
1

An Abstract Notion of Application1

Pietro Di Gianantonio, Furio Honsell

Dipartimento di Matematica e Informatica, Universit� di Udine,
via Zanon 6, I-33100 Udine, ITALY

e-mail: pietro@udmi5400.cineca.it, honsell@uduniv.cineca.it

Many concrete notions of function application, suitable for interpreting typed lambda calculi with
recursive types, have been introduced in the literature. These arise in different fields such as set
theory, multiset theory, type theory and functor theory and are apparently unrelated. In this paper we
introduce the general concept of applicative exponential structure and show that it subsumes all these
notions. Our approach is based on a generalization of the notion of intersection type. We construe
all these structures in a finitary way, so as to be able to utilize uniformly a general form of type
assignment system for defining the interpretation function. Applicative exponential structures are
just combinatory algebras, in general. Our approach suggests a wide variety of entirely new concrete
notions of function application; e.g. in connection with boolean sets. Applicative exponential
structures can be used for modeling various forms of non-deterministic operators.

1 Introduction

Various natural concrete models of the notion of function application arising in l-calculus
have been discovered since the early seventies. G.Plotkin [13], inspired by earlier work of
Scott, was the first to define a set-theoretical notion of application. By means of it he built a
set theoretical model for untyped l-calculus. Since then, various other natural notions of
application were discovered by Scott [15] and Engeler [7] in set theory, by Coppo, Dezani
and Venneri [5, 3] in type theory and by Girard [8], Ore [12] and Lamarche [11] in functor
theory, in the theory of multisets and in analytic function theory. All these concrete notions
of application give rise to concrete structures, albeit not always categories, which can be
used as domains for denotational semantics. More precisely these structures are rich enough
to model the behavior of application in typed l-calculi with recursive types and appropriate
constructors, destructors and fixed point operators.

These notions of application, although apparently different, seem to share a common
pattern. In this paper we try to capture this pattern by introducing a notion of algebraic
structure, termed applicative exponential structure, which we show to be general enough
subsume all the concrete notions mentioned earlier. In particular we define a general
framework in which one can easily and uniformly express all classical constructions. One
of the key features of our approach is the use of a generalized notion of type, inspired by
that of "intersection type" [3], for providing a finitary description of the structures under
consideration. This analysis allows for the use of a uniform kind of type assignment system
for defining the interpretation of the l-calculus language. Intuitively types are understood as
finite elements of the domain, possibly having some coefficients; and a term has a given
type if its denotation is approximated by a given type. Special care has to be taken in order
to deal with the coefficients. This is a particularly interesting way of presenting the
interpretation function since, besides being finitary in nature, it constitutes an endogenous
logic in the sense of Abramsky [1]. Moreover it can provide a proof theoretic analysis of
the fine structure of the models. This technique was initially introduced for the study of
filter models [4] but was later applied to Girard's qualitative domains in coherent semantics
[10] and quantitative domains [6].

1 Paper accepted at the International Conference on Typed Lambda Calculus and Applications, March 1993
Utrecht (The Netherlands)

2

We think that our approach is successful and fruitful since, besides illuminating on the
idea underlying so many apparently unrelated notions of function application, it suggests
also a wide variety of new concrete alternatives. Particularly appealing and potentially
interesting is the notion of application which arises in connection with boolean sets. This
notion yields a sort of "boolean valued" model of the l-calculus. It is closely related to that
which arises if we carry out Plotkin's original construction in a Boolean-valued model of
set theory. This kind of construction can prove to be quite interesting for modeling
programming languages which feature non-deterministic operators. Moreover, it seems to
open a new area of applications of model theoretic concepts to the semantics of
programming languages.

For simplicity we shall not deal in this paper with the whole language of typed
l-calculus with reflexive types as in [14] or [12]. We will discuss only the case of the
untyped l-calculus language, as an interesting and important example of a reflexive type.
All the results can be extended with little difficulty to the more general case.

Somehow unexpectedly, the abstract structure introduced in the paper, and many of the
concrete examples given, do not model l-calculus in the strongest possible way. In general
the, so called, x-rule fails and these are only combinatory algebras and not lambda models
nor lambda algebras. Surprisingly enough the general construction does not seem to be
amenable to a simple categorical presentation, unless further equivalence relations are
superimposed. These will be discussed in a forthcoming paper.

A final remark is in order. We could have presented these results following more closely
the approach of Girard[8] and Lamarche [11]. This would amount to use as main source of
inspiration the notion of analytic function in complex analysis. No substantial difference
would arise. The approach via analytic functions is in fact "dual" to the one used here. In
this paper we will only describe very briefly this alternative approach in Appendix A.

The paper is organized as follows. In section 2 we define the structures normally utilized
for modeling l-calculus using a style which focuses on the properties of the interpretation
function. In section 3 we present some classical and new constructions of concrete models
of the lambda calculus and gradually introduce our general framework. In section 4 we give
the definition of applicative exponential structure and prove the main theorem of this paper,
i.e.: applicative exponential structures are combinatory algebras. Finally in section 5 we
give more examples of concrete applicative exponential structures yet uninvestigated and we
outline a possible use of applicative exponential structures for modeling non-deterministic
operators.

Finally the authors would like to gratefully acknowledge Fabio Alessi and Simona
Ronchi della Rocca for helpful discussions in the early stages of this work.

2 Combinatory Structures

Throughout the paper we assume the reader familiar with standard notions and notations in
Lambda Calculus and Combinatory Logic as in [2]. Several different applicative structures,
i.e. structures with a binary operation defined on them, have been introduced in the
literature for interpreting the language of l-calculus: combinatory algebras, lambda algebras
and lambda models. These differ by the strength of the equalities which they enforce on
interpretations of l-terms. Usually combinatory algebras are defined without any reference
to the interpretation function using the standard combinators S, K and I. Contrary to this
tradition will define uniformly all these structures in the style of [10]. By so doing the
connection with type assignment systems in the sequel will be clearer.

The language L of l-calculus is defined as usual by: M::= x | MN | lx.M. Terms which
do not have abstracted subterms will be called applicative terms.

Definition 1 (� la Hindley Longo)
1) An applicative structure A , is an algebra á A : Set , ° : A ´ A®A ñ;
2) An environment is a function r : Var ® A. The set of environments is denoted by Env.
3)An interpretation of L is a function [[]]: Env ®(L ®A). As usual x[x/a] denotes the
environment defined as x[x/a](x)=a and x[x/a](y)=x(y) if x¹ y.

3

4) A combinatory structure, c.s. for short, is a pair áA, [[]]: Env®(L®A)ñ consisting of an
applicative structure and an interpretation function defined over it;
5) A lambda model is a c.s. where the interpretation function satisfies the following
properties:

i) [[x]]r = r(x)
ii) [[M N]]r= [[M]]r ° [[N]]r
iii) [[lx.M]]r ° a = [[M]]r[x/a]
iv) [[lx.M]]r = [[ly.([x/y]M)]]r provided yÏFV(M)
v) [[M]]r = [[M]]x provided r(x) = x(x) for xÎ FV(M)
vi) ("a . [[M]]r[x/a] = [[N]]r[x/a]) Þ [[lx.M]]r = [[lx.N]]r

6) A lambda algebra is a c.s. where the interpretation function satisfies conditions i) - v)
above and also the following rule:
 (x) |-l M = N Þ [[lx.M]]r = [[lx.N]]r
where |-l denotes derivability in the theory of l-calculus.
7) A combinatory algebra is a c.s. where the interpretation function satisfies only conditions
i)-v) above. D

It is well known that lambda models are lambda algebras and lambda algebras are
combinatory algebras. The following proposition illustrates the importance of combinatory
algebras and establishes the equivalence of our definition with the usual ones.

Proposition 1. Let áA , [[]]ñ be a combinatory structure. The following properties are
equivalent:
a) A Êcan be extended to a combinatory algebra áA,[[]]'ñ;
b) There exist distinguished constants K and S in A such that for all constants a,b,cÎA :
((K ° a)°b) = a and (((S °a) °)b °)c = ((a °c) °(b °c));
c) The interpretation function [[]]: Env ®(L ®A) satisfies conditions i) and ii) in Definition
1, and moreover for all applicative term MÎL such that FV(M)Í{x1,...,xn}, there is a
constant c, such that [[M]]x=[[cx1...xn]]x, for xÎEnv. This property is usually called
functional completeness.

Proof. Standard D

3 Concrete Models of Application

In this section we present some classical constructions of concrete models of the untyped
l-calculus language, some alternative presentations of these and some entirely new models.
As remarked in the introduction any of these could be turned into a full-fledged domain
structure for denotational semantics, but for lack of space we shall not do it here.

Perhaps the best known example of a natural concrete model of lambda calculus is the
Plotkin-Engeler set theoretical model see [13, 7]. This model construction is closely related
to the Filter Model constructions in [3, 5, 4], where arbitrary sets are replaced by particular
ones called filters. Interestingly enough, Plotkin-Engeler Model and the Filter Model are
indeed lambda models, the model introduced in [5], on the other hand, is only a lambda
algebra. Nonetheless this latter structure, which we call Intersection Algebra, is quite
remarkable since it is the first example of a lambda algebra which has not been defined by
purely syntactical means.

In the literature the applicative structure underlying Plotkin-Engeler set theoretical model
is defined as follows:

Definition 2. The applicative structure áB, ° ñ is defined inductively by:
B0 is an arbitrary set of atoms,
Bn+1 º B0 È { (b,b)½b ÍBn, b finite, b Î Bn}

B º Ã(Èn Bn)

4

given U,VÎB we put U°V º { b½(b,b) ÎU, b ÍV}. D

We now give an alternative presentation of the above structure. This will be the first
example of the standard format which will be used throughout the paper for presenting
concrete applicative structures. The definition of the general notion of applicative
exponential structure in Section 4 will build upon the shape of this format. The original
presentation of Engeler's model, i.e.Definition 2, was given just for introductory purposes.

We need first some notation. Given a set A and a set B we denote by [A®B] the set of
functions from A to B. If B contains a distinguished point 0, we denote by [A®° B] the set
of functions from A to B with value almost everywhere 0. As will become clear in the
sequel these particular functions are introduced essentially as a useful "trick" for encoding
functions with a finite domain, without having to bother about issues of definedness.
According to this intended meaning, given rÎ[A®°ÊB], dom(r) will denote the set
{aÊ|aÎA,r(a)¹0}; and the term {a1:x1,...,an:xn} will denote the function s:A®B defined by
s(a) º {xiÊifÊa=aiÊforÊsomeÊiÊ1£i£n;0Êotherwise
Finally 2 will denote the boolean algebra of truth-values where "false" is taken to be 0 and
"true" to be 1.

Definition 3. Let J: IN® Set be inductively defined by:
J(0) º J0 , an arbitrary set of atoms, J(n+1) º J(0)È([J(n)®° 2] ´ J(n)).
Now put J ºÈn J(n) and J º [J® 2].
Let á J , °ñ be the applicative structure where application is defined by:

(f ° g)(j) º å
rÎ[J®°Ê2]

Êf((r,j)) ´ Õ
kÎdom(r)

Ê
Ê(r(k) Þ g(k))

where f,gÎJ , jÎJ, Þ is logical implication, + is disjunction and ´ is conjunction . D

Notice that any function rÎ[A ®° 2] is indeed the characteristic function of a finite subset
of A, just as any function f : A ® 2 is the characteristic function of an arbitrary subset of A.

The expression Õ
kÎdom(r)

Ê
Ê(r(k) Þ g(k)) , used above, is therefore true, i.e. equal to 1 if and

only if the finite set represented by r is a subset of the set represented by g.
What we have done in this new presentation amounts to substituting subsets with their

characteristic functions. It is now easy to show that áB, °ñ and á J , °ñ are isomorphic.
Filter Models and Intersection Algebras can be accounted for similarly as follows. The

structure á J , °ñ is precisely the applicative structure underlying the Intersection Algebra in
[5]. The applicative structure underlying the filter model in [3], instead, is obtained by
taking J in Definition 3 to be the set of only those subsets of J which are filters.
Elements of J behave in fact like intersection types. A filter f is a subset of J which is
upwards closed under the order relation £ induced by the following rule:

Êj£j'ÊÊÊÊ" kÎ dom(r).Ê$k'Î dom(r').Êk'£kÊ
(r,j)Ê£Ê(r',j')

We are now ready to turn these applicative structures into combinatory structures. As
remarked in the introduction, we will utilize throughout the paper,type assignment systems
in the sense of [3,4] to define the interpretation function. This is made possible because
elements of J behave as a generalized "intersection types" [3,4]. In general we construe
type assignment systems as formal systems for establishing assignment judgements of the
form búÐ M:j where MÎTerm, jÎJ and b is a (multi)set of assumptions of the shape x:j'.

5

Apart from the particular choice of the set J, the type assignment systems in the paper will
vary greatly in the structural rules assumed in the formal system. The intended meaning of
the judgement búÐ M:j will be made formally precise case by case, but it will always mean
something of the kind "under the assumptions recorded in b the interpretation of M depends
on the type j". This is both an "endogenous logic" and a "logical" presentation or "finitary"
presentation of the structure, in the sense of Abramsky, [1].

In order to define the interpretation function in the Plotkin-Engeler set theoretical model,
in the Intersection Algebra and in the Filter Model we shall utilize judgements of the form
búÐ M:j where the bases b are sets i.e. functions bÎ[(Var ´ J) ®° 2].

Definition 4.
1) Consider the following set of rules:

(axiom)
Ê

Ê{(x,j):1}úÐÊx:jÊ
 provided jÎJ

(abstraction)
ÊbÊ+Ê{(x,j1):1,¼ ,(x,jk):1}úÐÊM:jÊ

ÊbúÐÊlx.M:({j1:1,¼,jk:1},j)
 provided "j b((x,j)) = 0

(application)
ÊbúÐÊM:({j1:1,¼ ,jk:1},j)ÊÊÊb1úÐÊN:j1Ê...ÊbkúÐÊN:jkÊ

Êb+Êå 1£ i£kb iÊÊúÐÊMN:jÊ

(weakening)
Êb úÐÊM:jÊ

Êb+b 'úÐÊM:jÊ

(h)
búÐÊlx.Mx:jÊ

búÐÊM:j
 provided xÏFV(M)

boolean operations are extended pointwise to bases.
2) Let S1 be the type assignment system consisting of the rules{(axiom), (abstraction),
(application)}, S2 be the type assignment system consisting of the rules {(axiom),
(abstraction), (application), (weakening)} and S3 be the type assignment system consisting
of the rules{(axiom), (abstraction), (application), (weakening), (h)}.
3) Let the interpretation functions [[]]i: Env ®(L ® J i) , (iÎ{1,2,3}), be defined as

[[M]]i
r(j) º å

búÐiÊM:j
ÊÊ (Õ

kÎdom(b)

Ê
Ê(b(k) Þ r(k)))

where we write búÐi M:j to indicate that the judgment búÐM:j can be derived in the system
Si (iÎ{1,2,3}), boolean operations are extended pointwise to environments which are
taken to be functions r : (Var ´ J) ® 2; the expression å

búÐiÊM:j
ÊÊ denotes the disjunction

over provable judgments in Si; and finally J 1 and J 2 are J of Definition 3 above,
while J 3 is the set of filters on J . D

The definition above illustrates how type assignment systems can be used to define in a
finitary way interpretation functions. The proposition below illustrates what we have
achieved so far.
Proposition 2. The combinatory structure á J 1, [[]]1ñ is the intersection algebra of [5],
the combinatory structure á J 2, [[]]2 ñ is Plotkin-Engeler's lambda model while á J 3, [[
]]3ñ is the Filter Model [3].

6

Proof. A tedious but routine verification that conditions in Definition 1 are satisfied. D

Once we have presented Plotkin-Engeler's model in the format á J 2,[[]]2ñ it is natural to
generalize the role of the Boolean Algebra 2 in the construction of Definiton 3 to an
arbitrary boolean algebra B. What we obtain is then an entirely new class of combinatory
structures. This kind of construction is very closely related to that which would arise if we
carried out the construction of á J , °ñ in a Boolean-valued universe of Set Theory: i.e.
using boolean sets instead of ordinary sets. We cannot follow up this here. We give just
appropriate generalizations of Definitions 3,4 and Proposition 2 to the case of an arbitrary
complete boolean algebra.

Definition 5. Let B be a complete boolean algebra and Ao an arbitrary sets of constants
1) the combinatory structure á J B, °ñ is defined as follows:
let JB: IN ® Set be inductively defined by

JB(0) º Ao and JB(n+1) º JB(0)È([JB(n)®° B] ´ JB(n))
 now put JB º Èn JB(n) and let J B º [JB® B], application over J B is defined by

(f ° g)(j) º å
rÎ[JB®°ÊB]

Ê
Êf((r, j)) ´ Õ

kÎdom(r)

Ê
Ê(r(k) Þ g(k))

where f,gÎJ B and jÎJB.
2) Let SB1 be the type assignment system consisting of the following rules and:

(axiom)
Ê

Ê{(x,j):1}úÐÊx:jÊ

(abstraction)
ÊbÊ+Ê{(x,j1):b1,¼ ,(x,jk):bk}úÐÊM:jÊ

búÐÊlx.M:({j1:b1,¼,jk:bk},j)Ê
 provided "j b((x,j)) = 0

(application)
ÊbúÐÊM:({j1:b1,¼ ,jk:bk},j)ÊÊÊb1úÐÊN:j1Ê...ÊbkúÐÊN:jkÊ

Êb+å1£i£k(bi´bi)úÐÊMN:jÊ

(weakening)
Êb úÐÊM:jÊÊ

Êb+b 'úÐÊM:jÊ

where jÎJBÊand bÎB;
3) let SB2 be the subsystem obtained from SB1 by omitting (weakening),
4) The interpretation functions [[]]Bi: Env ®(L ® J B) (iÎ{1,2}), are defined by :
[[Ms]]Bir(j) º å

búÐBiÊM:j
ÊÊ (Õ

kÎdom(b)
ÊÊ(b(k) Þ r(k))). D

Proposition 3
i) The combinatory structures áá J B, °ñ, [[]]iñ (iÎ{1,2}) are combinatory algebras;
ii) If B is not trivial then áá J B, °ñ, [[]]iñ (iÎ{1,2}) are not lambda algebra

Proof. i) Omitted, since it is a special case of the proof of Proposition 5 below.
ii) Let Bº lxyz.x(yz) denote the usual composition combinator, one has immediately that
|-l lyz.Bx(Byz) = lyz.B(Bxy)z) i.e. compostion of functions is associative. A tedious
computation shows that [[lxyz.Bx(Byz)]]i ¹ [[lxyz.B(Bxy)z)]]i . D

It is interesting to notice that the role played by J in the above Proposition is again akin
to an "intersection type" to whom a "boolean weight" has been attached. The corresponding

7

type assignment system is then built so as to take into account also this non-standard
"weight". Boolean coefficients appear in the hypotheses and consequently, the structural
rule ofcontraction is replaced by a sort ofboolean contraction.. This "boolean set"
construction however, does not even give rise to a category. We conjecture that in order to
turn the structures áá J B, °ñ, [[]]iñ (iÎ{1,2,}) into l-algebras we need to define a suitable
quotient.

So far we have only considered examples where sets, be these ordinary or boolean,
were used in defining types, i.e. elements of J. Yet more examples of combinatory
structures can be obtained by "repeating" Plotkin-Engeler's construction using multisets in
the definition of types. Surprisingly enough this construction amounts to the construction
carried out by Ore [12]. This in turn was introduced as a simplified version of the notion
due to Girard of quantitative domain [8]. Loosely speaking Girard's construction
corresponds to Plotkin-Engeler's construction using arbitrary set-valued functions in place
of multisets. Here we will analyze in detail only the multiset case.

Ore's notion of domain can be put into our framework by replacing the boolean algebra
B in Definition 5 with IN, the set of natural numbers. Of course, the boolean operations
which appear in the definiton of application and interpretation, which in turn generalized the
simple set theoretic concepts of Plotkin-Engeler's algebra, have to be replaced here with
arithmetic operation on natural number, i.e. disjunction with addition, conjunction with
multiplication and logical implication with exponentiation. It comes almost as a surprise that
under this twist of perspective, Girard-Ore's construction can be naturally related to
Plotkin-Engeler's. Notice the close similarity between the following definition and
Definition 5.

Definition 6. Let Ao an arbitrary sets of atoms, the combinatory structure á J N, °ñ is
defined as follows: let JN:IN ® Set be inductively defined by
JN(0) º Ao and JN(n+1) º JN(0)È([JN(n)®° IN] ´ JN(n))
 put JN º Èn JN(n) and let J N º [JN® (INÈ{¥})] , application over J N is defined by

(f ° g)(j) º å
rÎ[JN®°ÊIN]

Êf((r,Êj)) ´ Õ
kÎdom(r)

Ê
Ê(r(k)ÊÞ Êg(k))

where f,gÎJ N, jÎJN, arithmetic operations are extended to INÈ{¥} in the obvious way
and Þ is the usual operation of exponentiation. D

The above definition can be easily modified to encompass the case of a notion of domain
intermediate between that of Girard's quantitative domain and Ore's domain. This notion of
domain is obtained using the set Card of cardinals in place of the set (INÈ{¥}). In order
to avoid the use of proper classes we can always think of Card as the set of cardinals
smaller than a given inaccessible cardinal. The structure á J C

N , °ñ is then obtained taking J
C;N to be [JN ® Card], the definition of application remaining unchanged. As remarked in
the introduction, presentations in [12],[8] and[11] rely heavily on the notion of analytic

function. In fact both in á J C
N, °ñ and á J N, °ñ we can interpret the formula defining the

application as the evaluation of an analytic function. See Appendix A for a brief illustration
of this alternative viewpoint.

Going back to the structure in Definition 6, the interpretation of a l-term M with respect
to á J IN, °ñ can be given again following the familiar pattern using a type assignment
system. Again, in fact , elements of JN can play the role of generalized "intersection types".
The coefficients being now integers. In this case however it is slightly more complex. In
order to define the interpretation function it is necessary to introduce an equivalence relation
on proofs of typing judgements to take care of multiplicities.

Definition 7.
1) The type assignment system N consists of the following rules:

8

(axiom)
Ê

Ê{(x,j):1}úÐÊx:jÊ

(abstraction)
ÊbÊ+Ê{(x,j1):n1,¼ ,(x,jk):nk}úÐÊM:jÊ

ÊbúÐÊlx.M:({j1:n1,¼,jk:nk},j)
 provided "j b((x,j)) = 0

(application)

búÐÊM:({j1:n1,¼,jk:nk},j)
Êb i,tiú

ÐÊN:j iÊÊÊ1£i£kÊÊ1£t i£n i

b+ å
1£i£k

1£ti£ni

Êbi,tiú
ÐÊMN:j

Here a basis b can be seen as a finite multiset of hypothesis of the form x:j, accordingly
arithmetic operations are extended to bases in the natural way.

2) The equivalence relation º on proofs of typing judgements is the finest equivalence
relation satisfying the following two conditions:
a) º is a congruence relation on the structure of the proof, i.e.:

Di º D 'i Þ
D1...Di...Dn

D
 º

D1...D 'i...Dn

D

b) For every permutation s of the set {1,...,k}
búÐÊM:({j1:n1,¼,jk:nk},j)

Êb i,tiú
ÐÊN:j iÊÊÊ1£i£kÊÊ1£t i£n i

b+ å
1£i£k

1£ti£ni

Êbi,tiú
ÐÊMN:j

 º

búÐÊM:({j1:n1,¼,jk:nk},j)
Êbs(i),ts(i)ú

ÐÊN:js(i)ÊÊÊ1£i£kÊÊ1£ti£ni

b+ å
1£i£k

1£ti£ni

Êbi,tiú
ÐÊMN:j

3) The interpretation of a l-term M in the applicative structure á J IN, °ñ is defined by:
[[Ms]]INr(j) = å

b
Êrb ´ å

DÎ{[búÐÊMÊ:Êj]}
Ê1ÊÊÊ = å

b
Ê å

DÎ{[búÐÊMÊ:Êj]}
Êrb

where we use the abbreviation gb for Õ
kÎdom(b)

Ê
Ê(b(k)ÊÞÊg(k)) , [D] denotes the equivalence

class modulo º of D and {[G]} denotes the set of equivalence classes of proofs having the
judgement G as conclusion. D

The definition of the equivalence º between proofs can be motivated as follows. When
we apply the rule (application) we must fix an order on the domain of the function
{(j1:n1)¼(jk:nk)}. This order is completely arbitrary. The condition b) in Definition 7.2.
sets two proofs to be equivalent if they differ just up to the order chosen on the domain of
the function {(j1:n1)¼(jk:nk)}.
We are now ready to establish the properties of á J IN, °ñ.

Proposition 4. The combinatory structure á á J IN, °ñ,[[]]IN ñ is a lambda algebra but not
a lambda model.
Proof. The proof that áá J IN, °ñ,[[]]IN ñ is a combinatory algebra is given in Appendix B.
For lack of space we omit the routine proof that it is a l-algebra, see[12]. The following
counterexample shows that the x-rule fails in áá J IN, °ñ,[[]]INñ: let r(x)=(({j1:1},j):¥) and
r(y)=(({j1:2},j):¥), now "a.[[xz]]r[z/a]=[[yz]]r[z/a] but [[lz.xz]]r=[[lz.yz]]r. D

9

4 The General Case

After having gone through various different examples in the previous section, we are now
ready to introduce the general notion of applicative exponential structure. This notion
subsumes all the concrete notions of application presented up to now. It denotes a general
kind of structure where function application can be adequately defined via a
type-assignment system. It arises from the abstract characterizations of the structure of the
coefficients which are applied either to the "types" or to the "points" of the domains in the
previous examples. It turns out infact, that two different kinds of coefficients are actually
involved in the construction; a fact this, which was never apparent in the previous
examples.

Definition 8. A preexponential structure consists of a triple á A, E, Þ ñ where:
1) A º áA, +A, ´A , 0A, 1A ñ is an infinitary commutative semiring, i.e. an algebraic
structure where +A is an infinitary commutative, associative operation over A, with identity
0A, and ´A is an associative, commutative binary operation over A which distributes over
+A, with identity 1A.
2) E º áE, +E, ´E, 0E, 1Eñ is a commutative semiring, i.e. +E is a binary associative and
commutative operation over E with identity 0E, and ´E is an associative, commutative
binary operation over E which distributes over +E, with identity 1E.
3) there is a binary operation Þ:E´A®A satisfying the following axioms:
 a) (e1 +E e2) Þa = (e1 Þa)´A(e2 Þa)

b) e Þ (a1´Aa2) = (e Þa1) ´A(e Þa2)
c) (e1 Þ(e2Þa))= e1 ´E e2 Þa
d) 0E Þa = 1A and 1E Þa = a D

As will become clear in the following preexponential structures will be the abstract
coefficients of our genral notion of applicative structure. Elements of E will be the
"weights" of the "types" while elements of A will be the coefficients of the points.

Condition 3) above shows that the function Þ satisfies essentially the properties of an
exponential function. In the proof of Proposition 4 an essential property of exponentiation
over natural numbers is crucial: Newton's binomial expansion. The corresponding identity
over booleans, necessary for proving Proposition 3, on the other hand is trivial. The notion
of exponential structure below, is the appropriate abstract setting for carrying out the
analogue of the "binomial expansion" over a preexponential structure, where elements of E
play the role of exponents (whence the name) and elements of A play the role of bases.
Subscripts are omitted.

Definition 9. Let á A, E, Þ ñ be a preexponential structure .
1) An element e of E is called unitary if e Þ åjÎJ aj = åjÎJ (e Þ aj) holds for all åjÎJ
aj. The set of unitary elements of E is denoted with UE.
2) Given eÎE, a function fÎIN®° UEÈ{0} is a unitary decomposition of e if e = åjÎdom(f)
f(j). Given eÎE the set of all unitary decompositions of e is denoted with U(e)
3) An exponential structure is a preexponential structure á A, E, Þ ñ together with a
function
H : E ® ([IN®° UEÈ{0}]) which satisfies the following two axioms:

Ax1) For each eÎE there is a unitary decomposition of E;
Ax2) The function H chooses a unitary decomposition for each element of E D

This is the least intuitive definition among the ones given so far. But its complexity is
rewarding. We can now safely use exponential structures as possible coefficients in the
machinery that we put to work in the previous section for defining concrete combinatory
algebras.

10

Definition 10. Given an exponential structure áA, E, Þ , Hñ and an arbitrary set of
constants Co, an applicative exponential structure, a.e.s. for short, over áA, E, Þ, H ñ is

the c.s áá J A
E , °ñ,[[]]ñ defined as follows:

define inductively JE: IN®Set by JE(0) º Co and
JE(n+1) º JE(0)È(([JE(n)®° E] ´ JE(n)),

put JE º Èn JE(n) and J A
E = [JE ®A], and,for f, gÎJ A

E and jÎJE, let application over

J A
E be defined by (f ° g)(j) º å

rÎ[JE®°ÊIN]
Êf((r,j)) ´ gr) .

The interpretation function [[]]:Env ®(L ® J A
E) is defined via the type assignment system

SA
E by: [[M]]r(j) = å

b
Êrb ´ å

DÎ{[búÐÊM:j]}
Ê1ÊÊÊ = å

b
Ê å

DÎ{[búÐÊMÊ:Êj]}
Êrb

for jÎ JE and M ÎL.

The system SA
E consists of the following three rules:

(axiom)
Ê

{(x,Êj):Ê1}úÐÊx:jÊ
 provided j Î JE

(abstraction)
bÊ+Ê{(x,j1):e1,¼ ,(x,jk):ek}ÊúÐÊM:jÊ

búÐÊlx.M:({j1:e1,¼,jk:ek},j)
 provided "j b((x,j)) = 0

(application)

búÐÊM:({j1:e1,¼,jk:ek},j)
Êb i,tiú

ÐÊN:jiÊÊÊ1£i£kÊÊtiÎdom(H(e i))

b+ å
ÊÊ1 £ i £ k
tiÎdom(H(ei))

ÊH(ei)(ti)´bi,tiú
ÐÊMN:j

The equivalence relation on proofs used in the definition of [[]] is that of Definition 7 and
the abbreviations gr, rb are those of Definition 7. D

The following Proposition is the main result of the paper.

Proposition 5. Applicative exponential structures are combinatory algebras.

Proof. The proof is very similar to the one given in Appendix B. D

One can easily check that all the constructions in Section 3, fall under the above general
definition. The only non-trivial issue is the choice of the function H in the definition of the
exponential structure. Whenever E is instantiated by IN there is only one choice possible.
Whenever E is a boolean algebra the choice is immaterial. Moreover in the latter case the
summation over equivalence classes of proofs, in the definition of the interpretation
function, is irrelevant.

5 Applications and Directions for Future Works

The general notion of applicative exponential structure suggests other notions of function
application and hence other interesting constructions of concrete combinatory algebras.
Here are few examples.

11

1) Lamarche [11] discusses at length the case of an a.e.s. áá J A
IN, °ñ,[[]]ñ where A is a

complete Heyting algebra. This is a slight variation of Ore's construction. In this case we
have to define the exponential (Þ) : IN´A®A by:

n Þ a := { ÊaÊ´. . .´ÊaÊÊifÊnÊ³Ê1
Ê 1 Ê Ê Ê Ê Ê Ê Ê Ê Ê i f Ê n Ê = Ê 0

2) Using the set of positive rational numbers Q+, or the set of positive real numbers IR+,
we can form the exponential algebras áQ+È{¥}, IN, Þ , Uñ and áIR+È{¥}, IN, Þ , Uñ
where IN is the set of natural numbers, addition and multiplication are the standard ones and
Þ is the usual exponential, the function U decomposes each natural number n in a sum of

1's. In the corresponding l-algebras áá J Q+È{¥}
Ê IN

, °ñ,[[]]ñ and áá J IR+È{¥}
Ê IN

, °ñ, [[]]ñ the
points can be interpreted as formal power series, i.e. the description of analytic functions
either on positive rational or on positive real numbers. More examples of this kind can be
defined by restricting the range of the relevant operators to suitable intervals.

3) Given any complete Heyting algebra G and indicating with InG the set of invertible
elements in G, InG = {aÎG | $à . a+à =1, a´à =0}, áG, InG, Þñ is an exponential algebra.
In this case the function I decomposes every element a of InG in the a sum containing the

single element a. Combinatory algebras áá J G
InG

, °ñ,[[]]ñ generated as in Definition 10 by
this kind of exponential algebras generalize the boolean c.s. of Definition 6.

4) Let G be a finite Heyting algebra then áG, G, Þ, Hñ is an exponential algebra for an

appropriate choice of H, which always exists. The c.s. áá J G
G,°ñ,[[]]ñ generated as in

Definition 10 is yet another example of a combinatory algebra.

The ideas outlined in this paper need to be investigated further. First of all one can try to
strengthen the conditions in the definition of a.e.s. so as to obtain always lambda algebras.
In another direction one can try to define a coherence predicate on the elements of J so as to
be able to subsume notions of domain which involve stable functions. Finally one should
explore the relation between the notions of domain arising in this setting, which for
instance, are not necessarily w-algebraic, and those which are normally used in connection
with Scott Domains. An abstract notion of implication between elements of J can be
possibly introduced, which could be used to introduce a general notion of filter.

The structures introduced in this paper can turn out to be quite useful from the point of
view of programming language semantics. For example, one can easily get a plethora of
different denotational semantics for a simple functional language featuring a
non-detrministic or operator. For any particular applicative exponential structure based on
the exponential structure á A, E, Þ ñ, one can give a denotation to the non-deterministic or
in terms of the operators +A and ´A. One can take it to be, for instance, an operation
[[or]]:[J®A]2®[J®A] defined by applying pointwise on J a suitable weighted average.
The intuition behind this is that the meaning of or is that of evaluating either the left hand
with a suitable weight or the right hand with another weight. According to the particular
choice made one gets different flavours of non-determinstic operators. Some of these are
interesting in themselves and can illuminate our intuition of non-determinism. For example,
applicative exponential structures based on boolean sets, where weights are thought of as
sets of favorable events, yield a kind of non-determinsm which is settled once and forall
before the computation is started; the resulting coefficient being the set of favorable events
for a given result of a computation. Semantics based on multisets are more directly related
to the frequency with which a given result is obtained following different computations, see
[8,12]. Semantics based on real valued sets are finally closer to real probabilities.

References

12

1. S.Abramsky: Domain Theory in Logical Form. Annals of Pure and Applied Logic,
(1991)

2. H.Barendregt: Lambda Calculus: its Syntax and Semantics revised version. Studies in
Logic. Amsterdam: North Holland 1984

3. H.Barendregt, M.Coppo, M.Dezani Ciancaglini: A Filter Lambda Model and the
Completeness of Type Assignment. Journal fo Symbolic Logic, 48, 4 (1983)

4. M.Coppo, M.Dezani Ciancaglini, F.Honsell, G.Longo: Extended Type Structures and
Filter Lambda Models. In: G.Longo et al. (eds.): Logic Colloquium '82. Amsterdam:
North Holland 1983

5. M.Coppo, M.Dezani Ciancaglini, B.Venneri: Principal Type Schemes and Lambda
Calculus Semantics. In: J.Seldin et al. (eds): To H.B.Curry: Essays. Academic Press
1980

6. P.Di Gianantonio, F.Honsell: A General Type Assignment System for an Abstract
Notion of Domain. Talks given at the 4th and 6th Meetings of the Jumelage Typed
Lambda Calculus. Edinburgh, October 1989 and Paris, January 1991

7. E.Engeler: Algebras and Combinators. Berichte des Instituts f. Informatik 32, ETH,
Zurich 1979

8. J.Y.Girard: Normal Functors Power Series and Lambda Calculus. Annals of Pure and
Applied Logic, 37, 2 (1988)

9. R.Hindley, G.Longo: Lambda Calculus Models and Extensionality. Zeit. f. Math.
Logik u. Grund. d. Math., 26 (1980)

10. F.Honsell, S.Ronchi della Rocca: Reasoning about interpretations in qualitative
Lambda Models. In: M.Broy et al. (eds.) Programming Concepts and Methods. 1990

11. F.Lamarche: Quantitative Domains and Infinitary Algebras. Unpublished manuscript,
1990

12. Ch.-E.Ore: Introducing Girard's quantitative domains. PhD Thesis, Research Report
113. University of Oslo 1988

13. G.Plotkin: A set-theoretical definition of application. Memorandum MIP-R-95, School
of Artificial Intelligence, University of Edinburgh, 1972

14. G.Plotkin: Domains for Denotational Semantics, course notes, Stanford 1985
15. D.Scott: Some philosophical issues concerning theories of combinators, lambda

calculus and computer science theory. In LNCS 37, Springer Verlag, 1975
16. D.Scott: Data Types as Lattices. SIAM Journal of computing, 5 (1976)

Appendix A

Using the notation introduced in Section 3, we outline, in the 7 points below, the alternative
viewpoint under which applicative exponential structure can be considered. This viewpoint
focuses on the notion of formal power series and analytic function as a justification for the

definition of application in á J C
IN, °ñ and á J IN, °ñ.

1) JIN is taken to be a set of variables. (In the following JIN will be denoted simply by J.)

2) any rÎ[J®° IN] is viewed as a monomial in the variables J:
i.e. r corresponds to the monomial Õ

kÎdom(r)
Êkr(k)

3) an element gÎ J IN º [J® (INÈ{¥})] is viewed as a vector consisting of J

components; the value Õ
kÎdom(r)

Ê
Ê(r(k)ÊÞÊg(k)) is then the result of the evaluation of the

monomial r with respect to the vector g;

4) a function h:(J®° IN)®(INÈ{¥}) assigns a coefficient to every monomial and therefore

13

determines a formal power series in the variables J : i.e.

å
rÎ[JN®°ÊIN]

Ê
Êh(r) ´ Õ

kÎdom(r)

Ê
Êkr(k) ;

5) a function h' : J®([J®° IN] ® (INÈ{¥}) associates a formal power series to each
variable in J and is therefore a vector valued formal power series. These functions are
usually called analytic;

6) the following isomorphisms hold:
J IN º J ® (INÈ{¥}) @ (J(0)È((J ®° IN) ´ J))® (INÈ{¥}) @
@ (J(0)®(INÈ{¥}))´(((J ®° IN)´ J)®(INÈ{¥})) @
@ (J(0)®(INÈ{¥}))´(J ®((J ®° IN)®(INÈ{¥}))
therefore an element f Î J IN is a vector of J components and containes the representation
of a vector valued formal power series;

7) f ° g is the vector obtained applying the analytic functions described by f to the vector g.

Appendix B

Proof of Proposition 4.
First we need a lemma.
Lemma. The set {[búÐ MN : j]} can be decomposed in disjoint singletons in the following
way:

{[búÐ MN:j]} =
 È
a={(j1:n1)¼(jk:nk)}

 È
b'

b1,1...b1,n1
.

bk,1...bk,nk
Êb=b'+b1,1+...+bk,nk

 È
D'Î{[búÐM:j]}
D1,1...D1,n1

.
Dk,1...Dk,nk

ÊDi,hÎ{[bi,húÐN:ji]}

Ê Ê
 î

í
ì

 þ
ý
ü

 ë
ê
é

 û
ú
ùD 'D1,1...Dk,nk

búÐÊMN:j

Proof (lemma). The above formula just enumerates all possible equivalence classes of
proofs of judgments búÐ MN:j. It is not difficult to see that the formula is correct observing
that:
1) in all the proofs of búÐ MN:j the last rule applied is the application rule.
2) in the formula we consider just one of the possible orderings of the domain of the
function a={(j1:n1)¼(jk:nk)}. D

Proof (Proposition)
i) We must prove [[x]]r = r(x), by definition we have:
[[x]]r(j) = å

b
Ê å

DÎ{[búÐÊx:j]}
Êrb

the only proofs of judgments of the form: búÐ x:j are given by an application of the
(axiom)-rule ̀ ``````````````````````{(x,j):1}úÐÊx:j , so [[x]]r(j) = r{(x, j), 1} = (r(x,j))1 = r(x)(j).
ii) We must prove [[MN]]r(j) = ([[M]]r°[[N]]r)(j); expanding the term on the left of this
equality we have:

14

[[MN]]r(j) = å
b

Ê å
DÎ{[búÐÊMN:j]}

Êrb = (by the previous lemma)

=å
b

Ê å
a={(j1:n1)¼(jk:nk)}

Ê å
b'

b1,1...b1,n1
.

bk,1...bk,nk
Êb=b '+b1,1+...+bk,nkÊ

Ê å
D'Î{[búÐM:j]}
D1,1...D1,n1

.
Dk,1...Dk,nk

ÊDi,hÎ{[bi,húÐN:ji]}

Êrb =

= å
a={(j1:n1)¼(jk:nk)}

Ê å
b'

b1,1...b1,n1
.

bk,1...bk,nk

Ê å
D'Î{[búÐM:j]}
D1,1...D1,n1

.
Dk,1...Dk,nk

ÊDi,hÎ{[bi,húÐN:ji]}

Êrb '+b1,1+...+bk,nk

Expanding the term on the right we obtain:

([[M]]r°[[N]]r)(j) = å
a={(j1:n1)¼(jk:nk)}

 [[M]]r(a,j)´([[N]]r(j1))n1´...´([[N]]r(jk))nk =

= å
a={(j1:n1)¼(jk:nk)}

 è
ç
æ

 ø
÷
öå

b
å

DÎ{[búÐÊM:(a,j)]}

Êr b Ê Ê ´

 è
ç
æ

 ø
÷
öå

b
å

DÎ{[búÐÊN:(j1)]}

Êr b Ê Ên1
´...

 ..´

 è
ç
æ

 ø
÷
öå

b
å

DÎ{[búÐÊN:(jk)]}

Êr b Ê Ênk =

= å
a={(j1:n1)¼(jk:nk)}

 å
b'
b1

1...b1
n1
.

bk
1...bk

n k Ê Ê Ê Ê Ê

 å
D'Î{[búÐM:j]}
D1,1...D1,n1

.
Dk,1...Dk,nk

ÊDi,hÎ{[bi,húÐN:ji]}

 rb'´rb1,1´...´rbk,nk

and this expression is equal to what we obtained before expanding the other term.

iii) We must prove that ([[lx.M]]r°a)(j) =[[M]]r[a/x](j), by definition we have the following
equalities,

([[lx.M]]r°a)(j) = å
a

Ê
Ê ([[lx.M]]r(a,j))aa =

=å
a è

ç
æ

 ø
÷
öå

b

Ê å
DÎ{[búÐÊlx.M:(a,j)]}

Ê r b Ê Ê Ê Ê ´ aa =

=å
a è

ç
æ

 ø
÷
öå

b

Ê å
DÎ{[b+x:aúÐÊM:j]½xÏb}

Ê r b Ê Ê Ê Ê Ê ´ aa = (using distributivity)

15

=å
a

å
b

 å
DÎ{[b+x:aúÐÊM:j]½xÏb}

 rb ´ aa =

=å
a

å
b

 å
DÎ{[b+x:aúÐÊM:j]½xÏb}

 r[a/x]b+{x:a} =

=å
b'

 å
DÎ{[b'úÐÊM:j]}

 r[a/x]b' = [[M]]r[a/x](j) (by definition).

iv) We must prove that "j.[[lx.M]]r(j) = [[ly.([x/y]M)]]r(j) provided yÏFV(M). By
definition :
[[lx.M]]r(j) =å

b
Ê å

DÎ{[búÐÊlx.M:j]}
Êrb =

if ysÏFV(M) then there is a bijection between proofs of búÐ lx.M:j and proofs of
bú-Êly.([x/y]M):j and these correspondence preserves the equivalence relation on proofs,
thus

å
b

Ê å
DÎ{[búÐÊlx.M:j]}

Êrb = å
b

Ê å
DÎ{[búÐÊly.([x/y]M):j]}

Êrb = [[lx([x/y]M)]]r(j)

v) We must prove that "j.[[M]]r(j) = [[lx.M]]x(j) provided r(x) = x(x) for xÎFV(M)
By definition [[M]]r(j) = å

b
Êrb ´ å

DÎ{[búÐÊM:j]}
Ê Ê 1 Ê Ê

it is easy to show by induction that in búÐ M:j the domain of b contains only the free
variables of M. Moreover rb is equal to xb if r and x are equal on the domain of b. D

