
An Abstract Data Type for Real Numbers. ⋆

Pietro Di Gianantonio

Dipartimento di Matematica e Informatica,

Università di Udine

via delle Scienze 206 I-33100 Udine Italy

e-mail: digianantonio@dimi.uniud.it

Abstract

We present a calculus having real numbers as a basic data type. The calculus is
defined by its denotational semantics. We prove the universality of the calculus. We
show how the definition of an operational semantics is problematic. We discuss this
problem and present a possible solution.

Key words: real number computability, domain theory, denotational and
operational semantics, abstract data types.

1 Introduction

The aim of this work is to attempt a connection between two different ap-
proaches to computability on real numbers: a practical approach based on
programming languages, and a more theoretical one based on domain theory.

Several implementations of exact computations on real numbers have been
proposed so far ([4,17,26,19]). In these works, real numbers are represented
by programs generating sequences of discrete elements, e.g. digits. Conversely,
a variety of theoretical work on computability on real numbers are based on
domain theory: [14,15,10,9]. In all these works domains of approximations for
real numbers are considered. A point in these domains represents either a
real number or the approximation of a real number. Approximated reals are
normally described by intervals of the real line.

⋆ The research on which this work is based was supported by EPSRC grant “Tech-
niques of Real Number Computation”, HCM contract “Lambda Calcul Typé”, and
MURST 40% grant.

Preprint submitted to Elsevier Science 12 May 2006

The connection between the two approaches is described here in several steps.
First we present a domain of approximations which is directly derived from
a representation for real numbers used in some implementations of exact real
number computation ([4,17]). From this domain of approximations we derive
a calculus for real numbers. The calculus we present is an extension of PCF
having real numbers as a ground type. We call it Lr. We define Lr by giving
its denotational semantics.

The next obvious step would be to give an operational semantics to the cal-
culus, possibly using the representation for real numbers we had employed at
the start. If this were to be possible, we would be able to establish a close con-
nection between the domain of approximations for real numbers and the im-
plementations of real number computations. We would have a calculus which,
for many aspects, is similar to the calculi used in the implementations and
whose terms could be directly interpreted in the approximation domain. Un-
fortunately we prove that it is impossible to define the operational semantics in
this way. To define an operational semantics for Lr it is necessary to introduce
a new kind of representation for real numbers. This new representation is rad-
ically different from all classical ones, since real numbers are here represented
also by sequences of digits undefined on some elements. In order to compute
with this representation it is absolutely necessary to use parallel operators.
In the final section of this paper, we discuss whether parallel computation is
necessary in all faithful calculi for real numbers.

2 Basic Definitions

2.1 Real number notation

We consider the following representation for real numbers:

Definition 1 A real number x is represented by a computable sequence of
integers 〈s0, . . . , si, . . .〉 such that:

(i) ∀n . 2sn − 1 ≤ sn+1 ≤ 2sn + 1

(ii) x =
⋂

n∈N

[

sn − 1
2n , sn + 1

2n

]

In this representation, a sequence of integers is used to describe a sequence of
rational intervals. Each interval in the sequence is contained into the previous
one. For practical purposes, this representation is very convenient, as it allows
to reduce exact real number computation to computation on integers. In this

2

way it is possible to exploit the implementation of integer arithmetic already
available. In [5] and [16,17] a similar representation has been used to develop
quite efficient algorithms for the arithmetic operations.

2.2 The language PCF

From here on, the language PCF will be used as a formalism for expressing
and studying computable functions on reals. PCF is a typed lambda calculus
having a call-by-name strategy of evaluation, which we have chosen because
it is both simple and has been thoroughly investigated. Moreover, the lambda
calculus is a paradigm for functional programming languages, hence many
problems which are typical of programming languages can be discussed in this
setting. For completeness, we give here the basic definition of PCF [18].

2.2.1 Syntax

The set T of type expressions of PCF is defined by the grammar:

σ ::= ι | o | σ → τ

where σ, τ are metavariables ranging over the set of types, ι and o are the
type constants for integers and booleans respectively. Types ι and o are called
ground types. Standard PCF has natural numbers as its basic type; for con-
venience, in this work we substitute natural numbers with integers. PCF does
not have a product type constructor. Instead, functions of several arguments
can be viewed as functions of a single argument by currying.

The set L of expressions of PCF is defined by the grammar:

M ::= xσ | cσ | Mσ→τ (Mσ) | (λxσ.M τ)

where xσ is a metavariable over a countable set of variables V arσ of type σ,
and cσ is a metavariable over the set of constants C. In addition the symbols
y, α are used here as metavariables over the set of the variables. When no
confusion arises, the type superscript σ in the term Mσ will be omitted. Typing
rules, free variables, bound variables and closed terms are defined as usual.
The application of terms M(N) is understood to be associative to the left.
[N/x]M denotes the result of substituting the term N in all free occurrences
of x in the term M .

3

The constants are:

0 . . . i . . . : ι −1 . . . −i . . . : ι

tt, ff : o

pred, succ : ι → ι, Z : ι → o

ifι : o → ι → ι → ι, ifo : o → o → o → o,

Yσ : (σ → σ) → σ

Type assignments and type constraints are defined as usual.

The languages LPA and LPA+∃ will also be considered in this paper. LPA is the
language L extended with the constants pifι : o → ι → ι → ι and pifo : o → o → o → o.
LPA+∃ is the language LPA extended with the constant ∃ : (ι → o) → o. We
will denote with Lσ (Lσ

PA, Lσ
PA+∃) the set of terms of L (LPA, LPA+∃) having

type σ.

2.2.2 Operational Semantics

The operational semantics is given by an immediate reduction relation, →,
between terms. It is defined by the following set of reduction rules,
constants:

succ(i) → i + 1 pred(i) → i − 1

Z(i) → tt if i ≤ 0

Z(i) → ff if i > 0

conditional:

ifτ (tt)(M)(N) → M ifτ (ff)(M)(N) → N

fixed point:

Yσ(M) → M((Yσ)(M))

4

application:

(λx.M)(N) → [N/x]M

M → M ′

M(N) → M ′(N)
N → N ′

M(N) → M(N ′)
for M ∈ {succ, pred, ifι, ifo, Z}

parallel test:

M → M ′

pifτ (P)(M)(N) → pifτ (P)(M ′)(N)
N → N

pifτ (P)(M)(N) → pifτ (P)(M)(N ′)

pifτ (P)(c)(c) → c pifτ (tt)(M)(N) → M pifτ (ff)(M)(N) → N

existential :

M(Ωσ)
∗
→ ff

∃M → ff

M(n)
∗
→ tt

∃M → tt

where
∗
→ is the transitive closure of the relation →, and Ωσ = Yσ(λασ.ασ) is

a term defining a diverging computation.

We define the partial function Eval on programs (closed terms having ground
type) as: Eval(M) = c if M

∗
→ c for some constant c.

2.2.3 Denotational Semantics

The denotational semantics for L is given using the set of Scott-domains:

UD = {Dσ | σ ∈ T}

where Dι = Z⊥, Do = {tt, ff}⊥ and Dσ→τ = [Dσ → Dτ].

The semantic interpretation function E has the form:

E : L → Env → UD

where Env is the set of environments. An environment is a function ρ from
V ar to UD satisfying the condition ρ(xσ) ∈ Dσ.

5

The definition of E is given by structural induction,

E [[c]]ρ = B[[c]]

E [[xσ]]ρ = ρ(xσ)

E [[Mσ→τMσ]]ρ = E [[Mσ→τ]]ρ(E [[Mσ]]ρ)

E [[λxσ.M τ]]ρ = λd ∈ Dσ.E [[M τ]](ρ[d/x])

The function B for the interpretation of constants is defined as:

B[[n]] = n

B[[succ]](n) =

n + 1 if n ∈ Z

⊥ if n = ⊥

B[[pred]](n) =

n − 1 if n ∈ Z

⊥ if n = ⊥

B[[Z]](n) =

tt if n ≤ 0

ff if n > 0

⊥ if n = ⊥

B[[ifτ]](b)(x)(y) =

x if b = tt

y if b = ff

⊥ if b = ⊥

B[[Yτ]](f) =
⊔

n∈N

{fn⊥τ}

B[[pifτ]](b)(x)(y) =

x if b = tt

y if b = ff

x ⊓ y if b = ⊥

B[[∃]](g) =

ff if f(⊥) = ff

tt if ∃n.f(n) = tt

⊥ otherwise

6

The operational and denotational semantics are related by the following propo-
sition.

Proposition 2 (Adequacy) For every closed term of ground type M :

(1) E [[M]]ρ = B[[Eval(M)]] if Eval(M) is defined;
(2) E [[M]]ρ = ⊥ otherwise.

Proof See [18].

3 Real number computation in PCF

In order to represent real numbers in PCF it is sufficient to implement in PCF
the representation in Definition 1. In what follows, given a type σ, Lσ

PA+∃

indicates the set of closed terms in LPA+∃ having type σ.

Definition 3 A partial representation function EvalR : Lι→ι
PA+∃ ⇀ R is defined

by: EvalR(M) = x if there exists a sequence of integers s such that:

(1) ∀n ∈ N.Eval(M(n)) = sn;
(2) ∀n . 2sn − 1 ≤ sn+1 ≤ 2sn + 1
(3) x =

⋂

n∈N[sn−1
2n , sn+1

2n].

A real number x is said to be computable if it belongs to the image of the
EvalR.

Notation. We indicate with Rl the set of the computable real numbers.

This definition of computable real number coincides with other definitions in
literature, such as [1], [13], [15], [20], [25].

The definition of computability can be extended to functions on real numbers.

Definition 4 For each natural number n, let τn be the type inductively defined
as: τ0 = (ι → ι) and τn+1 = τ0 → τn. The function Evaln

R
: Lτn

PA+∃ → (Rl)
n →

Rl) is defined by:

Evaln
R
(M) = f iff ∀x1, . . . , xn ∈ Rl . ∀N1, . . . , Nn ∈ Lι→ι

PA+∃ .

(∀i ≤ n . EvalR(Ni) = xi) ⇒ EvalR(M(N1) . . . (Nn)) = f(x1, . . . , xn).

A function f : (Rl)
n → Rl is said to be L-computable if it belongs to the image

of Evalτn

R
.

7

Notation. We indicate with F
n
l the set of L-computable functions with n

arguments.

It is interesting to observe that the parallel operators pifι, pifo and ∃ are not
necessary in order to define computable functions on reals. This fact can be
proved by observing that the two sets of total functions (Z → Z) → (Z → Z)
definable in L and in LPA+∃ coincide.

The form of computation on real numbers implied by the above definition is
similar to the one used in the implementations of exact real number compu-
tation which has been described in [4] and in [17].

The above definition of computability is equivalent to the one presented in
[6], and it is characterised by the fact that the domain of definition of the
computable function is restricted to the computable reals.

In the next section we will present a second definition of computable functions
where the domain of definition is the whole real line. The two definitions lead to
quite different classes of computable functions. The restriction of the domain
of definition of functions to computable reals has some curious consequences.
It is a well known result that every computable function on reals is continuous
on its domain of definition (w.r.t the Euclidean topology). Now, there exists
a computable function defined on all the computable elements of the interval
[0, 1], that is continuous and unbounded. This function cannot be continuously
extended to a total continuous function [24, p. 309]. To avoid this peculiarity
some authors ([3]) give a stronger definition of computability: they require
computable functions to be uniformly continuous, with a computable modulus
of uniformity.

It is not difficult to extend the notion of computability to arbitrary higher
order functions on reals. Here we consider the extension to second order func-
tionals.

Definition 5 For each n-tuple of natural numbers m = 〈m1, . . .mn〉 let τm be
the type τm1

→ . . . → τmn
→ τ0. The function Evalm

R
: Lτm → (Fm1

l → . . . →
F

mn

l → Rl) is defined by:

Evalm
R

(M) = F iff ∀f1 ∈ F
m1

l , . . . , fn ∈ F
mn

l .∀N1 ∈ Lm1 , . . . , Nn ∈ Lmn .

∀i ≤ n . Evalmi

R
(Ni) = fi ⇒ EvalR(M(N1) . . . (Nn)) = F (f1, . . . , fn).

A functional f : F
m1

l → . . . → F
mn

l → Rl is L-computable (LPA-computable
LPA+∃-computable) if it belongs to the image, via Evalτn

R
, of the set Lτn (Lτn

PA,
Lτn

PA+∃)

8

It is an open problem whether these three notions of computability coincide.
This open problem is connected to a more fundamental open problem for
PCF. It is still unknown whether L and LPA+∃ define the same set of total
functionals on N ([7]). However, it is possible to show that several, apparently
parallel, functionals on real numbers, like integration, are definable in the
sequential language L ([22]).

The definitions given in this section are relative to one particular representa-
tion for real numbers. It is not difficult to prove that many other representa-
tions for real numbers induce equivalent definitions of computability ([9]). In
general, two different representations for real numbers induce the same notion
of computability if it is possible to transform, in an effective and uniform way,
one representation into the other.

In this section, we have only considered computable functions which are de-
fined on computable reals. By using domain theory, it is possible to consider
functions which are defined on the whole real line. This approach is discussed
in the following section.

4 A domain of approximations for real numbers

In the literature, several approaches to computability on real numbers can be
found which use domain theory. Early works in this ambit are [14], [15], and
[21]. In all these approaches the real line is embedded in a space of approx-
imations where a notion of computability can be defined in a natural way.
Many results concerning the computability theory on real numbers are given
in these contexts. These spaces of approximations are countably based con-
tinuous cpos. We are now going to present a space of approximations that is
similar in many respects to those mentioned above, but has some important
differences. First, we base our construction on the integer sequence represen-
tations of Definition 1. As a result, our space has less approximation points
and is more closely related to the kind of computation used in some imple-
mentations of exact real number arithmetic. A second important difference
consists in the fact that our space of approximations is a Scott-domain. The
other approaches use spaces of approximations that are continuous but not al-
gebraic cpos. The space of approximations presented here has been extensively
studied in [9]. The main results are summed up here; although the proofs are
not given.

The domain of approximations defined next is called Reals Domain (RD). We
construct RD starting with the integer sequence representation for real num-
bers. Let 〈si〉i∈N be a sequence of integers defining a real number x according

9

to Definition 1 and let 〈si〉i<n be an initial subsequence. 〈si〉i<n gives partial
information about the value x. By examining 〈si〉i<n, we can deduce that the
value x is contained in an interval of real numbers. This observation leads to
the definition of a function from finite sequences of integers to intervals in the
real line. To any finite sequence 〈si〉i<n we associate the interval [a, b] contain-
ing the real numbers that can be represented by sequences having as initial
subsequences 〈si〉i<n. The interval [a, b] represents the information contained
in the sequence 〈si〉i<n.

Definition 6 Let S be the set of sequences of integers defined by:

S = {〈si〉i<n | n ∈ N, ∀i < n − 1 . 2sn − 1 ≤ sn+1 ≤ 2sn + 1}.

Let RI denote the set of rational intervals. The function φ from the S → RI
is defined by,

φ(〈s0, s1, . . . , sn〉) = [
si − 1

2i
,
si + 1

2i
]

Let (DI,⊑) denote the partial order formed by the rational intervals in the
image of φ. The order relation ⊑ on DI is the superset relation, that is
[a, b] ⊑ [a′, b′] if and only if [a′, b′] ⊆ [a, b] (if and only if [a′b′] is a more
precise approximation of a real number that [a, b]). Let RD denote the cpo
obtained by the ideal completion of (DI,⊑).

[−∞, +∞]

[−2, 0]

[−1, 0] [−1/2, 1/2] [1, 0]

[0, 2][−1, 1]

Fig. 1. The diagram representing DI.

Notation. Given a partial order 〈D,⊑〉 and an element d ∈ D we denote the
set {d′ | d′ ⊑ d} by ↓ d. Obviously, ↓ d is a (principal) ideal.

Proposition 7 RD is a consistently complete ω-algebraic cpo (Scott-domain).
RD is an effective Scott-domain when we consider the following enumeration

10

of finite elements:

ǫr(0)=⊥

ǫr(〈〈n1, n2〉, n3〉 + 1)= ↓ [(n1 − n2 − 1)/2n3, (n1 − n2 + 1)/2n3]

where 〈 〉 is an effective coding function for pairs of natural numbers.

The elements of RD can be thought as equivalence classes of (partial) se-
quences of integers. Each equivalence class is composed by sequences contain-
ing identical information about the real value they approximate.

The relationship between the real line and the infinite elements of RD can be
clarified by means of the following functions:

Definition 8 A function qP : RD → P(R) is defined by:

qP(d) =
⋂

[a,b]∈d

[a, b]

Conversely, three functions e, e−, e+ : R → RD are defined by:

e(x) = {[a, b] ∈ DI | x ∈ (a, b)}

e−(x) = {[a, b] ∈ DI | x ∈ (a, b]}

e+(x) = {[a, b] ∈ DI | x ∈ [a, b)}

where (a, b) denotes the open interval from a to b and (a, b] and [a, b) indicate
the obvious half open, half closed intervals.

Recall that a dyadic number is a rational number in the form z/2n with n ∈ N,
z ∈ Z.

Proposition 9 The following statements hold:

(1) for every infinite element d ∈ RD there exists a real number x such that
qP(d) = {x}

(2) for every real number x, {x} = qP ◦ e(x) = qP ◦ e−(x) = qP ◦ e−(x),
(3) for every non-dyadic number x, e(x) = e−(x) = e+(x),
(4) for every dyadic number x, e(x) ⊏ e−(x), e(x) ⊏ e+(x) and e−(x) is not

consistent with e+(x),
(5) e(R) ∪ e−(R) ∪ e+(R) is equal to the set of infinite elements of RD.

We can observe that the infinite elements of RD are a close representation of
the real line, and that the set of infinite elements in RD is similar to the real
line except that each dyadic number is tripled.

11

↓ [−2, 0] ↓ [0, 2]

e(0) e(1)

e−(0) e+(0)

↓ [−1, 1]

Fig. 2. The diagram representing RD.

A closer connection between the infinite elements of RD and the real line can
be established by using topological notions. Let RD† denote the subspace of
RD consisting of the infinite elements with the subspace Scott-topology on
RD.

Proposition 10 The real line is a retract of RD† via a pair of continuous
functions q : RD† → R and e : R → RD† with

q(d)= x iff qP(d) = {x} (=
⋂

[a,b]∈d

[a, b])

e(x) = {[a, b] ∈ DI | x ∈ (a, b)}

The function q associates to each element of RD† the corresponding real num-
ber. We can interpret e as the function which picks a canonical representative
for each real number. Using q it is possible to give a definition of a computable
real number:

Definition 11 A real number x is computable if there is a computable ele-
ment d ∈ RD such that x = q(d).

The above definition is equivalent to Definition 3. Using e and q it is possible
to associate to each Scott-continuous function f : RD → RD a partial real
function f : R → R defined by f = q ◦ f ◦ e.

This construction can be extended to functions with several arguments. The

12

relation existing between functions on R and functions on RD can be stated
in terms of the retraction.

Definition 12 For each natural number n,

(1) the topological space Fn is defined by:

Fn = {f : R
n → R | f total continuous function }

where R
n denotes the usual topological product of R.

The topology on Fn is the compact-open topology.
(2) FDn is the effective Scott-domain of the Scott-continuous functions [RDn → RD].
(3) FD†

n is the subspace of FDn defined by:

{g ∈ FDn | g((RD†)n) ⊆ RD†}

The topology on FD†
n is the subspace topology of the Scott-topology.

Observe that FD0 is homeomorphic to RD.

Not every element in RD denotes a real number: some elements are just finite
approximations of real numbers. Similarly, not every function in FDn repre-
sents a function in Fn. For this reason, we have chosen to define the subspaces
FD†

n; within FD†
n every element denotes an element in Fn.

Notation. In this paper, an n-tuple 〈y0, . . . , yn−1〉 is denoted also by y. If f is
a function on the elements of a tuple y, f(y) denotes its pointwise application
〈f(y1), . . . , f(yn−1)〉. The symbols [a, b], [a′, b′], [ai, bi] . . . are reserved for in-
tervals in DI. An interval [ai, bi] is denoted also by [a, b]i and, finally, if [a, b]
is an n-tuple of dyadic intervals,

∏

i<n[a, b]i denotes the obvious subset of R
n.

Proposition 13 For each natural number n, Fn is a retract of FD†
n. The pair

of retract functions qn : FD†
n → Fn and en : Fn → FD†

n are defined as follows:

qn(g)(x) = q(g(e(x)))

en(f)(d) =

⊥ if ∃i < n . di = ⊥

{[a′, b′] |∃↓ [a, b] ⊑ d . f(
∏

i<n[a, b]i) ⊆ (a′, b′)} otherwise

The functions en and qn defined above are the natural generalisation of the
functions e and q. In fact, qn associates to each element of FD†

n the element
of Fn which is represented by it. And en chooses, for each element in Fn, a
canonical representation in FD†

n. We can also say that the function qn par-
titions FD†

n into equivalence classes. All the elements contained in a single

13

equivalence class represent the same element in Fn. The function en defines a
canonical representation for each class.

Definition 14 For each natural number n, a function f ∈ Fn is domain-
computable if there is a computable element g ∈ FD†

n such that f = qn(g).

It follows that every computable function on real numbers is continuous w.r.t.
the Euclidean topology.

We now consider second order functionals. In this case however it is only possi-
ble to state a set theoretic relation between functionals on RD and functionals
of R.

Definition 15 For each n-tuple of natural numbers m = 〈m1, . . .mn〉

(1) the set of functionals on reals IFm is defined by:

IFm = {f : (Fm1
× . . . × Fmn

) → R) | f total continuous function }

(2) FDm is the effective Scott-domain of the Scott-continuous functions
[(FDm1

× . . . × FDmn
) → RD]

(3) FD†
m = {g ∈ FDm | g(FD†

m1
× . . . × FD†

mn
) ⊆ RD†}

Using the retract constructions for the first-order functions it is possible to
associate to each second order functional in FD†

m the functional on the reals
represented by it.

Definition 16 (1) For every type tuple of natural numbers m let qm be the
function from FD†

m to IF m defined by:

qm(G)(f1, . . . , fn) = q(G(em1
(f1), . . . , emn

(fn)))

(2) A functional on real numbers F ∈ IFm is computable if there exists a
computable element G ∈ FDm such that F = qm(G).

5 PCF extended with real numbers

In this section we employ the domain RD to define an extension of the lan-
guage PCF having a ground data type for the real numbers. We call this
extension Lr, and denote with r the type for real numbers. In Lr, expres-
sions having type r represent elements in RD. We want to prove that any
computable function on RD is definable by a suitable expression in Lr. A
programming language very similar to Lr has first been introduced in [8].
An extension of PCF based on a different domain of approximation for real
numbers has also been presented in [12].

14

Compared with the real computation described in Section 3, the real compu-
tation in Lr has several advantages. Given a closed term M ∈ L(ι→ι)→(ι→ι),
the value EvalR(M)1 may prove to be undefined; for example:
(i) there may be a term N representing a real number such that the sequence
M(N)(0), . . . , M(N)(n), . . . does not define a real number.
(ii) there may be two terms N1 and N2 defining the same real number and
such that M(N1) and M(N2) define different real numbers.

The language Lr is free from these inadequacies. Terms of type r in Lr can
always be interpreted as (approximated) reals; more importantly, terms of type
r → r preserve the equivalence between different representations of the same
real number. We can say, therefore, that Lr defines an abstract data type for
real numbers, i.e., it defines a collection of primitive functions on reals which
generate any other computable function.

In this section, we give a denotational semantics to Lr. The attribution of an
operational semantics to Lr presents a numbers of problems, which will be
discussed in the next sections.

5.1 Syntax

The types of Lr are the PCF types extended with a new ground r. The set T
of type expressions is defined by the grammar:

σ ::= ι | o | r | σ1 → σ2

The terms of Lr are the terms of LPA+∃ extended with the new constants:

(−1), (+1), (×2), (÷2), PR : r → r,

(≤ 0) : r → o

pifr : o → r → r → r,

Yσ : (σ → σ) → σ for each new type σ

5.2 Semantics

The denotational semantics for Lr is given using the set of Scott-domains
UD := {Dσ | σ ∈ T} where Dr = RD, Dι = Z⊥, Do = {tt, ff}⊥ and Dσ→τ =
[Dσ → Dτ].

The denotation of the new constants is:

15

The constants (+1), (−1), (×2), (÷2) realize the corresponding functions on
reals.

B[[(+1)]](d) = {[a + 1, b + 1] | [a, b] ∈ d}

B[[(−1)]](d) = {[a − 1, b − 1] | [a, b] ∈ d}

B[[(×2)]](d) = {[a × 2, b × 2] | [a, b] ∈ d ∧ [a × 2, b × 2] ∈ DI}

B[[(÷2)]](d) =
⋃

[a,b]∈d ↓ [a ÷ 2, b ÷ 2]

The constant (≤ 0) tests if a number is smaller or larger than 0.

B[[(≤ 0)]](d) =

tt if it exists [a, b] ∈ d, b ≤ 0

ff if it exists [a, b] ∈ d, 0 ≤ a

⊥ otherwise

The constant PR defines a kind of projection on the interval [−1, 1].

B[[PR]](d) =

d⊔ ↓ [−1, 1] if d is consistent with ↓ [−1, 1]

e+(−1) if ∃[a, b] ∈ d.b ≤ −1

e−(1) if ∃[a, b] ∈ d.a ≥ 1

The constant pifr defines a parallel test.

B[[pifr]](b)(d)(d′) :=

d if b = tt

d′ if b = ff

d ⊓ d′ if b = ⊥

If the boolean argument is undefined, the function B[[pifr]] gives as an output
the most precise approximation of the second and third argument.

The constants Yσ are the usual fixed point operators.

It is not difficult to prove that:

Proposition 17 For every closed expression Mσ and environment ρ, E [[Mσ]]ρ
is a computable element of Dσ.

16

Next we prove the universality of Lr, i.e., we prove that every computable
function on RD is definable by a suitable term in Lr. In order to do this we
present a generalisation of the universality theorem for PCF [18, Theorem 5.1].
An equivalent generalisation had already been given in [23], although there
are some important differences. The proof we give here follows the line of the
original proof in [18]; this however can only be applied to extensions of PCF
where ground types are denoted by flat domains. We have modified some parts
of that proof to make it applicable to extensions of PCF where ground types
are denoted by coherent domains. The proof given in [23] is more abstract but
it uses, as a lemma, the theorem in [18], and therefore it is not independent
from it.

Some definitions and lemmata are necessary here.

Definition 18 A subset A of a p.o. P is coherent if any pair of elements has
an upper bound. A coherent domain is a Scott-domain for which any coherent
subset has an upper bound.

Coherent domains are closed under many of the semantics functors. In partic-
ular:

Proposition 19 (1) If D1 and D2 are coherent domains then D1 → D2 is
a coherent domain.

(2) RD is a coherent domain.

Proof. (i) This is a standard proposition of domain theory.
(ii) This follows from the fact that for any finite set of intervals C the inter-
section of the intervals in C is empty if and only if there exist two intervals in
C having an empty intersection. 2

A fundamental step in the proof of universality consists in showing that for
every type σ it is possible to define three functions, namely cσ, pσ and #σ. Here
cσ and pσ are respectively a test and a projection function for the types σ, and
#σ(n)(d) checks if the element d is inconsistent with the finite element ǫσ(n)
(where ǫσ is the effective enumeration of the finite elements of the domain Dσ

([18, page 249])). Formally:

Definition 20 A partial function f : Dσ1
→ . . .Dσn

⇀ Dσ is definable in
Lr if there exists a closed term M such that for all d1 ∈ Dσ1

. . . dn ∈ Dσn
if

f(d1) . . . (dn) is defined then E [[M]]ρ(d1) . . . (dn) = f(d1) . . . (dn).

Definition 21 Given a coherent-domain Dσ, the function cσ : B⊥ → Dσ →
Dσ → Dσ, and the partial functions #σ : Z⊥ → Dσ ⇀ B⊥, pσ : Z⊥ → Dσ ⇀

17

Dσ are defined by,

cσ(b)(d1)(d2) =

d1 if b = tt

d2 if b = ff

d1 ⊓ d2 if b = ⊥

#σ(n)(d) =

ff if n ∈ N, ǫσ(n) ⊑ d

tt if n ∈ N and the elements ǫσ(n), d are inconsistent

undefined if n is a negative number

⊥ otherwise

pσ(n)(d) =

d ⊔ ǫσ(n) if n ∈ N and the elements ǫσ(n), d are consistent

undefined otherwise

Since the domain Dσ is coherent, the function pσ can be extended to the
whole domain. The functions pσ and #σ are defined as a partial function for
convenience. In the proof it is shown that for every type σ there exist terms
Pσ and Tσ whose denotations behave like pσ and #σ on their domains of
definition. There is no interest in the behaviour of Pσ and Tσ outside these
domains.

Lemma 22 If, in a language extending LPA+∃, for every ground type τ the
function cτ , pτ , #τ are definable by some terms pifτ , Pτ , Tτ , then for any other
type σ the functions cσ, pσ, tσ are definable by some suitable terms pifσ, Pσ, Tσ.

Proof. By structural induction on the type σ. The basic step is true by hy-
pothesis. Let σ = σ1 → σ2. The terms pifσ and Pσ can be defined as follows,

pifσ = λx.λασ
1 .λασ

2 .λβσ1 .pifσ2
x then ασ

1β
σ1 else ασ

2β
σ1

Pσ = λm . λασ . λβσ1 .
Yι→σ2

(λγι→σ2 . λn .
pifσ2

Zn
then ασβσ1

else pifσ2
Tσ1

(FIRSTσ m n)βσ1

then γι→σ2(pred(n))
else Pσ2

(SECONDσ m n)(γι→σ2(pred(n))))
(SIZEσ m)

18

where FIRSTσ, SECONDσ and SIZEσ define respectively three primitive recur-
sive functions f, g and h such that for each natural number m:

ǫσ(m) =
⊔

{ǫσ1
(f(m, n)) ⇒ ǫσ2

(g(m, n)) | 0 < n ≤ h(m)}

here we denote with ǫσ1
(f(m, n)) ⇒ ǫσ2

(g(m, n)) the step-function in Dσ de-
fined by: (ǫσ1

(f(m, n)) ⇒ ǫσ2
(g(m, n)))(d) = ǫσ2

(g(m, n)) if ǫσ1
(f(m, n)) ⊑ d

and (ǫσ1
(f(m, n)) ⇒ ǫσ2

(g(m, n)))(d) = ⊥ otherwise.

The idea behind the definition of Pσ is the following, the projection of a func-
tion ασ on the function d =

⊔

{ǫσ1
(f(m, n)) ⇒ ǫσ2

(g(m, n)) | 0 < n ≤ l} is
calculated pointwise. Given an argument βσ1 , it is checked if βσ1 is consis-
tent with ǫσ1

(f(m, h)). If βσ1 is inconsistent with ǫσ1
(f(m, h)) then the result

is the projection, dp, of ασ(βσ1) on d′(βσ1) where d′ =
⊔

{ǫσ1
(f(m, n)) ⇒

ǫσ2
(g(m, n)) | 0 < n ≤ l − 1}. If βσ1 ⊒ ǫσ1

(f(m, h)) then the result is the pro-
jection of dp on the element ǫσ2

(g(m, n)). If the consistency cannot be decided
then the result is the g.l.b. of the results given in the two previous cases.

The term Tσ is defined by:

Tσ = λm.λασ.Yι→o(λγι→o.λn.
ifoZn

then ff

else pifo∃(λl.Tσ2(SECONDσ m n)(ασ(Pσ1
(FIRSTσ m n)(Pσ1

l Ωσ1
))))

then tt

else γι→o(pred(n)))
(SIZEσ m)

In order to check if a function ασ is inconsistent with a function d =
⊔

{ǫσ1
(f(m, n)) ⇒

ǫσ2
(g(m, n)) | 0 < n ≤ l}, it is sufficient to check if there exists n ≤ l,

and a finite element β, β ⊒ ǫσ1
(f(m, n)), such that α(β) is inconsistent with

ǫσ2
(g(m, n)). Observe that E [[Pσn(Pσ Ωι Ωσ)]] = ǫσ(n) and that the function

E [[λl.Pσn(Pσ l Ωσ)]] enumerates the finite elements above ǫσ(n). 2

Lemma 23 If, in an extension of the language L, for a type σ the function
pσ is definable, then every computable element in Dσ is definable.

Proof. Given a computable element d in Dσ, let f be a primitive recursive
function such that

x =
⊔

{ǫσ(f(i)) | i ∈ N}

and let F be a term defining the function f and Pσ the term defining the

19

function pσ. We have:

d = E [[Yι→σ(λαι→σ . λn . Pσ(Fn)(αι→σ(succ(n))))0]]ρ

2

Theorem 24 For every computable element d in Dσ there exists a closed
expression M in Lr, such that: E [[M]]ρ = d.

Proof. By the two previous lemmas, it is sufficient to prove that the functions:
cτ , pτ , #τ are definable in the language when τ is a ground type. In [18], it
has already been shown that these functions are definable when τ is equal to
ι and o. Therefore, we only need to prove the definability for the basic type
r. The function cr is defined by the constant pifr. To simplify the proof we
define the terms Pr and Tr recursively by cases. The actual PCF terms can
be obtained straightforwardly. The terms Pr and Tr are defined as:

Pr(n)(x) = x for n ≤ 0

Pr(〈〈n1 + 1, n2 + 1〉, n3〉 + 1)(x) = Pr(〈〈n1, n2〉, n3〉 + 1)(x)

Pr(〈〈n1 + 2n3, 0〉, n3〉 + 1)(x) = (+1)(Pr(〈〈n1, 0〉, n3〉 + 1)((−1)((x))))

Pr(〈〈0, n2 + 2n3〉, n3〉 + 1)(x) = (−1)(Pr(〈〈0, n2〉, n3〉 + 1)((+1)((x))))

Pr(〈〈n1, 0〉, n3 + 1〉 + 1)(x)
= (÷2)(Pr(〈〈n1, 0〉, n3〉 + 1)((×2)((+1)(PR((−1)(PR(x)))))))
with 0 < n1 < 2n3

Pr(〈〈0, n2〉, n3 + 1〉 + 1)(x)
= (÷2)(Pr(〈〈0, n2〉, n3〉 + 1)((×2)((−1)(PR((+1)(PR(x)))))))
with 0 < n2 < 2n3

Pr(〈〈0, 0〉, n3 + 1〉 + 1)(x) = (÷2)(Pr(〈〈0, 0〉, n3〉 + 1)((×2)(PR(x))))

Pr(〈〈0, 0〉, 0〉+ 1)(x) = PR(x)

Tr(n)(x) = ff with n ≤ 0

Tr(〈〈n1 + 1, n2 + 1〉, n3〉 + 1)(x) = Tr(〈〈n1, n2〉, n3〉 + 1)(x)

Tr(〈〈n1 + 2n3, 0〉, n3〉 + 1)(x) = Tr(〈〈n1, 0〉, n3〉 + 1)((−1)((x)))

Tr(〈〈0, n2 + 2n3〉, n3〉 + 1)(x) = Tr(〈〈0, n2〉, n3〉 + 1)((+1)((x)))

Tr(〈〈n1, 0〉, n3 + 1〉 + 1)(x)
= pifo(≤ 0)(x)

then tt

20

else pifo(≤ 0)((−1)(x))
then Tr(〈〈n1, 0〉, n3〉 + 1)((×2)(x))
else tt

with 0 < n1 < 2n3

Tr(〈〈0, n2〉, n3 + 1〉 + 1)(x)
= pifo(≤ 0)(x)

then pifo(≤ 0)((+1)(x))
then tt

else Tr(〈〈0, n2〉, n3〉 + 1)((×2)(x))
else tt

with 0 < n2 < 2n3

Tr(〈〈0, 0〉, n3 + 1〉 + 1)(x)
= pifo(≤ 0)((+1)(x))

then tt

else pifo(≤ 0)((−1)(x))
then Tr(〈〈n1, 0〉, n3〉 + 1)((×2)(x))
else tt

Tr(〈〈0, 0〉, 0〉+ 1)(x)
= pifo(≤ 0)(+1)(x)

then tt

else pifo(≤ 0)((−1)(x))
then ff

else tt

It is a lengthy but straightforward proof to check that the definitions of Pr

and Tr consider all possible cases and that the given results are correct. 2

In the domain RD every dyadic rational number has three representations,
among which computable functions on RD are able to discriminate. Since
the language Lr is universal w.r.t RD, also the functions definable in Lr can
distinguish among the three representations of a dyadic number. The constant
(≤ 0), which discriminates among the three representations of the number 0,
is an example to the point. To avoid this behaviour, we present a second
language, called Lwr, which is expressive enough to define all computable
functions on reals, but whose functions do not distinguish among the three
different representations of the dyadic numbers. The only difference among
Lwr and Lr is the presence of the constant (≤ 0). In Lwr the constant (≤ 0) is

21

substituted by a new constant (< 0). The denotational semantics of (< 0) is:

B[[(< 0)]](d) :=

tt if there exists [a, b] ∈ d, b < 0

ff if there exists [a, b] ∈ d, 0 < a

⊥ otherwise

The function B[[(< 0)]] is the greatest approximation of the function B[[(≤ 0)]]
(w.r.t. the domain order) which does not distinguish among the three repre-
sentations of 0 in RD.

In order to prove that terms of Lwr do not distinguish among the different
representations of dyadic numbers, we give the following definition.

Definition 25 A family of partial equivalence relations ∼=σ on the domains
Dσ are defined by:

b1
∼=o b2 iff b1 = b2

n1
∼=ι n2 iff n1 = n2

d1
∼=r d2 iff qP(d1) = qP(d2)

d1
∼=σ→σ′ d2 iff ∀d′

1, d
′
2 ∈ Dσ.d

′
1
∼=σ d′

2 ⇒ d1(d
′
1)

∼=σ′ d2(d
′
2)

On basic types ∼=σ is the finer equivalence relation that identifies the three
representations of each dyadic real number. On higher types the relation ∼=σ

is defined hereditarily. For each element d ∈ Dσ→σ′ , we have d ∼=σ→σ′ d if and
only if d preserves the partial equivalence relation at lower types.

The partial equivalence relations ∼=σ can be extended pointwise to environ-
ments:

ρ1
∼= ρ2 iff ∀xσ . ρ1(x) ∼=σ ρ2(x)

Proposition 26 For every term Mσ in Lwr and environment ρ if ρ ∼= ρ then
E [[Mσ]]ρ ∼=σ E [[Mσ]]ρ

Proof. By structural induction on M . The only non-trivial case is represented
by constants Yσ. By an easy structural induction on types, it is possible to
prove that for every type σ: ⊥ ∼=σ ⊥ and that the relation ∼=σ is closed by
l.u.b. of chains, i.e. it is inductive. It follows that for any element d ∈ Dσ→σ

such that d ∼=σ→σ d we have: B[[Yσ]](d) =
⊔

n∈N dn(⊥σ) ∼=σ
⊔

n∈N dn(⊥σ).
Therefore: B[[Yσ]] ∼=(σ→σ)→σ B[[Yσ]]. 2

22

We need to prove that every computable function on reals is definable in Lwr.

Proposition 27 For each tuple of natural numbers m and for every com-
putable functional F in IFm there exists a term M in Lwr such that:
qm(E [[M]]) = F .

Proof. Given a term M in Lr, let M⋆ indicate the term obtained by substi-
tuting each occurrence of the constant (≤ 0) in M with the constant (< 0).
Let d be a computable element in RDm such that qm(d) = F , and let M be
the term in Lr, which has d as its denotation and is constructed according to
the proof of Theorem 24. We will prove that qm(E [[M]]) = qm(E [[M⋆]]).

We need to introduce the following definitions: for each natural number n, let
rn be the type inductively defined as: r0 = r and rn+1 = r0 → rn. For each
n-tuple of natural numbers m = 〈m1, . . .mn〉 let rm be the type rm1

→ .. →
rmn

→ r0. Let w : RD → RD be the function defined by:

w(d) = {[a, b] | ∃[a′, b′] ∈ d . [a′, b′] ⊂ (a, b)}.

For each natural number n let wn : FDn → FDn be defined by:

wn(g) = w ◦ g.

It is not difficult to prove that:

(i) ∀x ∈ R . e(x) = w(e(x)),
(ii) ∀f ∈ Fn . en(f) = wn(en(f)).

Moreover for each d ∈ RD:

B[[(< 0)]](d))=B[[(≤ 0)]](w(d)),

w(B[[(+1)]](d))=B[[(+1)]](w(d)),

w(B[[(−1)]](d)) =B[[(−1)]](w(d)),

w(B[[(÷2)]](d)) =B[[(÷2)]](w(d)),

The terms Pr, pifσ, FIRSTσ, SECONDσ do not contain the constant (≤ 0), there-
fore: P ⋆

r = Pr, pif⋆σ = pifσ, FIRST⋆
σ = FIRSTσ and SECOND⋆

σ = SECONDσ

From the above identities it follows that:

(iii) ∀d ∈ RD . E [[T ⋆
r]]ρ(d) = E [[Tr]]ρ(w(d)),

(iv) ∀n ∈ N . ∀g ∈ FDn . E [[T ⋆
rn

]]ρ(f) = E [[Trn
]]ρ(wn(f)).

23

Lemma 28 For each n-tuple of natural numbers m, for each pair of elements
G, G′ ∈ FDm and for each g1 ∈ FDm1

. . . , gn ∈ FDmn
, if

G(wm1
(g1)) . . . (wmn

(gn)) ⊑ G′(g1) . . . (gn)

then

∀i ∈ N . E [[Prm
]]ρ(i)(G)(wm1

(g1)) . . . (wmn
(gn)) ⊑ E [[P ⋆

rm
]]ρ(i)G

′(g1) . . . (gn).

Proof of the lemma. The proof is by structural induction on the type rm.
The basic step occurs when the sequence m is composed by a single element.
In this case the proof becomes a simple calculation.

Inductive step. Let m = 〈m1, . . .mn〉, m′ = 〈m2, . . .mn〉, we have:

E [[Pσ]]ρ(i)(G)(wm1
(g1)) . . . (wmn

(gn))
= E [[Yι→r

m
′
(λγι→r

m
′ .λn.

pifr
m

′
Zn

then αrmβrm1

else pifr
m

′
Trm1

(FIRSTrm
m n)βrm1

then γι→r
m

′ (pred(n))
else Pr

m
′
(SECONDrm

m n)(γι→r
m

′ (pred(n)))
)(SIZErm

m)]]ρ[i/m][G/αr
m][(w(g1)/βm1](wm2

(g2)) . . . (wmn
(gn))

Using the inductive hypothesis and the identities (iii) and (iv), by a simple
calculation it is possible to prove that for each G1, G

′
1 : Z⊥ → RDm′, i ∈ N ,

g2 ∈ FDm2
. . . , gn ∈ FDm1

if G1(i)(wm2
(g2)) . . . (wmn

(gn)) ⊑ G′
1(i)(g2) . . . (gn)

then

E [[λn . pifr
m

′
Zn

then αrmβrm1

else pifr
m

′
Trm1

(FIRSTrm
m n)βrm1

then γι→r
m

′ (pred(n))
else Pr

m
′
(SECONDrm

m n)(γι→r
m

′ (pred(n))
]]ρ[i/m][G/αr

m][G1/γσ][(w(g1)/βm1](wm2
(g2)) . . . (wmn

(gn))

⊑ E [[λn.pifr
m

′
Zn

then αrmβrm1

else pifr
m

′
T ⋆

rm1

(FIRST⋆
rm

m n)βrm1

then γι→r
m

′ (pred(n))
else P ⋆

r
m

′
(SECOND⋆

rm
m n)(γι→r

m
′ (pred(n))

]]ρ[i/m][G′/αr
m][G′

1
/γσ][g1/βm1](g2) . . . (gn)

24

By the definition of B[[Yι→r
m

′
]] it follows that:

E [[Prm
]]ρ(i)(G)(wm1

(g1)) . . . (wmn
(gn))

⊑ E [[Yι→r
m

′
(λγι→r

m
′ .λn.

pifr
m

′
Zn

then αrmβrm1

else pifr
m

′
T ⋆

rm1

(FIRST⋆
rm

m n)βrm1

then γι→r
m

′ (pred(n))
else P ⋆

r
m

′
(SECOND⋆

rm
m n)(γι→r

m
′ (pred(n))))

(SIZErm
m)]]ρ[i/m][G′/αr

m][g1/βm1](g2) . . . (gn)

= E [[P ⋆
rm

]]ρ(i)(G
′)(g1) . . . (gn)

The lemma is proved.

By the lemma above it follows that for each tuple m, for each g1 ∈ FDm1
, . . . ,

gn ∈ FDm1
,

E [[Yι→rm
(λαι→rm.λn.Pσm

(Fn)(αι→rm(succ(n))))0]]ρ(wm1
(g1)) . . . (wmn

(gn))
⊑ E [[Yι→rm

(λαι→rm.λn.P ⋆
σm

(Fn)(αι→rm(succ(n))))0]]ρ(g1) . . . (gn).

The proposition follows immediately from the above inequality, from the iden-
tities (i) and (ii) and from the definition of the function qm. 2

6 A first attempt at an operational semantics

In this section we discuss the problem of defining an operational semantics
for Lr. In Section 4 the elements of RD are constructed as equivalence classes
of partial sequences of integers. It is an obvious observation that a function
having type [Z⊥ → Z⊥] can be used to represent a sequence of integers and, as
a consequence, an element in RD. Following this approach, higher order func-
tions on Z⊥ can be employed to represent functions on RD. The construction
is the following:

• let S ′ be the subset of [Z⊥ → Z⊥] defined by,

S ′ = {s | ∀i ∈ N . (s(i + 1) 6= ⊥ ⇒

(s(i) 6= ⊥ ∧ 2s(i) − 1 ≤ s(i + 1) ≤ 2(i) + 1))}

the elements of S ′ define the partial sequences of digits representing elements
in RD.

25

• let φ′ : S ′ → RD be the function,

φ′(s) = {↓ [
s(i) − 1

2i
,
s(i) + 1

2i
] | i ∈ N, s(i) 6= ⊥}

Give a function g : RD → RD → RD, we say that g is represented by a
function f : [Z⊥ → Z⊥] → [Z⊥ → Z⊥] → [Z⊥ → Z⊥] if for all s1, s2 ∈ S ′,
g(φ′(s1))(φ

′(s2)) = φ′(f(s1)(s2)).

The above representation for functions on RD suggests the following approach
to operational semantics: for any new constant c in Lr it is required that
we find a function fc on [Z⊥ → Z⊥] representing the function B[[c]]. If the
functions fc existed then a set of closed LPA+∃-terms Mc, such that E [[Mc]]ρ =
fc, could be used to define an operational semantics for Lr. More precisely, the
operational semantics would be given by the reduction rules c → Mc. These
rules are justified since the operational behaviour of the hypothetical term Mc

would be in accord with the denotational semantics of c. In fact, we prove that
this approach cannot be taken.

Notation. Given a function s : Z⊥ → Z⊥ and a natural number n we denote
with s |n the restriction of the function s to the elements smaller that n:
s|n (m) = s(m) if m ≤ n, s|n (m) = ⊥ otherwise.

Proposition 29 There is no function g : {tt, ff}⊥ → [Z⊥ → Z⊥] → [Z⊥ →
Z⊥] → [Z⊥ → Z⊥] representing the function B[[pifr]].

Proof. By contradiction. Suppose there exists a continuous function g repre-
senting the function B[[pifr]]. Let x be a real number and s, t be two represen-
tations of x.

For every i ∈ N we have:

g(⊥)(s)(s)(i) = g(tt)(s)(s)(i) = g(tt)(s)(⊥)(i) = g(tt)(s)(t)(i)

= g(⊥)(s)(t)(i) = g(ff)(s)(t)(i) = g(ff)(⊥)(t)(i)

= g(ff)(t)(t)(i) = g(⊥)(t)(t)(i)

In fact, all pairs of elements in the above equations are order related, and since
they are all different from ⊥ they must be equal. The function λs . g(⊥)(s)(s) :
[Z⊥ → Z⊥] → [Z⊥ → Z⊥] is therefore a continuous function that, for each real
number, selects a canonical representation.

We now prove that this function cannot exist. Let A = {q(φ′(s)) | g(⊥)(s)(s)(0) =
1}, let x be a real number in the boundary of A and let t be a representation
of x such that for each n ∈ N all the intervals in φ′(tn) are neighbourhoods of
x. It is not difficult to verify that the representation t exists.

26

The value g(⊥)(t)(t)(0) must be different from 1. In fact, by continuity of g,
there exists a natural number n such that g(⊥)(t|n)(t|n)(0) = g(⊥)(t)(t)(0).
Let t′ be a representation of a real number such that t′|n= t|n and q(φ′(t′)) 6∈ A.
We have g(⊥)(t)(t)(0) = g(⊥)(t|n)(t|n)(0) = g(⊥)(t′)(t′)(0) 6= 1.

By similar arguments it is possible to prove that g(⊥)(t)(t)(0) = 1. We obtain
a contradiction. 2

It is possible to give a stronger result and prove that there exists no represen-
tation for a function that behaves like a “parallel if” on the infinite elements
(no matter how the function is extended to partial elements). Moreover, this
negative result can be extended to a large class of different representations for
real numbers. In almost all the representations considered in the literature, a
real number is represented by a sequence of elements of a countable set C. For
example, C can be a set of digits, the set of integers, the set of p-adic rational
numbers, the set of rational numbers, the set of rational intervals.

Definition 30 A sequence representation 〈C, S, v〉 is given by a countable set
C, a subset S of N → C and a representation function v : S → R. The set S
is the subset of sequences defining real numbers.

By repeating the construction of Section 4, we maps finite sequences to subsets
of reals.

Definition 31 Given a sequence representation 〈C, S, v〉, the extension of the
representation v : S → R, to partial sequences, v : [N → C⊥] → P(R), is
defined by:

v(s) = {v(t) | t ∈ S, s ⊑ t}.

The notion of admissible representation for real numbers has first been intro-
duced in [27, pages 479–482]. That definition can be reformulated as follows.

Definition 32 A sequence representation 〈C, S, v〉 is admissible if it satisfies
the following conditions,

(i) ∀s ∈ S, ǫ ∈ R . ∃n ∈ N . v(s|n) is contained in an interval having width ǫ,
(ii) For each real number x there exists a sequence s such that for each natural

n, x is contained in the interior of v(s|n).
(iii) Real numbers are represented only by totally defined sequences.

Condition (i) states that the function v : S → R is continuous, w.r.t. the
Cantor topology on S and the Euclidean topology on R. Condition (ii) implies
that the Euclidean topology is the finer topology on the real line for which
the function v is continuous. Almost all the representation functions used
in computable analysis are admissible. There exist representations that are

27

commonly used and not admissible (e.g. the decimal representation). These
commonly used representations are not suitable for computable analysis. It is
a well known result that the arithmetic operations on reals are not computable
when the decimal representation is used ([27])). In Section 7 we present a new
representation for real numbers. The new representation is a non admissible
representation but it can be used for computable analysis.

Proposition 33 For any admissible representation v there is no continuous
functional g : {tt, ff}⊥ → [N → C⊥] → [N → C⊥] → [N → C⊥] representing a
parallel test, that is, for all b ∈ {tt, ff}⊥, s, t in S,

v(g(b)(s)(t))= v(s) if b = tt,

v(g(b)(s)(t))= v(t) if b = ff,

v(g(b)(s)(t))= v(s) if v(s) = v(t)

The proof of Proposition 29 can be easily modified to obtain a proof for this
proposition.

There are two possible solutions to the problem of defining a parallel test for
reals. The first one consists in introducing non deterministic or intensional
operators in the language. The second one consists in using a different rep-
resentation for real numbers. The first approach has been followed in [12],
where an operational semantics of a language similar to Lr is given using a
non deterministic operator. The second approach we will be followed here.

7 An operational semantics

In the literature, real numbers are represented by sequences that are com-
pletely defined. We maintain that it is possible to represent real numbers using
sequences that are undefined on some index. An example is the following.

Definition 34 A real number x in the interval [−1, 1] is represented by a
sequence s of digits −1, 1 such that: x =

∑

i∈N

∏

0≤j≤i sj/2

This notation is similar to the binary digit notation. The main differences
consist in the use of the digit −1 instead of the digit 0 and in the fact that
in this notation the value of a digit affects the weights of all consecutive dig-
its. In this notation, the real number 0 has two representations: the sequence
〈−1,−1, 1, 1, 1 . . .〉 and the sequence 〈1,−1, 1, 1, 1 . . .〉. The two representa-
tions differ just for the first digit. Therefore, 0 can also be represented by
the sequence 〈⊥,−1, 1, 1, 1 . . .〉 undefined on the first element. Moreover, by

28

examining the finite initial parts of the incomplete sequence, it is possible
to determine the number it represents with arbitrary precision. Similar con-
siderations hold for any other dyadic rational number: every dyadic rational
number has two representations, which differ for just one element. Therefore,
every dyadic rational number can be represented also by a partial sequence
diverging on one element. Every real number that is not rational dyadic has
exactly one representation. If we allow that a sequence undefined on one el-
ement may be a possible representation for a real number then, we obtain a
representation which is suitable for real number computation.

In order to represent the whole real line we consider the following notation.

Definition 35 A representation function v : (N → {−1, 1}) → R is defined
by:

v(s) = s(0) × (k +
∑

i≥k

∏

0≤j≤i

s(j)/2)

where k = min{i | i > 0, s(i) = −1}

This is a sort “sign, integer part, mantissa” notation for the real numbers.
The first digit gives the sign, the next consecutive positive digits determine
the integer part, the remaining part of the sequence is the mantissa. Also, in
this case, every dyadic rational number is represented by two sequences that
differ just for one element and every real number that is not rational dyadic
has exactly one representation.

Definition 36 The extension of v to partial sequences is the function
v : (N → {−1, 1}⊥) → P(R) defined by:

v(s) = {v(t) | t : N → {−1, 1}, s ⊑ t}.

Proposition 37 The set v(s) is an interval if and only if

∀n . (s(n)↑ ∧s(n + 1)↓) ⇒ ∀m < n . s(m)↓

∧ s(n + 1) = −1

∧ ∀m > n + 1 . (s(m)↑ ∨s(m) = 1).

Let S∞ denote the set of partial sequences s such that v(s) is an interval. S∞

is a complete partial order when the subsequence order is considered. If we
repeat the construction of Section 4, with the representation v and the set
S∞ of partial elements, we obtain a new domain for real numbers. We call the
new domain RD′. In this case no pair of elements in S∞ contains the same
information. It follows that S∞ and RD′ are isomorphic.

29

+ −− +

[1,+∞]

[−1, 1]

[0, 1][−1,+0]

[−∞,+∞]

[0,+∞][−∞,0]

−+ +−

⊥− ⊥−− +−+

−

+−

Fig. 3. The diagram representing RD′.

The structures of RD and RD′ are quite similar. The main difference con-
sists in the fact that for each natural number n, RD′ contains the intervals
[−∞,−n] and [n, +∞] and, as a consequence, the infinite points −∞ and
+∞. It is possible to define a representation for real numbers similar to the
one given at Definition 35, in such a way the approximation domain obtained
from it is exactly the domain RD. This alternative notation needs to be more
complex. In order to have a simpler operational semantics we prefer to use the
domain RD′ and slightly modify the calculus. Namely, we change one con-
stant in Lr, substituting the constant (−1) with the constants abs and compl,
which represent the functions “absolute value” and “complementation”. Their
denotational semantics is:

B[[(abs)]](d) = {[a, b] | [a, b] ∈ d, 0 ≤ a} ∪ {[−b,−a] | [a, b] ∈ d, b ≤ 0}

∪{[0, b] | [a, b] ∈ d, a < 0 < b}

B[[(comp)]](d) = {[−b,−a] | [a, b] ∈ d}

We call Lr′ this new extension of PCF with real numbers. The proof of The-
orem 24 can be trivially modified to prove that Lr′ is universal.

Using S∞ as a representation for RD′, it is not difficult to define an operational
semantics for Lr′. The method we employ is the one described in the first part
of Section 6.

For convenience, instead of sequences of −1, 1, we use sequences of boolean
values: ff stands for −1 and tt stands for 1. Sequences of boolean values are
represented by terms having type ι → o. For each constant c in the set
{(+1), abs, comp, (×2), (÷2), PR, (≤ 0), pifr}, the denotational value of c in-
duces a function g on S∞ (RD′ and S∞ are isomorphic), g can be extended to

30

a complete and computable function h on the domain Z⊥ → {tt, ff}⊥ (the ex-
tension exists because S∞ is an effective retraction of the space Z⊥ → {tt, ff}⊥)
and, by the universality of L∃+PA, h can be denoted by a suitable term M .
The term M defines the operational semantics of the constant c.

The operational semantics of Lr′ is given by the set of reduction rules of
L∃+PA, with the following added rules:

(+1) → λs.λn.pifos(0)
then ifoZ(n) then tt else s(pred(n))
else pifos(1)

then ifo(n = 1)then ff else NOT(s(n))
else ifoZ(n)then ff else s(succ(n))

abs → λs.λn.ifoZ(n)then tt else s(n)

comp → λs.λn.ifoZ(n)then NOT(s(n)) else s(n)

(×2) → λs.λn.ifoZ(n)then s(0)else double(λm.s(succ(m)))

where the the term double is defined by:

double(s)(n) = pifos(0)
thenifoZ(succ(n))

then tt

else double(λm.s(succ(n)))(n − 2)
else pifos(1)

then ifoZ(n)then ff else s(n + 1)
else ifoZ(n)then tt else s(n)

(÷2) → λs.λn.ifoZ(n)then s(0)else half(λm.s(m + 1))

where the the term half is defined by:

half(s)(n) = pifos(0)
then pifos(1)

then ifoZ(n)
then tt

else half(λm.s(m + 2))(pred(n))
else ifo(n = 1)then ff else NOT(s(n))

else ifoZ(n)
then ff

else ifoZ(succ(n))then tt else s(pred(n))

31

PR → λs.λn.ifoZ(n)
then s(0)
else ifoZ(succ(n))

then ff

else pifos(1)
then ifoZ(succ(succ(n)))then ff else tt

else s(n)

(≤ 0) → λs.s(0)

ifr → λb.λs.λt.λn.pifob then s(n)else t(n)

Proposition 38 (Adequacy) For every closed term M having type ι or o,

E [[M]]ρ =

Eval(M) if Eval(M) is defined

⊥ otherwise.

For every closed term M having type r:

[a, b] ∈ E [[M]]ρ iff ∃n . v(〈Eval(M(0)), . . . , Eval(M(n))〉) ⊆ [a, b]

Proof. The standard computability method (see [18]) can be applied to prove
the adequacy of Lr′. There is, however, a further difficulty. It can be noted
that, in Lr, reduction rules do not preserve the denotational semantics of
terms. In fact, a constant reduces to its “implementation” and the semantics
of the implementation cannot be given using the domain RD′. This difficulty
can be easily overcome by slightly modifying the proof technique.

The predicate COMP on Lr′-terms is defined by:

• a closed term M having type ι or o has the property COMP (is computable)
if:
E [[M]]ρ =Eval(M) if Eval(M) is defined and
E [[M]]ρ = ⊥ otherwise.

• a closed term M r is computable if:
[a, b] ∈ E [[M]]ρ ⇔ ∃n . v(〈Eval(M(0)), . . . ,Eval(M(n))〉) ⊆ [a, b]

• a closed term having M (σ1→σ2) is computable if for every closed computable
term Nσ1 the term M (σ1→σ2)(Nσ1) is computable

• an open term M with free variables x1, . . . , xn is computable if for every
closed computable terms N1, . . .Nn the term [N1/x1, . . .Nn/xn]M is com-
putable.

It is straightforward to prove by structural induction that every Lr′ term is
computable. 2

32

8 Sequentiality and real number computations

In a calculus for real numbers based on the previous representation, the use
of parallel operators cannot be avoided. In fact, the implementation of a total
function on reals must contain parallel operators; otherwise, the computation
will diverge as soon as it examines an undefined digit. We discuss whether, in
general, parallelism is necessary to perform exact computation on real num-
bers. There is no straight answer to this question.

Parallel computation is not necessary in a calculus whose functions do not
need to preserve the equivalence relation which exists among the different
representations of the same real number and among the different representa-
tions of the same approximated real. The calculus for real numbers presented
in Section 3 is an example.

In the case of calculi where the equivalence relation is preserved, it is necessary
to consider which kind of representation for real numbers is being used, and
what are the approximated reals that can be obtained as a result of compu-
tation.

Given a calculus for real numbers based on a sequence representation 〈C, S, v〉,
let S0 indicate the set of partial sequences that can be generated as a result
of a computation.

In the calculi proposed so far in the literature, S0 is the set of initial sequences.
In general, we consider the case where S0 is a dense subset of the set of initial
sequence, i.e., for each s ∈ S and for each i ∈ N, there exists j ≥ i such
that s|j∈ S0. Any sequence representation induces an information order on
partial sequences. In this order, s is below t if v(s) ⊇ v(t). If the denotational
semantics of the calculus is based on a domain of approximations then the
implementation of the function must preserve the information order on partial
sequences of S0.

We will prove that, in a calculus using an admissible representation, where
the set of partial elements S0 is a dense subset of the initial sequences, the
use of parallel operators is unavoidable.

In order to prove this, we need to use the notion of dI-domains and stable
functions. We recall here the standard definition and properties. See [2] for a
more complete account.

A Scott-domain D is a dI-domain if (i) for every finite elements d ∈ D the
set {d′ | d′

⊏ d} is finite and (ii) D is distributive, that is, for d, d′, e ∈ D, if
d, d′ have an upper bound then (d ⊔ d′) ⊓ e = (d ⊓ e) ⊔ (d′ ⊓ e). A function
f : D → D′ between dI-domains is stable if it is continuous and for every

33

bounded d, e ∈ D if d, e have an upper bound then f(d ⊓ d′) = f(d) ⊓ f(e). f
is below g in the stable order if for all d, e ∈ D if d ⊏ e then f(d) = f(e)⊓g(d).
If D, D′ are two dI-domains, then the set of stable functions from D to D′ with
the stable order is a dI-domain. In particular dI-domains and stable functions
form a Cartesian closed category. Stability is a property that is satisfied by
the sequential operators but not by the parallel ones.

The dI-domains form a model for the language L but not for the language
LPA. There is no stable function giving an adequate semantics to the constant
pifo.

Theorem 39 For any admissible representation 〈C, S, v〉, for any dense sub-
set S0 of initial sequences of S, and for any function f : (R × R) → R, if f
is not constant in any of the two variables, then there is no stable continuous
functional g : [N⊥ → C⊥] → [N⊥ → C⊥] → [N⊥ → C⊥] such that:

(i) g implements f, i.e., for all s, t in S, f(v(s))(v(t)) = v(g(s)(t))
(ii) g respects the induced order relation on partial sequences, i.e., for all

s, s′, t, t′ in S0, v(s) ⊇ v(s′) and v(t) ⊇ v(t′) implies v(g(s)(t)) ⊇ v(g(s′)(t′)).

Proof. By contradiction. Suppose that the function g exists. Since the func-
tion f is not constant, g implements f , and g is continuous there exist s|i, t|i
in S◦, t′ in S, (a, b) rational interval, such that,

(i) v(g(s|i)(t|i)) ⊆ (a, b),
(ii) v(g(s|i)(t

′)) ∩ (a, b) = ∅

Given a set of real numbers A, let Int(A) denote the interior of A, that is the
largest open set contained in A. Let B be the set of real numbers defined by

B =
⋃

{Int(v(t′′|j)) | t′′|j∈ S◦, v(g(s|i)(t
′′|j)) ⊆ (a, b)}

By conditions (i) and (ii), the set B is a non-empty proper subset of R so there
exists a number x that belongs to the boundary of B. Let u be a representation
of x such that, for each natural number i, x is contained in the interior of v(u|i).
Since the function f is not constant, the value g(s|i, u) is a partial element. By
continuity of g there exist j, k such that s|j , u|k∈ S0 and g(s|j, u|k) is strictly
more defined than g(s|i, u). By construction, there exists a representation u′

such that u|k= u′|k and v(u′) ∈ B. By definition of B, there exists l > k such
that v(g(s|i, u

′|l)) ⊆ (a, b).

It follows that both g(s|i, u
′|l) and g(s|j, u

′|k) are initial partial sequences of
digits strictly more defined than g(s|i, u

′|k). Hence,

g(s|i, u
′|l) ⊓ g(s|j, u

′|k) = min{g(s|i, u
′|l), g(s|j, u

′|k)} 6= g(s|i, u
′|k).

34

Therefore, g cannot be a stable function. 2

The previous proposition cannot be generalised to arbitrary representations.
With a suitable representation it is possible to define calculi for real num-
bers, which are universal and whose operational semantics can be given by a
sequential and deterministic set of reduction rules.

What we are going to present here is not a sequential calculus for real numbers
but just the idea for a possible definition.

Consider the following representations for the integers and for the booleans.
Each integer n has an infinite set of different representations namely the set
{n∗

i : Z → Z | i ∈ N, ∀j < i . n∗
i (j) = 1, ∀j ≥ i . n∗

i (j) = 2 × n}. The boolean
value true is represented by any function in the set {tt∗i : Z → Z | i ∈ N, ∀j <
i . tt∗i (j) = 1, ∀j ≥ i . tt∗i (j) = 2}. The boolean value false is represented by any
function in the set {tt∗i : Z → Z | i ∈ N, ∀j < i . ff∗

i (j) = 1, ∀j ≥ i . ff∗
i (j) = 0}.

This representation can be implemented in PCF by using non-standard types
σ∗ defined as follows, ι∗ = ι → ι, o∗ = ι → ι and (σ1 → σ2)

∗ = σ∗
1 → σ∗

2 .

To each LPA+∃ constant c we associate a corresponding term c∗. The constants
n∗, pred∗, succ∗, tt∗, ff∗, Z∗ are defined pointwise:

n∗ = λi . 2 × n succ∗ = λni . ifon(i) = 1 then 1 else succ(succ(n(i)))

ff∗ = λi . 0 pred∗ = λni . ifon(i) = 1 then 1 else pred(pred(n(i)))

tt∗ = λi . 2 Z∗ = λni . ifon(i) = 1 then 1 else ifoZ(n(i)) then 2 else 0

if∗n, pif∗n, Y ∗
ι→ι, ∃

∗ are defined as follows:

if∗n = λbnmi . ifob(i) = 2 then n(i) else ifob(i) = 0 then m(i) else 1

pif∗n = λbnmi . ifob(i) = 2 then n(i)
else ifob(i) = 0 then m(i)
else ifon(i) = m(i) then n(i)
else 1

Y ∗
σ1→...→σn→ι = λfx1 . . . xni . f i(Ω∗

σ1→...→σn→ι)(x1) . . . (xn)(i)

where Ω∗
σ denotes the terms inductively defined by: Ω∗

o = Ω∗
ι = λi . 1

Ω∗
σ1→σ2

= λx . Ω∗
σ2

, and f i is defined by

f i = λx . (Yι→σ1→...→σn→ι(λyj . ifoZ(j)then x else f(y(pred(j))))(i))

35

∃∗ = λf . Yι→ι(λgi . ifoi = 0
then 1
else ifof(λx.1)(i) = 0

then 0
else ifof(λj . P1(i))(P2(i)) = 2

then 2
else g(pred(i))

where P1 and P2 define two primitive recursive functions π1, π2 such that for
each natural number n, n = 〈π1(n), π2(n)〉, for a suitable coding function 〈 〉.

Observe that all the terms c∗ belong to the language L, since they do not
contain parallel operators. Given a term M , we denote with M∗ the term
obtained by substituting each constant with the corresponding non-standard
version. It is not too difficult to prove that, for any term M having type ι,
Eval(M) = n if and only if ∃i ∈ N . (∀j > i . Eval(M∗(j)) = 2 × n) ∧ (∀j ≤
i . Eval(M∗(j)) = 1); also, Eval(M) is undefined if and only if for all i ∈ N

Eval(M∗(i)) = 1.

The idea in this representation is to internalise the undefined element. The
function λx . 1 is a total function that represents the undefined computation.
By using this representation for the bottom element, it is possible to emulate
the parallel computation in a sequential calculus.

The above representation for the natural numbers is certainly unusual. How-
ever, there are several representations for real numbers that are commonly
used, and where infinite sequences do not necessarily describe totally defined
real numbers, but approximations of real numbers ([12,11]). If we use rep-
resentations in this form, it is possible to define a calculus where all terms
representing real numbers generate an infinite sequence of digits. In this way
it is possible to perform the computation sequentially.

From a practical point of view, a sequential calculus of this form does not
solve the efficiency problem caused by parallel operators. The parallelism in
computation is not avoided, it is just emulated sequentially.

Acknowledgements

The research presented in this paper was started at the departement of Com-
puting, Imperial College London, where the authour spent a few months as
a research fellow thanks to an EPSRC grant. Discussions with Abbas Edalat
and Martin Escardo, as well as the comments of the anonymous referees are

36

gratefully aknowledged.

References

[1] O. Aberth. Computable analysis. MacGraw-Hill, New York, 1980.

[2] G. Berry. Stable models of the typed lambda-calculi. In Proc. 5th Int. Coll. on

Automata Languages and Programming., number 62 in LNCS. Springer, 1978.

[3] E. Bishop. Foundation of constructive analysis. McGraw-Hill, New York, 1967.

[4] H.-J. Boehm and R. Cartwright. Exact real arithmetic: formulating real
numbers as functions. In David Turner, editor, Research topics in functional

programming, pages 43–64. Addison-Wesley, 1990.

[5] H.-J. Boehm, R. Cartwright, M. Riggle, and M.J. O’Donell. Exact real
arithmetic: a case study in higher order programming. In ACM Symposium

on lisp and functional programming, 1986.

[6] G. S. Ceitin. Algorithmic operators in constructive metric spaces. Trudy Mat.

Inst. Steklov, english translation, Amer. Math. Soc. Transl., 64(2):1–80, 1967.

[7] S. Cook. Computability and complexity of higher type functions. In MSRI

Proceedings, 1990.

[8] P. Di Gianantonio. A functional approach to real number computation. PhD
thesis, University of Pisa, 1993.

[9] P. Di Gianantonio. Real number computability and domain theory. Information

and Computation, 127(1):11–25, May 1996.

[10] A. Edalat and M. Escardo. Integration in real PCF. In IEEE Symposium on

Logic in Computer Science, pages 382–393, 1996.

[11] A. Edalat and P. J. Potts. A new representation for the exact real numbers. In
MFPS 97, volume 6 of E.N.T.C.S. Elsevier Science, 1997.

[12] M. Escardo. PCF extended with real numbers. Theoret. Comput. Sci, pages
79–115, July 1996.

[13] A. Grzegorczyk. On the definition of computable real continuous functions.
Fund. Math., 44:61–77, 1957.

[14] D. Lacombe. Quelques procédés de définitions en topologie recursif. In
Constructivity in mathematics, pages 129–158. North-Holland, 1959.

[15] P. Martin-Löf. Note on Constructive Mathematics. Almqvist and Wiksell,
Stockholm, 1970.

[16] Ménissier-Morain. Arithmétique exacte, conception, algorithmique et

performances d’une implémentation informatique en prcision arbitraire. Thèse,
Université Paris 7, December 1994.

37

[17] V. Ménissier-Morain. Arbitrary precission real arithmetic: design and
algorithms. Submitted to the Journal of Symbolic Computation. Available at
http://pauillac.inria.fr/ menissier.

[18] G.D. Plotkin. LCF considered as a programing language. Theoret. Comput.

Sci., 5:223–255, 1977.

[19] P. J. Potts, A. Edalat, and M. H. Escardo. Semantcis of exat real arithmetic.
In IEEE Symposium on Logic in Computer Science, 1997.

[20] H.G. Rice. Recursive real numbers. In Proc. Amer. Math. Soc 5, pages 784–791,
1954.

[21] Dana Scott. Outline of the mathematical theory of computation. In Proc. 4th

Princeton Conference on Information Science, 1970.

[22] A. Simpson. Lazy functional algorithms for exact real functionals. In MFCS

1998, LNCS. Springer-Verlag, 1998.

[23] T. Streicher. A universality theorem for pcf with recursive types, parallel-or
and ∃. Mathematical Structures for Computing Science, 4(1):111–115, 1994.

[24] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics. North-
Holland, Amsterdam, 1988.

[25] A.M. Turing. On computable numbers, with an application to the entscheidungs
problem. In Proc. London Math. Soc. 42, pages 230–265, 1937.

[26] J. Vuillemin. Exact real computer arithmetic with continued fraction. In Proc.

A.C.M. conference on Lisp and functional Programming, pages 14–27, 1988.

[27] K. Weihrauch. Computability. Springer-Verlag, Berlin, Heidelberg, 1987.

38

