A Co-inductive Approach to Real Numbers

Alberto Ciaffaglione and Pietro Di Gianantonio

Dipartimento di Matematica e Informatica, Universita di Udine
via delle Scienze, 206 - 33100 Udine (Italy)
e-mail: {ciaffagl,pietro}@dimi.uniud.it

Abstract. We define constructive real numbers in the logical framework
Coq using streams, i.e. infinite sequences of digits. Co-inductive types
and co-inductive proofs permit to work naturally on this representation.
We prove our representation satisfies a set of basic properties which we
propose as a set of axioms for constructive real numbers.

1 Introduction

The aim of this work is to experiment a co-inductive representation of Real Num-
bers in the context of Logical Frameworks, i.e. interactive proof assistants based
on Type Theory. This is an effort towards computer assisted formal reasoning
on real numbers and it should provide a workbench for specifying and certifying
lazy exact algorithms on them.

Several computer aided formalizations of analysis exist in literature. Chirimar
and Howe [CH92] have developed analysis following the constructive approach
to mathematics of Bishop [Bis67]: they represent real numbers by Cauchy se-
quences and prove the completeness theorem using the Nuprl system [Con86].
Jones [Jon91] has given some theorems of constructive analysis in Lego [Pol94].
More recently, Harrison [Har96] have presented a significant part of the classi-
cal analysis in the context of the Isabelle-HOL system [GM93], introducing the
reals by means of a technique closely related to the Cantor’s classical method.
Cederquist, Coquand and Negri [Ced97] have studied constructive analysis us-
ing a point-free topology approach. They prove constructively the Hahn-Banach
theorem in an intensional Martin-Lof’s type theory and certify such a proof by
Half [Mag95].

The main difference between our approach and the previous ones consists
both in the representation chosen for reals and in the logical framework we use.

We represent real numbers by potentially infinite sequences —i.e. streams—
of 3 digits: {0, 1, —1}. This representation is close to those adopted in the field of
exact computation. In recent years there has been growing interest in exact real
number computation [Wei96, PEE97, Sim98]: this approach allows to produce
arbitrary precision results from data —thus avoiding round off errors typical
of limited precision practice— without having to carry out any independent
error analysis. Since exact computation is among other motivated by software
reliability reasons, it is important to certify the correctness of the algorithms
performing exact computation on real numbers.

We decide to use the logical framework Coq [INROO] to carry out our research.
This choice is motivated by the fact that Coq allows a “natural” encoding of
streams as infinite objects inhabiting co-inductive types; correspondly, it pro-
vides useful techniques for dealing with co-induction proof theory, such as the
tactic Cofix. Our work is carried out in a constructive logic setting; up to now,
it has not been necessary to use the Axiom of Excluded Middle, even if it could
probably simplify some of the formal proofs we have developed.

The main line of our research is the following: we start representing real
numbers by streams; then we define (co-)inductively on streams the notions of
strict order (Less), addition (Add) and multiplication (Mult). We prove formally
in Coq that these definitions satisfy a set of properties: we claim such properties
can be taken as a set of axioms characterizing the constructive real numbers.
We substantiate this claim by proving that most of the basic properties of con-
structive real numbers can be deduced from our axioms.

The paper is structured as follows. Sections 2 and 3 respectively introduce and
justify our representation of real numbers, which is then enriched by means of
other notions in section 4. A central importance in the article has the discussion
about the setting of a (minimal) set of axioms characterizing constructive real
numbers. This topic is undertaken in section 5 and continues after. The last
sections present the formalization and the study of the theory in Coq.

A cknowledgement. We wish to thank the anonymous referees for the useful
suggestions and the careful reading of the paper. We thank also Furio Honsell
and Herman Geuvers for interesting discussions.

2 Real numbers

Many classical constructions of real numbers exist in literature: Cauchy se-
quences of rational numbers, Cauchy sequences of rational p-adic numbers,
Dedekind cuts in the field of rationals, infinite decimal expansions, and so on.
All such methods turn out to be equivalent, in the sense that they give rise to
isomorphic structures. Many of these constructions can also be formulated in a
constructive approach to mathematics, but in this case we don’t always obtain
isomorphic structures —e.g. constructive reals via Cauchy sequences differ from
the constructive reals through Dedekind’s cuts [TvD88].

In this work we will construct real numbers using infinite sequences of digits,
i.e. “infinite expansions”. It is a well known phenomenon that standard positional
notations make arithmetic operations on real numbers not computable [Bro24].
A classical solution to this problem is to adopt redundant representations: in a
redundant representation a real number enjoys more than one representation.
We decide to use here a signed-digit notation: we add the negative digit —1 to
the binary digits 0 and 1 of the standard binary notation, maintaining 2 as the
value for the base.

We are going now to introduce the basic ingredients of our work. In order to
explain and motivate our definitions we will refer to a field of the real numbers

IR: this use of an already given field is not essential in our construction, but helps
to understand the intended meaning of the definitions. Moreover, in section 3
we will use the same IR to give an external proof that the given definitions
are correct. In this proof we will make use of simple arithmetic properties that
are valid also for the constructive reals. It follows that no matter which field is
chosen for IR: it could be either the classical or the constructive one [TvD88].
A notational issue: from now on we will use “.” as a justaposition operator for
digits.

Definition 1. (Ternary streams)
Let str be the set of the infinite sequences built of ternary digits:

str:{al:a2:a32... |VZEN+ aiE{O,l,—l}}

The elements of str represent the real numbers via the interpretation function
[1str : str — IR, defined as:

[ar a2 :ag:... Jstr = Z a;-27°¢

iENT+

We will use a, b, c, ... as metavariables ranging on ternary digits and z,y, 2, ...
as metavariables for streams.

Using ternary streams we can represent any real number belonging to the closed
interval [—1,1]; it is not difficult to see that any element of the open interval
(—1,1) is represented by an infinite number of different streams. In order to dis-
pose of arbitrarily large reals it is necessary to use a mantissa-exponent notation:
we encode a real number by a pair (natural, stream), which we call “R-pair”.

Definition 2. (R-pairs)
Let R be the set (IN x str).

The elements of R represent the real numbers via the interpretation function
[z : R — IR, defined as:

[(n, 2)|r = 2" - [2]str

We will use 7, s,t,... as metavariables ranging on R.

In order to complete our construction of real numbers it is necessary to pro-
vide R with an order relation and a field structure: actually, the real line is
completely determined by the binary “strict order” relation (<) and the func-
tions of “addition” and “multiplication”.

We have considered several different possible definitions for order, addition
and multiplication in our research: at the end, we have chosen to describe not
only the order, but also addition and multiplication using predicates rather than
functions. This choice is due to the fact that the predicates are simpler to define.
An intuitive motivation for this is that functions are requested to be “productive”
—i.e. they must supply a method to effectively calculate the result, given the
input. On the contrary, a predicate just specifies the constrains that the output
has to satisfy w.r.t. input: it follows that it is a simpler task to prove the formal

properties of the predicates. Anyway, we will introduce the functions too and we
will prove they are coherent with respect to the predicates. One can interpret this
fact saying the implementation (algorithms, functions) satisfy the specification
(predicates).

We have found that the lenght and the complexity of the formal proofs is
greatly affected by the pattern of the definitions: quite frequently the proofs
are obtained by structural (co-)induction on the derivations, so the number
of the cases to consider increases together with the number of constructors of
the predicate involved. In order to simplify the proofs, we have formalized the
(co-)inductive predicates using at most two constructors, thus reducing the cases
to analyze.

We claim that these considerations about complexity of proofs have general
meaning and are not specific to the particular proof assistant we have used: in
fact, the proofs developed in Coq are just a completely detailed version of the
proofs that we would write with paper and pencil.

Let now resume our goal: to define order, addition and multiplication.
The strict order is defined by induction: this is possible because, given two R-
pairs, we can semi-decide whether the first is smaller than the second just by
examinating a finite number of digits. The binary strict order relation on streams
is defined in terms of an auxiliary ternary relation less_.aux C (str x str x Z),
whose intended meaning is:

less.aux(z,y,i) <= ([2]str < [y]str + 1)

This auxiliary predicate permits to define more simply the main predicate of
order on streams. In particular, using the integer parameter ¢ we are able to
do simpler proofs, because the extensive case analysis on the ternary digits is
replaced by proofs over integers.

Definition 3. (Order on streams)
The predicate less_aux C (str X str x Z) is defined inductively by the two rules:

LESS-BASE - here big = 32
less_aux(x,y,big) wiere oty

less_auz(z,y,i) (i+a) < (2j+0b)

LESS-IND .
lesscauz(a:z, b:y, j)

The predicate lesss,. C (str x str) is defined as:
lesssir(x,y) =ger less_aux(z,y,0)

The above definition requires some discussion. Referring to the intended meaning
it is simple to see that the base rule is valid for any value of the parameter big
greater than 2: a natural choice for big would be the integer 3, but any greater
value gives rise to an equivalent definition. We have found that greater values

simplify several proofs built by structural induction on the judgments of the kind
less_auz(x,y,1). We have arbitrarily fixed big to 32.

It is immediate to see the base rule is correct.
The induction rule can be informally justified by a simple calculation:

la:z]ser < ([6:ylstr +7) ~
a/2+ ([#]str/2) < b/2+ ([ylser/2) +3 ~
[2]str < [ylstr +2j+b—a 2N

Ji. ([[w]]str < [[y]]str +7’) A (7’ +a S 2.7 + b)
The strict order relation can now be easily extended to R-pairs.

Definition 4. (Order on R-pairs)
The predicate Less C (R x R) is defined as:

Less({m,z), (n,y)) =dgef lessgr(0:...:0:2,0:...:0:y)

n m

On the contrary with respect to the order, the arithmetic predicates are de-
fined by co-induction, because the process of adding or multiplying two real
numbers is considered non terminating. Co-inductive predicates originate judge-
ments that can be proved by “infinitary” proofs, which are built using infinitely
many times the corresponding introduction rules [Coq93, Gim94].

The predicates of addition and multiplication have the following pattern:

predicate(operand;, operands, result).

We start from addition: as we have done for the order relation, we first define
an auxiliary predicate on streams. The relation add_aux C (str x str x str x Z)
has intended meaning:

add_aua:(m,y,z,i) — ([[m]]str + IIy]]str) = (I[Z]]str + Z)

Definition 5. (Addition)
The predicate add_aux C (str x str x str x Z) is defined by the co-inductive rule:

add_auz(z,y,z,(2i+c—a—"0b)) (—big <i < big)

ADD-COIND -
add-auz(a:z, b:y, c: z, 1)

The addition predicate on streams adds. C (str X str x str) is defined as:
addsy(x,y,2) =aef add_auz(z,y,z,0)
The addition predicate on R-pairs Add C (R x R X R) is defined as:

Add((m, z), (n,y), (p,2)) =aef addsr(0...0:2, 0:...:0:y, 0:...:0:2)

n+p m+p m+n

The side-condition (—big < i < big) bas been introduced in order the re-
lation add-auz is not total —otherwise one can easily prove the judgement
add-auz(z,y,z,1) for any tuple z,y,z,i. Again, values of big greater than 3
give rise to equivalent conditions, but lead to simpler proofs.

The co-inductive rule can be informally justified by the calculation:

(Ta:]str + [b: yllser) = ([c: 2]ser + 1) N
a/2+ ([z]ser/2) + 0/2 4+ ([Ylser/2) = ¢/2+ ([2]ser/2) +i &
IIx]]str + [[y]]str = IIZ]]str +2i+c—a—>b

The multiplication predicate is defined in terms of that of addition. This time
we need also to define an auxiliary multiplication between digits and streams.

Definition 6. (Multiplication)
The function timesq st = {—1,0,1} x str — str is defined by co-recursion as:

timesq,sir(a, (b:) =ger (a-b): (timesqsir(a,x))

The multiplication predicate on streams multsy, C (str x str X str) is defined by
the co-inductive rule:

mults(z,y,w) adds, (0 : timesq str(a,y), 0:w, 2)

MULT-COIND
multsg(a:x, y, z)

The multiplication predicate on R-pairs Mult C (R x R x R) is defined as:

Mult({m,z), (n,y),(p,2)) Zdgey mMultgr(0:...:0:2,0:...:0:y,0:...:0:2)

p p m+n

The multiplication predicate mults:,. can be informally justified by calcula-
tions similar to those we have detailed for order and addition.

3 Adequacy

In this section we address the question of the adequacy of the definitions we
have given for order, addition and multiplication. We present here two different
approaches to justify our construction: the first argument is internal-axiomatic,
the second external-semantic.

Using the first approach we will going to show the definitions of order, ad-
dition and multiplication satisfy all the standard properties valid for the real
numbers. This proof is carried out in Coq. A limitation of this approach lies in
the fact that so far there exists no standard axiomatization for the construc-
tive reals. Another disadvantage relies on the heaviness of the proof editing: the
formal proof of all the basic properties is actually a long and tiring job. In our
attempt we have almost accomplished this internal proof of adequacy, which will
be presented in section 7.

The semantic argument works as follows. In the construction of the previous
section we have specified the intended meaning of the sets and the predicates

referring to an external model for the real numbers. It follows that we can justify
our predicates by proving that their specification is sound and complete with
respect to this external model. This proof makes use of some basic fundamental
properties which also hold for the constructive reals. It has not been formalized
in Coq, but we conjecture that it could be possible, using an already existing
formalization of the real numbers —for example the classical axiomatization
provided by the library Reals.

This section is just devoted to the proof of the external adequacy. In the
proofs below we don’t need to specify whether the external model IR is the
classical or the constructive one: this omission is motivated by the fact that the
order relation is the same for both models.

Proposition 1. (Adequacy of order)
The rules for the order predicate are sound and complete. That is, for any couple
of R-pairs r,s: Less(r,s) can be derived if and only if ([r]r < [s]r)-

Proof. It suffices to prove that the rules for the auxiliary predicate less_aux are
sound and complete. The proposition then follows easily.

It is quite simple to prove that the rules are sound —i.e. if less_auz(z,y, 1)
is derived, then ([2]str < [y]str +7). We need to check the two rules defining the
induction:

less_aux(z,y,i) (i+a) < (25 +D)
LESS-BASE - LESS-IND -
less_auz(x,y,big) less.auz(a:x, by, j)

The base rule is sound since every stream x represents a real number belonging
to the interval [—1,1]: then [z]str <3 —1 < big — 1 < [y]ser + big.

The induction rule is sound because from the hypotheses ([z]str < [y]st-+17) and
(i+a) < (2§+D) follows that [a :]str = a/2+ ([]str/2) < a/24 ([y]str+7)/2 =
b/2 + ([[y]]str/z) + (Z ta-— b)/2 S b/2 + ([[y]]str/z) +j = ([[b : y]]str +])

The proof of the completeness is less obvious. We need first to choose a
natural number k such that (big + 6 < 2*) and then prove, by induction on
n, that if ([]ser + 28" < [y]ser + i) then the predicate less_auz(z,y,i) can
be derived. In this hypothesis the completeness property follows immediately,
since if ([z]str < [ylstr + %) then there exists a natural number n such that
(Tz]str + 277 < [ylser +19)-

- Base step (n = 0). Let x = (a : zg) and y = (b : yo): from the hypothesis follows
that (i > 2% —2); therefore (big+a) < (28 —6+1) < (28 +2F —4—1) < (2i +b).
By the base rule we derive less_auz(xo, Yo, big) and by the induction rule we
have less_auz(a : zg, b: yo, 7).

- Inductive step. Let n=m+ 1, z = (a: x9) and y = (b : yo)-

We need to provide a derivation for less_aux(a : zo, b: yo, i) in the hypothesis
that ([a : zo]str + ok—(m+1) [b: yo]str +¢). From this hypothesis we have that
([zo]str +257™) = (a+ [wo]str +257™ —a) = (2([a : To]lstr + 2" HV)) —a) <
(2([b : yolstr +1) —a) = ([yo]str + 2 + b— a). By induction hypothesis it is then
possible to derive less_auz(zo, Yo, 2i + b — a) and finally, by the application of
the induction hypothesis, we can conclude the proof. O

We now consider the arithmetic predicates: it is interesting to notice that the
proof technique adopted for these co-inductive predicates is dual with respect to
that used for the inductive predicate of order.

Proposition 2. (Adequacy of addition)

The rules for the addition predicate are sound and complete. That is, for any
triple of R-pairs r,s,t: Add(r,s,t) can be derived by an infinite derivation if and
only if ([r]e + [slz = [t]r) holds in IR.

Proof. In this case too it suffices to prove that the rule for the auxiliary predi-
cate add_aux is sound and complete: the correspondent properties for the other
predicates follow easily. It is interesting to remark that the proof we are giv-
ing for the co-inductive addition is almost dual with respect to the case of the
inductive order.

Using co-inductive reasoning, it is quite simple to prove that the rule is

complete —i.e. if ([x]str + [Y]str = [2]str +), then there exists an infini-
tary proof for add_auz(z,y,z,i). We prove that under the hypothesis ([z]str +
[ylser = [2]str + 1) there exists a rule which permits to derive add_aux(z,y, z,1)
using the judgement add_auz(z',y’,2',i'), whose arguments satisfy ([z']ser +
[v']str = [']str +14). Therefore, using the co-inductive hypothesis, the predicate
add_auz(z',y', 2',i") can be derived by means of an infinitary proof.
Let 2 = (a : @), y = (b : yo) and z = (¢ : zp). From the hypothesis ([a :
xo]str + [0 ¢ Yolstr = [: 20]str +), by a simple calculation we have both
(=3 <i < 3) and ([zo]str + [yo]str = [20]str +2i+c—a—0). It is then possible to
deduce add-auzx(a : xo, b: yo, c: 20,%) from add_auz(zo, yo, 20,2t + ¢ —a — b):
we can conclude carrying out an infinitary proof using the second equation de-
duced above.

To proof of the soundness is a little more subtle. We cannot simply prove that
the rule for add_auz is sound, since by using co-inductively a rule that deduces
valid conclusions from valid premises it is still possible to derive judgements
which are not valid (for example, consider a rule for equality saying that from
(z = y) it follows that (y = z), or the rule add_aux itself where the premise
(—big <i < big) has been removed). In order to prove the soundness we need to
use other arguments: after having chosen a natural number k such that (big+3 <
2%), we will prove inductively on n that if add_auz(z,y, z,1) can be derived, then:

|([[m]]str + [[y]]str) - ([[Z]]Str + Z)| < 2k—n

The soundness follows from the above inequality, since two real numbers ar-
bitrarily close must be equal. The inductive proof proceeds as follows: first
of all let z = (a : xo), y = (b : yo) and z = (¢ : 2p); now, if the predi-
cate add_auz(z,y, z,1) can be derived, it must be deduced via the co-induction
rule. It follows that both the constraint (—big < i < big) and the predicate
add-auz(zo, Yo, 20, 20 + ¢ — a —b) can be derived.

The base step (n=0) follows immediately from the hypothesis.

In the case where n = m + 1, we derive by inductive hypothesis the disequation
|(Izo]str + [wolstr) — ([20]str + 20 + ¢ — a — b)| < 2¥~™. Then, by means of a
simple arithmetic calculation, we conclude the proof. O

Proposition 3. (Adequacy of multiplication)

The rules for the multiplication predicate are sound and complete. That is, for
any triple of R-pairs r,s,t: Mult(r,s,t) can be derived by an infinite derivation
if and only if ([r]r - [slr = [t]lr) holds in IR.

Proof. The proof works similarly to the case of addition. O

4 Equivalence and arithmetic functions

In our framework any real number can be represented in infinitely many ways
(an infinite choice of R-pairs denoting the same number is actually available):
it is then natural to define an equivalence predicate on R-pairs. In constructive
analysis it is possible to describe the equivalence relation on real numbers by
means of the strict order relation.

Definition 7. (Inductive equivalence)
The inductive equivalence predicate Equal;ng C (R X R) is defined as:

Equaling(r,s) =g4er —(Less(r,s) V Less(s,r))

The validity of the above definition motivates our choice of the strict order as a
basic notion for constructive real numbers.

It is interesting to notice that the equivalence relation on R-pairs could also
be defined directly via a co-inductive predicate. Following this approach it is
convenient to introduce firstly an auxiliary predicate equal -aux C (strx strx Z),
which has intended meaning:

equal-auz(z,y,i) <= ([elser = [Ylser +1)

Definition 8. (Co-inductive equivalence)
The predicate equal_aux C (str x str x Z) is defined by the co-inductive rule:

equal_aux(z,y, (2 +b—a)) (—big <i< big)

EQUAL-COIND -
equal _aux(a:x, b:y, i)

The equivalence predicate on streams equalsy,. C (str X str) is defined as:
equalsir (T,y) =qey equal-auz(z,y,0),

The co-inductive equivalence predicate on R-pairs Equal ing C (RXR) is defined
as:

Equalcoina({m,x), (n,y)) =der equalsgy(0:...:0:2, 0:...:0:y)
n m
The above definitions are very similar to those given for the addition predicate:
if we fix the first argument of the addition to a stream of “zeros”, we can ac-

tually see the equivalence as a particular case of addition. It follows that the

co-inductive predicate equal_aux can be justified by the same arguments used
for add-auz.

The main property about equivalence on R-pairs is that the inductive and
the co-inductive definitions turn out to be equivalent.

Theorem 1. (Inductive and co-inductive equivalence)
Let r and s be R-pairs. Then: Equalinq(r,s) if and only if Equalcina(r,s).

Proof. The prove of the implication (=) is straightforward. We perform case
analysis on the parameters r,s and then we argument by co-induction.
The case (<) is simple too. It is proved by induction and case analysis.
The propostion is proved formally in the Coq system: the full proof is available
at the URL hitp://www.dimi.uniud.it/~ ciaffagl. O

We claim that this correspondence between a co-inductive predicate and the
negation of an inductive one is just an instance of a more general phenomenon.
We conjecture that a large class of co-inductive predicates (but not all [Coq93])
—those defined using decidable predicates— are equivalent to negations of some
inductive one.

Another important purpose of this section is to define the addition and mul-
tiplication functions. The addition for streams makes use of an auxiliary function
+aue : (str x str x Z) — str, whose intended meaning is:

([zlr + [¥lr +i)/4 if ([z]r + [yl + 1) € [-4,4]
[+aue(®,y,0)]r = ¢ (1) if ([z]r + [ylr +1) < —4
(+1) if ([z]r + [ylr +1) >4

Using the previous definition we can give addition algorithms for streams and
R-pairs. We want here just to remark that the result of the addition between
streams must be normalized (divided) by a factor 2, since streams can represent
only the real numbers in the limited interval [—1,1].

Definition 9. (Addition function)
The function +gquq @ (str X str X Z) — str is defined by co-recursion:

touz(a: @, bry, i) =ger let j:= (2i +a+0b) in
Case j of
7>2: (1: (faue(2,y,i —4)))
JE€[-2,2: (0 (Faur(@,y,1)))
J<=2: (=1:(Fauz(z,y,i +4)))
end

The addition function on streams + g, @ (str X str) — str is defined as:
+str(a tx, b Z/) =def +aum(xa Yy, a+ b)
The addition function on R-pairs +r : (R x R) = R is defined as:
+r((m,x),(n,y) =dgef (M+n+1, +5,0:...:0:2, 0:...:0:y))

n m

10

The multiplication function is defined in terms of the addition one. Also in
this case it is convenient to use an auxiliary function Xy, : (str x str x str x
[-2,2]) — str, with intended meaning:

[[Xauz(xayazai)]]str = (([[f]]str X [[y]]str) + [[Z]]str +Z)/4

Definition 10. (Multiplication function)
The function X gy, @ (str X str X str x Z) — str is defined by co-recursion:

Xauz (@1 T, Y, €22, 1) =qer let (d:w) := +5r(Xa str(a,y),2) in
let j:=(2i+c+d) in
Case j of
j>2: (]- : (Xauz(myy)w)j _4)))
j c [—2,] : (0 : (Xauz(may)w)j)))
j < —=2: (_1 : (Xaum(mayawaj +4)))
end

The multiplication function on streams X, : (str X str) — str is defined as:

Xstr(a a1 T, b: y) =def let (C : Z) = +str(xd,str(af:y)a xd,str(afla b: y))
in Xaur (, b:y, i, (c+ ab))

The multiplication function on R-pairs Xg : (R X R) — R is defined as:

XR(<mvx>v<n7y>) =def <m+n7 xStT(xvy»

It is fundamental now to prove that the addition and multiplication functions
are coherent w.r.t. the corresponding predicates.

Theorem 2. (Arithmetic predicates and functions)
The arithmetic predicates and functions are related by the following properties:

Vr,s € R. Add(r,s,+r(r,s))
Vr,s,t € R. Add(r,s,t) < Equalini(+r(r,s),t)

Vr,s € R. Mult(r,s, Xg(r,s))
Vr,s,t € R. Mult(r,s,t) < Equalijng(Xg(r,s),t)

Proof. The proposition is proved formally in the Coq system. O

If we consider the arithmetic predicates as a kind of specification for the
corresponding functions, then the previous proposition states that the imple-
mentation we have given by algorithms satisfies the specification. It follows that
we can derive the properties of the functions from the properties of the corre-
sponding predicates: this is an advantage, because the specifications are easier
to work with.

A final remark: the above proposition can be seen as a case-study for the
goal of proving the correctness of functions performing exact real number com-
putation.

11

5 An axiomatisation of constructive real numbers

In section 3 he have picked out and discussed two different approaches to justify
our representation of the constructive real numbers. We start here addressing
the internal-axiomatic one.

In order to prove the adequacy of our structure we would need to dispose of a
set of properties characterizing abstractly the constructive real numbers, i.e. a set
of axioms. As far as we know, there exists no such a standard axiomatization:
the only we know is that proposed by the working group of the FTA project
[Fta99], whose aim is to formalize and prove in Coq the “Fundamental Theorem
of Algebra”. Starting from the FTA’s axioms we have synthesized a simple and
equivalent set of axioms. An advantage of having a small set of axioms is that
it is easier to verify whether a given structure satisfies them. This process of
minimalization has aided us to understand what are the fundamental notions
cheracterizing the constructive real numbers.

An advantage in presenting and using axioms consists in the re-usability of
the proofs: if a certain property has been proved making use only of the axioms
—and not considering the actual representation being studied— then we’ll be
allowed to reuse the proof for any structure satisfying the same axioms.

The axiomatisation we propose is the following —we have used below the
customary functional symbolism for the arithmetic operations.

Definition 11. (Axioms for constructive real numbers)

Constants: R, {Or,1r} € R
<CRxXR
+: RxR—R
x: RxR—+R

Definitions: ~ C RxX R Vz,y € R.
(z~y) & (o <y)A-(y <z)
Near CR X RXx R Vz,y,e € R.
Near(z,y,e) & (z<y+e)A(y<z+e)

Order : neuter elements 0<1
< is asymmetric Vr,y € R. (v <y) = ~(y < x)
< is transitive Ve,y,2z € R. (x <y)A(y <z) = (z < 2)

< is weak-total Vo,y,2 € R. (z <y) = (2 < 2) V(2 <y))

Add : + is associative Ve,y,z € R. (z+y)+2)~ (z+ (y+ 2))
+ is commutative Yzx,y € R. (x+y) ~ (y + x)
+ has identity V€ R. (x+0g) ~x
opposite exists Ve R JyeR. (x+y)~0g
+ preserves < Ve,y,z€ R. (x <y) = (x+2) < (y+2)
+ reflects < Ve, y € R. 0O < (z +y) = ((0Or < 2z)V (0r < y))

12

Mult : x is associative Vz,y,z € R. ((z X y) X 2) ~ (z X (y X 2))
x is commutativeVx,y € R. (x X y) ~ (y X x)
X has identity V€ R. (x X 1g) ~x
inverse exists Ve € R. —(x~0r) =y ER. (xxy)~1p
X distributes + Vx,y,z € R.
(2% (y+2) ~ (2 x5) + (2 % 2)
x preserves < Vr,ye€ R. (Op <2)AN(Or<y)— 0r < (z xy))
x reflects < Vz,y € R.
(x xy <1lg) = ((x <1r)V (y < 1R))

Limait : limit exists Vf:N — R.
(Ve > 0. In. Vm > n. Near(f(n), f(m),e)) =
(3z € R. Ye > 0. In. Ym > n. Near(z, f(m),e))

It is natural now to raise the fundamental question whether this axiomatisa-
tion is complete. In particular, one could require that all the properties provable
starting from our representation of real numbers can also be proved using only
the above axioms —we don’t know yet whether our axioms satisfy this com-
pleteness requirement. A weaker and informal request consists in asking that
using the above axioms it is possible to derive the standard and fundamental
properties of the real numbers: we will discuss this and related aspects in section
8.

A final remark concerns the arithmetic functions “opposite” (Az. —) and
“inverse” (Az.1/z): we don’t need to require explicitly their existence, provided
that —in the statement of the correspondent axioms— we use the existential
quantification over Set rather than Prop. This assumption actually makes the
Axiom of Choice provable in Coq.

6 Formalization in Coq

We have already motivated the use of the logical framework Coq to investigate
the internal-axiomatic adequacy of our constructive real numbers. We remember
here that the logic of Coq is standardly intuitionistic.

The formalization of the structure we have developed is simple: we need only
to translate our definitions in the specification language of Coq. The first step
consists in the encoding of the datatypes (digits, streams and R-pairs).

Inductive digit : Set := mino : digit | zero : digit | one : digit.
CoInductive str : Set := cons : digit -> str -> str.
Inductive R : Set := pair : nat -> str -> R.

The specification of the other constants of the structure is analogous. Two tech-
nical details: we use the function encod to map the symbolic names of the
ternary digits to their integer values and the function append0 to “normalize”
the streams. We list below these two definitions and some other example of our
formalization.

13

Definition encod : digit -> Z :=

[a:digit] Cases a of mino => ‘-1¢ | =zero => ‘0‘ | one => ‘1¢
end.
Fixpoint append0 [n:nat] : str -> str :=
Cases n of (0) => [x:str] x

| (8 m) => [x:str] (cons zero (append0 m x))
end.

Inductive less_aux : str -> str -> Z -> Prop :=
less_base: (x,y:str) (less_aux x y big)
| less_ind : (x,y:str) (a,b:digit) (i,j:2)
(less_aux x y i) ->
(‘1 + (encod a) <= 2xj + (encod b)‘) ->
(less_aux (cons a x) (cons b y) j).
Definition less_str : str -> str -> Prop :=
[x,y:str] (less_aux x y ‘09).
Definition Less : R -> R -> Prop :=
[r,s:R] Cases r of (pair m x) => Cases s of (pair n y) =>
(less_str (append0 n x) (append0 m y))
end end.

CoInductive add_aux : str -> str -> str -> Z -> Prop :=
add_coind: (x,y,z:str) (a,b,c:digit) (i:Z)
(add_aux x y z ‘2*%i) + (cod c) - (cod a) - (cod b‘) ->
(‘-big <= i‘) -> (‘i <= big‘) ->
(add_aux (cons a x) (cons b y) (cons c z) i).

CoFixpoint times_d_str : digit -> str -> str :=
[a:digit][x:str] Cases x of (cons b y) =>
(cons (times_digit a b) (times_d_str a y))
end.
CoInductive mult_tstr : str -> str -> str -> Prop :=
mult_coind : (x,y,z,w:str) (a:digit)
(mult_tstr x y w) ->
(add_tstr (cons zero (times_d_str a y)) (cons zero w) z) —->
(mult_tstr (cons a x) y z).

It comes natural now to focus briefly on (co-)inductive types and their in-
habitants. In Coq, recursive types [Gim98a] can be classified into inductive
[Coq92, PM93] and co-inductive ones [Gim94]: both of them are described by
introduction rules. Elements of the inductive types are constructed by means of
a finite application of the introduction rules, whereas co-inductive ones can be
obtained also by a potentially infinite use of the rules.

The user is allowed to construct (lazily) specific infinite objects using co-
recursive definitions in the form of “fixed-point” declarations, provided the re-
cursive calls are “guarded” [Coq93, Gim94, AC97, Gim98b]. An example is the

14

infinite stream of “zeros”, which can be obtained by the definition CoFixpoint
zeros : str := (cons zero zeros). A dual situation holds for inductive ob-
jects: in this case recursive definitions can be used as elimination rules performing
structural induction. The Coq code listed above shows the two cases just dis-
cussed: the function times_d_str builds infinite streams; the function append0
is defined by induction on a natural parameter.

7 Certification of the constructive real numbers

The aim of this section is to present and discuss the main result of our work.

Theorem 3. (Constructive real numbers)
Our representation of real numbers satisfies the azioms of definition 11.

So far we have not dealt with all the axioms: the properties concerning the
order and the addition have been already proved in Coq; the proofs of the
other properties are at the moment in progress, but we are optimistic to con-
clude them in the immediate future. The whole code is available at the URL
http://www.dimi.uniud.it/~ciaffagl.

We want to supply here some remarks about the proof technique used.

Most of the proofs follow a similar pattern: first we prove a lemma for the
auxiliary predicate, then a lemma, for the predicate defined on streams and finally
a main proposition for the R-pairs. As already explained, we have preferred to
develop the proofs for addition and multiplication using the predicates rather
than the functions. Nevertheless, by the validity of the theorem 2, it is possible to
extend the proofs involving the predicates, thus obtaining those of the properties
involving the corresponding functions.

Normally, the main difficulty is to prove the lemma at the “aux” level. In
order to exemplify the whole process, let us consider the “associativity of addi-
tion”. In this case we need to prove the following hierarchy of judgements:

add_assocgy,; : Vx,y,z,w,u,v €str, Vi, j, k € Z.
addgyz (z,y, w,1) = addgye (W, z,u,5) —
addauz (y, 2,0, + j — k) = addgue (x,v,u, k)

add_assocsy, : Vx,y,2z,w,u,v €str.
addgt, (z,y, w) — adds, (w, z,u) = addg, (y,z,v) =
addt, (z,v,u)

add_assocg : Vr,s,t,l,p,q € R.

Add(r,s,l) — Add(l,t,p) — Add(s,t,q) —
Add(r,q,p)

add_assoc: Vr,s,t € R. Equiv((z +y) +z, = + (y + 2))

Further details concern the two tactics we have mainly used: Cofix and
Omega. The tactic Cofix is specific for co-inductive reasoning: it is the main

15

tool for proving co-inductive assertions. This tactic allows to develop top-down
(infinitary) proofs assuming the conclusion as a premisse, provided it is later
used only within introduction rules. The tactic Omega automaticly proves all the
judgements expressed in the language of Presburger’s arithmetic: it has been very
useful to avoid repeated case analyses on the values of the ternary digits. The
use of this tactic and the introduction of the auxiliary predicates have permitted
us to write quite simple proofs: almost all the propositions are proved invoking
at most 50 strategies.

8 Consequences of the axioms

In order the axiomatisation of definition 11 can be considered (sufficiently) com-
plete, most of the properties of the real numbers should follow from it.

A first step is to consider the axioms proposed by the FTA working group
[Fta99]. We conjecture that all the properties presented there can be deduced
using our axioms: we have proved formally this fact for all the axioms concerning
the order relation and addition; we are confident that the others can be proved
too.

Moreover, it is interesting to compare our axioms with the basic properties
of the constructive reals presented by Troelstra and van Dalen [TvD88]. In that
work, real numbers are constructed as Cauchy sequences of rationals; the for-
mal properties of this construction are then studied in depth. So far, we have
investigated the properties concerning the order relation and addition. We have
proved informally that they follow from our axioms and we are at the moment
formalizing those proofs. At present, we have proved the following facts, among
other more technical.

The relations “equal” (~), “less-equal” (<) and “apart” (#) can be defined
in terms of our “less” (<) relation.

The relation “~” is an equivalence. The relation “<” is an order.

The addition operation (+) preserves the order relation.

— The real numbers, equipped with the relation “~” and the operation “+”,

form a group.

As the reader can see, for some aspects this is still a work in progress. In the
future we will going to conclude our basic formulation of analysis and then to de-
velop it. We are also interested in the use of our framework for testing the correct-
ness of algorithms performing exact computation on real numbers. This and fur-
ther work will be documented at the URL http://www.dimi.uniud.it/~ciaffagl.

References

[AC97] R. Amadio and S. Coupet. ”Analysis of a guard condition in Type Theory”.
Technical report, INRIA, 1997.

[Bis67] E. Bishop. ”Foundations of constructive analysis”. McGraw-Hill, New York,
1967.

16

[Bro24]
[Ced97]
[CHY2]
[Cong6]
[Coq92]
[Coq93]
[Fta99]
[Gim94]
[Gim98a]
[Gim98b]
[GM93]
[Har96]
[INROO]
[Jon91]
[Mag95]
[PEE97]
[PM93]
[Pol94]
[Sim98]
[TvD88]

[Wei96]

L.E.J. Brouwer. ”Beweis, dass jede volle Funktion gleichmdssig stetig ist”.
In Proc. Amsterdam 27, pages 189-194, 1924.

J. Cederquist. ”A pointfree approach to Constructive Analysis in Type The-
ory”. PhD thesis, G6teborg University, 1997.

J. Chirimar and D.J. Howe. ”"Implementing constructive real analysis: pre-
liminar report”. LNCS, 613, 1992.

R.L. Constable. ”Implementing mathematics with the Nuprl development
system”. Prentice-Hall, 1986.

T. Coquand. ”Pattern-matching in Type Theory”. In Informal Proceedings
of the 1992 Workshop on Types for Proofs and Programs, 1992.

T. Coquand. ”Infinite objects in Type Theory”. In 1st Workshop on Types
for Proofs and Programs, LNCS 806, 1993.

The ”Fundamental theorem of Algebra” Project, 1999. Computing Science
Institute Nijmegen, http://www.cs.kun.nl/~freek/fta/index.html.

E. Giménez. ”Codifying guarded definitions with recursion schemes”. In 5th
Workshop on Types for Proofs and Programs, LNCS 996, 1994.

E. Giménez. ”A tutorial on recursive types in Coq”. Technical report,
INRIA, 1998.

E. Giménez. ”Structural recursive definitions in Type Theory”. In Proceed-
ings of ICALP’98, LNCS 1443, 1998.

M.J.C. Gordon and T.F. Melham. ”Introduction to HOL: a theorem proving
environment for higher order logic”. Cambridge University Press, 1993.
J.R. Harrison. ”"Theorem proving with real numbers”. PhD thesis, Univer-
sitiy of Cambridge, 1996.

INRIA, project Coq. "The Coq proof assistant - Reference manual V6.3.17,
May 2000.

C. Jones. ”"Completing the rationals and metric spaces in Lego”. In Cam-
bridge Universitiy Press, editor, Logical Frameworks, pages 209—222. 1991.
L. Magnusson. ”The implementation of Alf”. PhD thesis, Chalmers Uni-
versity of Technology, Géteborg, 1995.

P.J. Potts, A. Edalat, and M.H. Escardo. ”Semantics of exact real arith-
metic”. In IEEE Symposium on Logic in Computer Science, 1997.

C. Paulin-Mohring. ”Inductive definitions in the system Coq: rules and
properties”. In Proceedings of the TLCA, 1993.

R. Pollack. ”The theory of Lego, a proof checker for the Extended Calculus
of Constructions”. PhD thesis, University of Edimburgh, 1994.

A. Simpson. ”Lazy functional algorithms for ezact real functionals”. In
MFCS 1998. Springer Verlag, 1998.

A.S. Troelstra and D. van Dalen. ”Constructivism in Mathematics”. North-
Holland, 1988.

K. Weihrauch. ”A foundation for computable analysis”. In Proceedings of
DMTCS 1996, 1996.

17

