : 1 : 1 : γ′′

|3 then [[γ′′]]s = 1/φ + 1/φ2 +
1/φ3 + [[γ′′

|3 ]]s/φ3 = 2/φ + [[γ′′
|3 ]]s/φ3 and since [[γ′′]]s + [[β′′]]s/φ4 ≤ 2/φ, it follows that both the

streams γ′′
|3 and β have all elements equal to 0. A simple analysis on the algorithm A shows that

this in contradiction with the fact that: γ′′ = A(0 :α′
|3 , 0:β′, 1, 1).

If α′ = 0:1 :1 :α′
|3 then D1(α

′, β′) ⇒ D2(A(1 :α′
|3 , 0:β′, 1, 1), 1:1 :α′

|3 , β′)
⇒ D2(1 : A(α′

|3 , β′, 0, 0), 1 : 1 : α′
|3 , β′) so in this case: γ′′ = 1 : A(α′

|3 , β′, 0, 0). Using the same
arguments used for the previous case, it is possible to prove that: γ′′ 6= 1 : 1 : 1 : γ′′

|3 and [[γ′′]]s +
[[β′′]]s/φ4 ≤ 2/φ.

Finally we prove that if point ii) holds for n then the point i) holds for n+1. By inductive hypothesis
there exist unique δ0 : . . . :δn−1, α′, β′ s.t.:
D(α, β) ⇒ δ0 : . . . :δn−1 :D2(γ

′, α′, β′). We reason by case analysis on the initial sub-stream of γ′. The
cases to be considered are: γ′ = 0:0 :γ′

|2 , γ′ = 0:1 :0 :γ′
|3 , γ′ = 0:1 :1 :γ′

|3 , γ′ = 1:γ′
|1 . Here we will

consider the second and the fourth case only.

If γ′ = 0:1 :0 :γ′
|3 then D(α, β) ⇒ δ0 : . . . :δn−1 :D2(0 :1 :0 :γ′

|3 , α
′, β′) ⇒ δ0 : . . . :δn−1 : 0 :D1(α

′, β′).
By inductive hypothesis α′ 6= 1 : 1 : α′

|2 and: [[α′]]s + [[β′]]s/φ3 = [[γ′]]s = 1/φ2 + [[γ′
|3 ]]s/φ3 ≤

1/φ2 + 1/φ2 = 2/φ2

If γ′ = 1 : γ′
|1 then D(α, β) ⇒ δ0 : . . . : δn−1 : D2(1 : γ′

|1 , α
′, β′) ⇒ δ0 : . . . : δn−1 : 1 : D1(γ

′
|1 , β

′) By
inductive hypothesis γ′

|1 6= 1:1 :γ′
|3 . Moreover we have:

[[γ′
|1 ]]s + [[β′]]s/φ2 = ([[γ′]]s − 1/φ) × φ + [[β′]]s/φ2

≤ (2/φ − [[β′]]s/φ4 − 1/φ) × φ + [[β′]]s/φ2 (by inductive hypothesis)
= 1 − [[β′]]s/φ3 + [[β′]]s/φ2 = 1 + [[β′]]s/φ4

≤ 1 + 1/φ3 = 2/φ.

⊓⊔

To prove the correctness of the algorithm we need the following lemma.

Lemma 10 For every integer number n and for every binary streams α, β and γ:
i) if D1(α, β) converges then:

| [[D1(α, β)]]s − (φ2 × [[α]]s)/(φ2 − [[β]]s) |≤ φ2−n,

ii) if D2(γ, α, β) converges and γ = 1:γ|1 then:



4. Algorithms for Arithmetic Operations. 14

| [[D2(γ, α, β)]]s − (φ3 × [[γ]]s − [[β]]s)/(φ3 − φ × [[β]]s) |< φ2−n,

iii) if D2(γ, α, β) converges and [[γ]]s = [[α]]s/φ + [[β]]s/φ3 then:

| [[D2(γ, α, β)]]s − (φ × [[α]]s)/(φ2 − [[β]]s) |< φ2−n,

Proof. The proof is by induction on the natural number n. A simple calculation shows that point i)
holds for n = 0.

If point i) holds for n then point ii) holds for n + 1. In fact for γ = 1:γ|1 we have:

| [[D2(1 :γ|1 , α, β)]]s − (φ3 × [[1 :γ|1 ]]s − [[β]]s)/(φ3 − φ × [[β]]s) |
= | 1/φ + [[D1(γ|1 , β)]]s/φ − (φ2 + φ2 × [[γ|1 ]]s − [[β]]s)/(φ3 − φ × [[β]]s) |
= | 1/φ + [[D1(γ|1 , β)]]s/φ − 1/φ − φ2 × [[γ|1 ]]s/(φ3 − φ × [[β]]s) |
= | [[D1(γ|1 , β)]]s − φ2 × [[γ|1 ]]s/(φ2 − [[β]]s) | /φ

≤ φ2−(n+1) (by inductive hypothesis)

Next we prove, by case analysis on γ, that if point i) holds for n then point iii) holds for n+1. The
cases to consider are: γ = 0 :0 :γ|2, γ = 0 :1 : 0 :γ|3, γ = 0 :1 : 1 :γ|3, γ = 1 :γ|1 . Here we consider the
second and the third case only.

If γ = 0:1 :0 :γ|3 then

| [[D2(0 :1 :0 :γ′
|3 , α, β)]]s − (φ × [[α]]s)/(φ2 − [[β]]s) |

= | [[0 :D1(α, β)]]s − (φ × [[α]]s)/(φ2 − [[β]]s) |
= | D1(α, β)]]s/φ − (φ × [[α]]s)/(φ2 − [[β]]s) |
≤ φ2−(n+1)

If γ = 0:1 :1 :γ|3 then:

| [[D2(0 :1 :1 :γ′
|3 , α, β)]]s − (φ × [[α]]s)/(φ2 − [[β]]s) |

= | [[1 :D1(0 :0 :γ′
|3 , β)]]s − (φ × [[α]]s)/(φ2 − [[β]]s) |

= | [[1 :D1(0 :0 :γ′
|3 , β)]]s − (φ2 × [[0 :1 :1 :γ′

|3 ]]s − [[β]]s/φ)/(φ2 − [[β]]s) |
= | 1/φ + [[D1(0 :0 :γ′

|3 , β)]]s/φ − (φ + φ × [[0 :0 :γ′
|3 ]]s − [[β]]s/φ)/(φ2 − [[β]]s) |

= | [[D1(0 :0 :γ′
|3 , β)]]s/φ − φ2 × [[0 :0 :γ′

|3 ]]s/(φ2 − [[β]]s) | /φ

≤ φ2−(n+1)

The last step consists in proving that if points ii) and iii) hold for n then also point i) holds for
n. The proof is by case analysis on the initial digits of α. The cases to consider are: α = 0 : 0 : α|2 ,
α = 0:1 :α|2 , and α = 1:0 :α|2 . Here we consider the second and the third case only.

If α = 0:1 :α|2 then
| [[D1(0 :1 :α|2 , β)]]s − (φ2 × [[0 :1 :α|2 ]]s)/(φ2 − [[β]]s) |
= | [[D2(A(α|2 , 0:β, 1, 1), 1:α|2 , β)]]s − (φ × [[1 :α|2 ]]s)/(φ2 − [[β]]s) |
≤ φ2−n , by inductive hypothesis since,
[[A(α|2 , 0:β, 1, 1)]]s = ([[α|2 ]]s + [[0 :β]]s + 1/φ + 1/φ2)/φ2

= 1/φ2 + [[α|2 ]]s/φ2 + [[β]]s/φ3

= [[1 :α|2 ]]s/φ + [[β]]s/φ3

If α = 1:0 :α|2 then
| [[D1(1 :0 :α|2 , β)]]s − (φ2 × [[α]]s)/(φ2 − [[β]]s) |
= | [[D2(A(α|2 , 1:β, 1, 1), α|2 , β)]]s − (φ2 × α]]s)/(φ2 − [[β]]s) |
= | [[D2(1 :γ|1 , α|2 , β)]]s − (φ2 × [[α]]s)/(φ2 − [[β]]s) |
in fact A(α|2 , 1:β, 1, 1) necessarily reduces to a stream of form 1:γ|1, moreover we have:



5. Different base values 15

[[γ]]s = ([[α|2 ]]s + [[1 :β]]s + 1/φ + 1/φ2)/φ2

= [[α|2 ]]s/φ2 + 1/φ3 + [[β]]s/φ3 + 1/φ3 + 1/φ4

= 1/φ + [[α|2 ]]s/φ2 + [[β]]s/φ3

= [[α]]s + [[β]]s/φ3

so we can write:
| [[D2(1 :γ|1 , α|2 , β)]]s − (φ2 × [[α]]s)/(φ2 − [[β]]s) |
= | [[D2(1 :γ|1 , α|2 , β)]]s − (φ2 × [[γ]]s − [[β]]/φ)/(φ2 − [[β]]s) |
= | [[D2(1 :γ|1 , α|2 , β)]]s − (φ3 × [[γ]]s − [[β]])/(φ3 − φ × [[β]]s) |
≤ φ2−n ⊓⊔

Using the above two lemmas one can easily prove the proposition. ⊓⊔
The algorithm for the division in the full notation is defined by:

Definition 14 The function D′ implementing the division in the full notation is defined by:

D′(z :α, t :0 :β) ⇒ D′
1(C

′((z − t) :α), 0:C(β))
D′(z :α, t :1 :0 :β) ⇒ D′(z :α, (t − 1):β)
D′(z :α, t :1 :1 :β) ⇒ D′

1((z − t + 1):α, β)
D′

1(z :α, 0:0 :β) ⇒ D′
1((z + 1):α, β)

D′
1(z :α, 0:1 :β) ⇒ (z + 1):D1(A(α, β, 0, 0), C(β))

D′
1(z :α, 1:β) ⇒ (z + 1):D1(A(0 :α, β, 0, 1), C(β))

Proposition 11 For every pair of integers z, t and for every pair of streams α, β if [[t :β]]f 6= 0 then:

[[D′(z :α, t :β)]]f = [[z :α]]f/[[t :β]]f

If [[t :β]]f = 0 the evaluation of D′(z :α, t :β) diverges.

Proof. The proposition follows from the fact that if [[β]]s 6= 0 then

[[D′
1(z :α, β)]]f = [[z :α]]f/[[β]]s.

From the proof of Lemma 9 it follows that the evaluation of D′
1(z :α, β) converges, if [[β]]s 6= 0. From

Lemma 10 it follows that the function D′
1 is correct. The actual proof is omitted since it uses the

same techniques presented in the previous proofs. ⊓⊔

5. Different base values

In this chapter we investigate further the idea of using a real number as base for a digit notation. In
particular we consider the problem of whether there exist values, different from φ, that can be used
as bases for binary notations and which lead to simple algorithms for the arithmetic operations. We
show that such values exist and we give a requirement they have to satisfy. It is interesting to notice
that only irrational numbers satisfy this requirement.

In our analysis we make two simplifications. First we only consider the addition. This is justified
because almost all algorithms for the other arithmetic operations are based on the one for additions.
Subtraction can be obtained by complementing and adding. The algorithms we learned from primary
school reduce multiplication to a series of additions, and division to a series of subtractions. Secondly
we only consider a simplified notations for real numbers. An obvious generalisation of Definition 5 is
the following:



5. Different base values 16

Definition 15 In the simplified notations with base x the binary stream α = α0 :α1 : . . . denotes the
real number:

[[α]]sx
=

∑

i∈IN

αi × xi+1

The simplified notations are the common parts for all binary notations for real numbers independ-
ently from the methods used to represent arbitrary large real numbers.

The algorithm for addition of Definition 6 has a time complexity that is linear with the length of
the arguments and a constant space complexity. The algorithm performs the addition reading the
input, generating the output and using a limited amount of internal data structure. The following
theorem states a necessary requirement for the base value in order to have algorithms for addition
having constant space complexity.

Proposition 12 If, for the simplified notation with base x, there exist an algorithm for addition
needing only a limited amount of internal data structure then there exist a natural number n and a
n-tuple of integers c0 . . . cn−1 such that:

xn + cn−1x
n−1 + . . . + c0 = 0

and ci ∈ {1, 0,−1,−2,−3} for all i < n.

Proof. Since the algorithm uses just a limited amount of memory it has just a finite number of
states. It follows that the algorithm generates a stream eventually periodic when it receives as input
two eventually periodic streams. Let l be a natural number such that having defined a stream α by
αi = 0 for i < l and αi = 1 for i ≥ l we have that the value [[α]]sx

+ [[α]]sx
can be represented in the

simplified notation (any l > ln 2/ lnx satisfies the condition). Let β be the stream generated by the
algorithm for addition when the input streams are both equal to α. β is eventually periodic, that is
there exist p and q such that βi = βi+p for all the i > q . Let m be the smallest natural s.t. βm = 1,
obviously m < l. The following equalities hold:

∑

i≥l

2/xi+1 =
∑

i≥0

βi/xi+1 = 1/xm+1 +
∑

m<i≤q

βi/xi+1 + (
∑

h≥0

1/xhp)(
∑

q<i≤q+p

βi/xi+1)

by evaluating the periodic series:

2/(xl(x − 1)) = 1/xm+1 +
∑

m<i≤q

βi/xi+1 + xp/(xp − 1)(
∑

q<i≤q+p

βi/xi+1)

multiplying by xl+q+1(xp − 1)

2xq+1(xp − 1)/(x − 1) = xl+q−m(xp − 1) + (
∑

m<i≤q

βix
l+q−i)(xp − 1) +

∑

q<i≤q+p

βix
p+l+q−i

2
∑

q<i≤q+p

xi = xp+q+l−m +
∑

m<i≤q

βix
p+q+l−i − xq+l−m −

∑

m<i≤q

βix
q+l−i +

∑

q<i≤q+p

βix
q+p+l−i

and from this the thesis. ⊓⊔

Corollary 13 If, for the simplified notation with base x, there exists an algorithm for addition needing
only a limited amount of internal data structure then x is not a rational number.



References 17

Proof. A theorem of elementary algebra states that all the rational solutions of an equation of form
anyn + . . . + a0 = 0, with ai integer coefficients and an 6= 0 6= a0, can be written as p/q where p
is integer dividing a0 and q is an integer dividing an. From this theorem it follows that the only
possible rational values for the base x are 1, 2 or 3. Between these values only 2 permits a binary
representation of all the reals, but we know that with base 2 addition on reals is not computable. ⊓⊔

The golden ratio has been chosen as base in order to have the equality 1.00 = 0.11. On the
other hand Proposition 12 states that we can obtained simple algorithms for the addition only if
the base is such that an equalities of the form 1.a1 . . . an = 0.b1 . . . bn + 0.b′1 . . . b′n + 0.b′′1 . . . b′′n, with
ai, bi, b

′
i, b

′′
i ∈ {0, 1} holds. It is natural to consider the problem of whether there are bases different

from φ, which permit to write limited memory algorithms for the addition. It turns out that such
bases exist. One example is the base for which the equality 1 = 0.111 holds. In this case the base is
the solution of the equation x3 − x2 − x− 1 = 0. This equation has only one real solution. We denote
it by χ. χ is a number greater than φ and smaller that 2. In the appendix we give the rewriting rules
for the addition in base χ. The rules have the same structure of the ones given in Definition 6 for
base the golden ratio. But with base χ one needs a bigger set of rules: 10 rules for base φ, 39 rules
for base χ. It is interesting to observe that in order to write the algorithm and prove its correctness
we do not need to know the actual value of χ (which is still unknown to the author), we just exploit
the equality 1 = 0.111.

In the author opinion another base which probably permits a limited memory algorithm for the
addition is the one for which the equality 1 = 0.101 holds. It is still an open problem to define a
criteria to establish which equalities lead to limited memory algorithms for the addition and which
do not. An obvious requirement is the following: the base value generated by the equality has to be
strictly bigger that 1 and strictly smaller that 2. In the family of equations defined in Proposition 12
there are four equations having degree strictly smaller than 3 and satisfying the above criteria. They
are x2 − 2 = 0, x2 − 3 = 0, x2 + x − 3 = 0, and x2 − x − 1 = 0. The positive solutions of these
equations are

√
2,

√
3, (−1 +

√
13)/2, and φ. It is possible to prove that there is no limited memory

algorithm for addition when base is any of the values
√

2,
√

3, and (−1 +
√

13)/2. Therefore all bases
with a limited memory algorithm for addition and different from φ solve only equations having degree
larger than 2. These equations are generated by equalities between binary strings involving four or
more digits. In our experience the equalities that a base satisfied are fundamental tools in deriving
algorithms for arithmetic operations. Since the golden ratio is the base satisfying the simplest equality,
the golden ratio is probably also the base with the simplest algorithms for the arithmetic operations.
This empirical argument is in some way sustained also by the complexity of the algorithm for addition
in base χ.

References

1. A. Avizienis. Binary-computable signed-digit arithmetic. In AFIPS Conference Proceedings 26,1,
pages 663–672, 1964.

2. H.-J. Boehm. Constructive real interpretation of numerical programs. SIGPLAN Notice, 22,
7:214–221, July 87.

3. H.-J. Boehm and R. Cartwright. Exact real arithmetic: formulating real numbers as functions. In
David Turner, editor, Research topics in functional programming, pages 43–64. Addison-Wesley,
1990.

4. L.E.J. Brouwer. Beweis, dass jede volle funktion gleichmässig stetig ist. In Proc. Amsterdam 27,
pages 189–194, 1924.

5. A. Cauchy. Sur le moyens d’éviter les erreurs dans les calcules numériques. Comptes Rendus,
11:789–798, 1840. Republished in: Augustin Cauchy, Œvres complètes, 1ér série, Tome V, pp
431–442.

6. P. Di Gianantonio. A functional approach to real number computation. PhD thesis, University of



1. Addition rules for base χ 18

Pisa, 1993.

7. I. J. Holyer. Functional programming with Miranda. Pitman, London, repr. edition, 1993.

8. D. E. Knuth. The art of computer programming., volume 2/Seminumerical algorithms. Addison-
Wesley, 1969.

9. K. Ko. Complexity theory of real functions. Birkhauser, Boston, 1991.

10. P. Lanzi. Complessità degli algoritmi per l’aritmetica reale esatta. Master’s thesis, Università di
Udine, 1994.

11. J. Leslie. The Philosophy of Arithmetic. Edimburgh, 1817.

12. P. Martin-Löf. Note on Constructive Mathematics. Almqvist and Wiksell, Stockholm, 1970.

13. W. Parry. On the β-expansions of real numbers. Acta Mathematica, Acad. Sci. Hung., 11:401–416,
1960.

14. Ph. Sünderhauf. A faithful computational model of the real numbers. Technical Report 1610,
Fachbereich Matematik, University of Darmstadt, 1994.

15. A.M. Turing. On computable numbers, with an application to the entscheidungs problem. In
Proc. London Math. Soc. 42, pages 230–265, 1937.

16. J. Vuillemin. Exact real computer arithmetic with continued fraction. In Proc. A.C.M. conference
on Lisp and functional Programming, pages 14–27, 1988.

17. K. Weihrauch. Computability. Springer-Verlag, Berlin, Heidelberg, 1987.

18. E. Wiedmer. Computing with infinite objects. Theoret. Comp. Sci., 10:133–155, 1980.

1. Addition rules for base χ
Definition 16 The simplified algorithm for addition between in base χ is defined by the following set
of rewriting rules:

Aχ(0 :α, 0:β, 0, 0, c, c′) ⇒ 0:Aχ(α, β, 0, c, c′, 0)
Aχ(1 :α, 0:β, 0, 0, 0, c) ⇒ 0:Aχ(α, β, 1, 0, c, 0)
Aχ(1 :α, 0:β, 0, 0, c, 0) ⇒ 0:Aχ(α, β, 1, c, 0, 0)
Aχ(1 :1 :1 :α, 0:1 :1 :β, 0, 0, 1, 1) ⇒ 1:0 :0 :Aχ(α, β, 0, 0, 1, 1)
Aχ(1 :0 :α, 1:0 :β, 0, 0, 0, c) ⇒ 0:1 :Aχ(α, β, 0, c, 1, 0)
Aχ(1 :1 :α, 1:0 :β, 0, 0, 0, 0) ⇒ 0:1 :Aχ(α, β, 1, 0, 1, 0)
Aχ(1 :1 :1 :α, 1:0 :1 :β, 0, 0, 0, 1) ⇒ 1:1 :0 :Aχ(α, β, 0, 0, 0, 1)
Aχ(1 :1 :0 :α, 1:1 :0 :β, 0, 0, 0, 0) ⇒ 0:1 :1 :Aχ(α, β, 0, 1, 0, 0)
Aχ(1 :1 :1 :α, 1:1 :β, 0, 0, 0, c) ⇒ 1:0 :Aχ(0 :α, β, 0, c, 0, 0)
Aχ(1 :1 :α, 1:1 :β, 0, 0, 1, c) ⇒ 1:0 :Aχ(α, β, 0, c, 1, 1)
Aχ(1 :0 :a :α, 1:0 :0 :β, 0, 1, 0, 0) ⇒ 0:1 :1 :Aχ(α, β, a, 1, 0, 0)
Aχ(1 :0 :1 :α, 1:0 :1 :β, 0, 1, 0, 0) ⇒ 1:0 :0 :Aχ(α, β, 0, 1, 0, 1)
Aχ(1 :0 :1 :α, 1:0 :1 :β, 0, 1, 0, 1) ⇒ 1:0 :AAχ(α, β, 1, 1, 0, 1)
Aχ(1 :1 :α, 1:β, 0, 1, c, c′) ⇒ 1:Aχ(0 :α, β, 0, c, c′, 1)
Aχ(0 :a :α, 0:0 :β, 1, 0, 0, c) ⇒ 0:1 :Aχ(α, β, a, c, 0, 0)
Aχ(0 :1 :a :α, 0:1 :0 :β, 1, 0, 0, 0) ⇒ 0:1 :1 :Aχ(α, β, a, 0, 1, 0)
Aχ(0 :1 :1 :α, 0:1 :1 :β, 1, 0, 0, c) ⇒ 1:0 :0 :Aχ(α, β, c, 0, 1, 1)
Aχ(0 :1 :α, 0:1 :β, 1, 0, 1, c) ⇒ 1:0 :Aχ(α, β, 0, c, 0, 1)
Aχ(1 :0 :a :α, 0:0 :0 :β, 1, 0, 0, 0) ⇒ 0:1 :1 :Aχ(α, β, a, 0, 0, 0)
Aχ(1 :0 :1 :α, 0:0 :1 :β, 1, 0, 0, c) ⇒ 1:0 :0 :Aχ(α, β, c, 0, 0, 1)
Aχ(1 :1 :α, 0:β, 1, 0, c, c′) ⇒ 1:Aχ(0 :α, β, 0, c, c′, 0)
Aχ(1 :α, 1:β, 1, 0, c, 0) ⇒ 1:Aχ(α, β, 0, c, 1, 1)
Aχ(1 :1 :α, 1:β, 1, 0, c, c′) ⇒ 1:Aχ(0 :α, β, 1, c, c′, 0)



1. Addition rules for base χ 19

Aχ(1 :0 :1 :α, 1:0 :1 :β, 1, 0, 0, 1) ⇒ 1:0 :1 :Aχ(α, β, 1, 0, 0, 1)
Aχ(1 :α, 1:β, 1, 1, 0, 0) ⇒ 1:Aχ(α, β, 1, 0, 1, 1)
AAχ(α, 0:β, 1, 1, 0, 1) ⇒ 0:Aχ(α, 1:β, 1, 0, 0, 1)
AAχ(1 :1 :α, 1:1 :β, 1, 1, 0, 1) ⇒ 1:0 :0 :Aχ(α, β, 0, 0, 0, 0)
AAχ(1 :1 :α, 1:0 :β, 1, 1, 0, 1) ⇒ 0:1 :1 :Aχ(α, β, 0, 1, 1, 0)
AAχ(1 :0 :α, 1:0 :0 :β, 1, 1, 0, 1) ⇒ 0:Aχ(1 :0 :α, 1:0 :1 :β, 1, 1, 0, 0)
AAχ(1 :0 :1 :α, 1:0 :1 :β, 1, 1, 0, 1) ⇒ 0:1 :1 :AAχ(α, β, 1, 1, 0, 1)

Aχ(0 :α, 1:β, c0, c1, c2, c3) ⇒ Aχ(1 :α, 0:β, c0, c1, c2, c3)
Aχ(α, 0:β, c0, 1, c2, c3) ⇒ Aχ(α, 1:β, c0, 0, c2, c3)
Aχ(a1 :0 :α, b1 :1 :β, c0, c1, c2, c3) ⇒ Aχ(a1 :1 :α, b1 :0 :β, c0, c1, c2, c3)
Aχ(α, b1 :0 :β, c0, c1, 1, c3) ⇒ Aχ(α, b1 :1 :β, c0, c1, 0, c3)
Aχ(a1 :a2 :0 :α, b1 :b2 :1 :β, c0, c1, c2, c3) ⇒ Aχ(a1 :a2 :1 :α, b1 :b2 :0 :β, c0, c1, c2, c3)
Aχ(α, b1 :b2 :0 :β, c0, c1, c2, 1) ⇒ Aχ(α, b1 :b2 :1 :β, c0, c1, c2, 0)
AAχ(0 :α, 1:β, 1, 1, 0, 1) ⇒ AAχ(1 :α, 0:β, 1, 1, 0, 1)
AAχ(a1 :0 :α, b1 :1 :β, 1, 1, 0, 1) ⇒ AAχ(a1 :1 :α, b1 :0 :β, 1, 1, 0, 1)
AAχ(a1 :a2 :0 :α, b1 :b2 :1 :β, 1, 1, 0, 1) ⇒ AAχ(a1 :a2 :1 :α, b1 :b2 :0 :β, 1, 1, 0, 1)

Proposition 14 i) For every pair of streams α, β for every quadruple of binary digits, c0, c1, c2, c3 if
c0 = 0 or c1 = 0 or c3 = c4 = 0 then there exists a stream γ s. t.: Aχ(α, β, c0, c1, c2, c3) ⇒ γ and
we have:

[[γ]]sχ
= ([[α]]sχ

+ [[β]]sχ
+ c0 + c1/χ + c2/χ2 + c3/χ3)/χ2

ii) For every pair of streams α, β there exists a stream γ s. t.: AAχ(α, β, 1, 1, 0, 1) ⇒ γ and for any
such a stream we have:

[[γ]]sχ
= ([[α]]sχ

+ [[β]]sχ
+ 1 + 1/χ + 1/χ3)/χ3


