
Linear Programming with variable matrix entries

by
Paolo Serafini, University of Udine, Italy

Department of Mathematics and Computer Science

Abstract: We consider linear programming (continuous or integer) where some matrix
entries are decision parameters. If the variables are nonnegative the problem can be easily
solved in two phases. It is shown that direct costs on the matrix entries make the problem
NP-hard. Finally a strong duality result is provided.

Keywords: linear programming, integer linear programming, variable data.

1. INTRODUCTION

There are linear programming problems where some constraint data are not precisely
fixed but can vary within some bounds and may be considered design parameters. This
is different from the situation where the input data are not known precisely and they are
only assumed to belong to some tolerance interval. This type of sensitivity analysis has
been subject of considerable analysis and reference can be found for instance in [3], [4], [5],
[6] and [8].

In this paper we deal with the case when some of the data can be fixed by the
decision maker to a precise value within a prescribed interval. In this sense we speak of
design parameters rather than uncertain data. The diet problem (considered also in [4] in
relation to interval data) is an instance of problems of this type: there are nutrients (y),
ingredients (x) and dishes (z). Ingredients and nutrients are linked together through a
fixed data matrix A as Ax = y. Ingredients and dishes are linked together through a data
matrix R consisting of recipes as Rz = x. The variables z related to dishes are typically
integer, but recipe data in R can usually vary within some bounds without affecting the
particular taste of a dish. Therefore we would like to consider as decision variables not

Corresponding author: Paolo Serafini, email: serafini@dimi.uniud.it, postal address:
Dipartimento di Matematica e Informatica, Via delle Scienze 206, 33100 Udine, Italy

1

only y, x and z but also the matrix R. For a practical model it is important to be able to
take care of this variability.

General blending problems present such data variability. If the variability is inde-
pendent in each data entry, the variables are nonnegative and there is no direct cost on
the matrix entries, then the nonlinear model, which results by varying simultaneously
both the actual variables and the matrix entries, can be solved via linear programming
in two phases. If the objective function includes the variable matrix entries the problem
becomes NP-hard. To the best of our knowledge this analysis, although simple, has not
been investigated in the literature.

The paper is organized as follows: in Section 2 the main result is stated, in Section 3
a particular way of computing the matrix entries is proposed, in Section 4 a small example
is shown to illustrate the procedure, in Section 5 it is shown that introducing direct costs
on the matrix entries makes the problem difficult and finally in Section 6 a duality result
is presented.

2. PROBLEM STATEMENT

Let us consider the following problem

min c x

Ax = b

x ∈ P ⊂ R
n

(1)

where c is an n row vector, b is an m column vector, x is an n column vector, A is an
m× n matrix and P is any subset of Rn (including finite sets). The entries of the matrix
A are not fixed, but they can assume any value within prescribed intervals, i.e.

a−ij ≤ aij ≤ a+
ij (2)

In other words the feasible set for x is

X :=
⋃

A−≤A≤A+

{x ∈ P : Ax = b}

(where A− ≤ A ≤ A+ is meant entry-wise like in (2))and we want to solve minx∈X c x. In
general X is not convex and therefore the minimization of a linear functional on X can
be very hard even if P does not contain hard constraints. However, if we assume that P
is contained in the positive orthant (in fact any orthant works well), X is convex and the
problem can be solved in two phases: first compute the optimum x̂ of

min c x

A− x ≤ b

A+ x ≥ b

x ∈ P

(3)

2

and then find a matrix A such that

A− ≤ A ≤ A+, A x̂ = b (4)

Let X̄ be the feasible set of (3). We are going to show that, in the assumption of
nonnegativity of x, X and X̄ coincide.

Theorem 1: X = X̄ if P ⊂ R
n
+.

Proof: If x ∈ X, by definition there exists a matrix A such that Ax = b and A− ≤ A ≤
A+. Hence from A − A− ≥ 0 and x ≥ 0 one has (A − A−)x ≥ 0, i.e. b ≥ A− x. For the
other constraint the reasoning is similar and so we have x ∈ X̄.

If x ∈ X̄ we have to show the existence of a matrix A feasible in (4). Let A−
i and A+

i

be the i-th rows of the respective matrices. Let us consider the segment in Rn joining the
points A−

i and A+
i . By continuity there exists a point on the segment where the functional

x (the functional is defined as x : Rn → R, x : y �→
∑n

j=1 yj xj) assumes the value bi (since
A−

i x ≤ bi and A+
i x ≥ bi). Let Ai be that particular value. Since Ai is on the segment we

have A−
i ≤ Ai ≤ A+

i . Then the matrix A is obtained by patching the rows Ai.

Note that the proof can be slightly modified to show that the result holds on any
particular orthant. Hence, if P is convex, X restricted to a generic orthant is convex.

Without the assumption of nonnegativity X is not convex in general. In the simple
example a x1 + x2 = 0, with a− ≤ a ≤ a+, X is a cone joined to its opposite cone. Indeed
the problem is difficult in general as shown by the following result:

Theorem 2: Problem (1) is NP-hard in general.
Proof: Just note that⋃

−1≤a≤1

{x : a x = 1, −1 ≤ x ≤ 1} =
⋃

a∈{−1,1}
{x : a x = 1, −1 ≤ x ≤ 1} = {−1, 1}

Therefore any 0-1 linear programming problem can be first easily transformed into a (-1,1)
linear programming problem and then each constraint xj ∈ {−1, 1} can be transformed
into aj xj = 1, −1 ≤ xj ≤ 1, with aj ∈ [−1, 1].

As can be seen from the proof of Theorem 1 the assumption of independent variability
in the data entry is essential to show the existence of a feasible matrix A. Hence the
standard trick of converting unrestricted variables into nonnegative ones does not work
here because this transformation makes some matrix entries dependent on others.

In some problems particular entries may be related. For instance they may refer to
the same physical quantity and hence they must assume the same value. If entries of this
kind are on different rows there is no guarantee that such a feasible matrix exists and the
approach shown here does not work. However, there are problems of this type which can
be easily modeled in alternative ways. For instance suppose that the entries of a particular
column must retain their mutual ratios (this can be practically relevant), so that a column

3

Aj is feasible if Aj = d Āj and d− ≤ d ≤ d+, with d scalar and Āj assigned. Then we may
substitute Aj xj with Āj yj and add the constraints d− xj ≤ y ≤ d+ xj .

3. COMPUTING THE MATRIX ENTRIES

The theorem allows to solve minx∈X c x by solving (3). However, solving (3) does not
provide a matrix A satisfying (4). Since there can be many feasible solutions to (4) we may
consider finding a matrix A satisfying certain properties. One simple requirement could
be that the entries are as much close as possible to a prescribed value āij (for instance
āij := (a+

ij + a−ij)/2). Toward this goal several alternative methods are available.
First let us observe that in any case the problem can be decomposed into independent

problems, one for each row i. Moreover, we do not have to compute the values which are
fixed (i.e. a−ij = aij = a+

ij =: āij) and those which are irrelevant because they multiply a
zero value of x̂j . For notational simplicity we write the formulas as if all values need to be
computed.

One possible approach is based on the minimization of

min
∑
j

|aij − āij |

so that we have the following linear programming problems (one for each i).

min
∑
j

w+
ij + w−

ij

w+
ij ≥ aij − āij ∀j

w−
ij ≥ āij − aij ∀j∑
j

aij x̂j = bi

a−ij ≤ aij ≤ a+
ij ∀j

w+
ij ≥, w−

ij ≥ 0 ∀j

Perhaps better objective functions (with matrix entries less “attracted” by the interval
extremes) are quadratic ones, like:

min
∑
j

(aij − āij)2

These are continuous quadratic knapsack problems first investigated by Brucker [2]
and later independently by [1] and [7]. In [2] it is shown that the problem can be solved
in time O(n). Hence the second phase can be solved in linear time with respect the the
number of matrix entries.

4

4. AN EXAMPLE

For the sake of illustration of the procedure let us consider the following multiknapsack
problem

max
n∑

j=1

vj zj +
m∑
i=1

ui xi

n∑
j=1

wij zj = xi i = 1, . . . ,m

0 ≤ xi ≤ ci i = 1, . . . ,m
zj ∈ {0, 1} j = 1, . . . , n
w−

ij ≤ wij ≤ w+
ij i = 1, . . . ,m, j = 1, . . . , n

with data n = 5, m = 2, v = (10, 8, 6, 9, 5), u = (4, 3), c = (20, 30),

w− =
(

6 5 8 5 3
5 9 12 8 10

)
, w̄ =

(
7 8 8 6 3
7 11 13 8 10

)
, w+ =

(
8 9 9 7 4
8 12 15 8 10

)
with w̄ the preferred values for the matrix entries. The first phase consists in solving

max
n∑

j=1

vj zj +
m∑
i=1

ui xi

n∑
j=1

w−
ij zj ≤ xi i = 1, . . . ,m

n∑
j=1

w+
ij zj ≥ xi i = 1, . . . ,m

0 ≤ xi ≤ ci i = 1, . . . ,m
zj ∈ {0, 1} j = 1, . . . , n

The solution is ẑ = (1, 0, 1, 1, 0), x̂ = (20, 30). In order to compute ŵ (only for the index
set {(1, 1), (1, 3), (1, 4), (2, 1), (2, 3)} we use the quadratic model, apply the algorithm by
Brucker and get

ŵ =
(

6.5 8 8 5.5 3
8 11 14 8 10

)

5. COST COEFFICIENTS ON THE MATRIX ENTRIES

The model we have described does not consider direct costs to the variable matrix
entries. This does not mean that changing the value of a matrix entry is costless. In the

5

diet example with nutrients y, ingredients x, dishes z, linked together as Ax = y and
Rz = x, the variable data are the recipe data in R. Changing R affects indirectly the cost
because x is changed and x does enter the objective function.

If we want to assess anyway a cost on the possibility of changing the matrix entries
with respect to some preferred matrix Â, then we might measure the effect of the change
on x by considering |b− Â x|.

However, if we do need direct cost coefficients on the matrix entries, this request
makes the problem NP-hard. To show this fact consider the following recognition version
of the 0-1 linear programming problem: is there an x ∈ {0, 1}n such that Ax ≤ b? We
want to transform this problem into the following: given a number K, a matrix A, with
some entries specified only by their lower and upper bounds, i.e. a−ij ≤ aij ≤ a+

ij for (i, j)
in a specified set M , cost coefficients cj , j := 1, . . . , n, dij , (i, j) ∈ M , are there xj ≥ 0,
a−ij ≤ aij ≤ a+

ij , (i, j) ∈ M , such that
∑

j cj xj +
∑

(ij)∈M dij aij ≥ K and Ax = b?

The transformation goes as follows. First we consider an intermediate transformation
through x = 2 y − 1. Then feasibility of x ∈ {0, 1}n, Ax ≤ b, is equivalent to feasibility of

2Ay ≤ b + A1

y ∈ {1/2, 1}
(5)

where 1 is the all-one vector. Now let us consider the following particular instances of the
problem under investigation:

max
∑
j

cj + yj

2 cj yj = 1 ∀j
2Ay ≤ b + A1

1/2 ≤ yj ≤ 1 ∀j
1/2 ≤ cj ≤ 1 ∀j

(6)

asking the question whether there are solutions in (6) with objective function value at least
K = 3/2n.

Let us suppose that there is such a solution in (6). Note that for each j the sum
cj + yj is upper bounded by 3/2 and this value is reached either with cj = 1/2, yj = 1 or
cj = 1, yj = 1/2. For all other admissible values of yj and cj one has cj + yj < 3/2. This
means that each pair (yj , cj) in the sum

∑
j cj +yj must sum up to 3/2. Therefore if there

is a solution with objective value at least 3/2n (in fact equal to 3/2n) this must be such
that yj ∈ {1/2, 1} implying that there is a feasible solution to x ∈ {0, 1}n, Ax ≤ b.

Suppose now that there is a feasible solution to x ∈ {0, 1}n, Ax ≤ b. This clearly
provides a solution to (6) with value 3/2n.

6

6. DUALITY ANALYSIS

Let us consider the following dual pair of problems

v(A) = min c x

Ax = b

x ≥ 0

d(A) = max y b

y A ≤ c (7)

If A = {A : A− ≤ A ≤ A+} is the set of matrices we are allowed to use in (7) then problem
(1) (with respect to (7)) is

v̂ := min
A∈A

v(A) = min
A∈A

d(A)

Note that v̂ may be equivalently expressed as

v̂ = min c x

x ∈
⋃

A∈A

{x : Ax = b, x ≥ 0}

So we have:

min
A∈A

d(A) = min
A∈A

max
y A≤c

y b = min
A∈A

max
y

y b− δ(c− y A) ≥ max
y

min
A∈A

y b− δ(c− y A)

with δ : Rn → R defined as

δ(x) :=
{ 0 if xj ≥ 0, ∀j

+∞ otherwise

The minimax thereom cannot be applied due to the lack of convexity of the function
A �→ y b− δ(c− y A) (the stated inequality always holds). Since

min
A∈A

y b− δ(c− y A) =
{
y b if y A ≤ c for all A ∈ A
−∞ otherwise

we have
min
A∈A

d(A) ≥ max {y b : y A ≤ c , ∀A ∈ A} =: d̂

Note that d̂ may be equivalently expressed as

d̂ = max y b

y ∈
⋂

A∈A

{y : y A ≤ c} (8)

We can actually prove that v̂ = d̂, thus providing a strong duality result between the
following pair of problems

v̂ = min c x

x ∈
⋃

A∈A

{x : Ax = b, x ≥ 0}
d̂ = max y b

y ∈
⋂

A∈A

{y : y A ≤ c}

7

Theorem 3: v̂ = d̂.
Proof: We have already proved that

v̂ = min c x

A− x ≤ b

A+ x ≥ b

x ≥ 0
whose dual is

v̂ = d̂ := max (y+ − y−) b
y+ A+ − y− A− ≤ c

y+ ≥ 0, y− ≥ 0

(9)

It is enough to show that the projection onto the subspace y = y+ − y− of the feasible set
of (9) coincides with the feasible set of (8). Let y+ and y− be feasible in (9). Then for any
A ∈ A we have

y A = (y+ − y−)A = y+ A− y− A ≤ y+ A+ − y− A− ≤ c

Conversely let y be feasible in (8). Let I+(y) and I−(y) be the matrices derived from the
identity matrix by defining its diagonal elements as

I+
i (y) :=

{ 1 if yi ≥ 0
0 otherwise

I−i (y) :=
{ 1 if yi < 0

0 otherwise
Then define

y+ := y I+(y) y− := −y I−(y)

thus having
y+ A+ − y− A− = y (I+(y)A+ + I−(y)A−) ≤ c

where the last inequality follows from the fact that I+(y)A+ + I−(y)A− ∈ A.

In view of this result the optimal dual variables ŷ+ and ŷ− computed by solving (3)
(with P the nonnegative orthant) provide a variable ŷ := ŷ+ − ŷ− which is optimal for the
problem (8) and dual optimal for the problems

min c x

Â x = b

x ≥ 0

max y b

y Â ≤ c (10)

with Â the final matrix obtained in the second phase of the procedure.

7. REFERENCES

[1] van den Bosch, P.P.J. and F.A. Lootsma, “Scheduling of power generation
via large-scale nonlinear optimization”, Journal of Optimization Theory and Applications,
55, 1987, 313-326.

8

[2] Brucker, P., “An O(n) algorithm for quadratic knapsack problems”, Operations
Research Letters, 3, 1984, 163-166.

[3] Hansen, E., Global optimization using interval analysis, Marcel Dekker, New
York, 1992.

[4] Jansson, C., “A self-validating method for solving linear programming problems
with interval input data”, Comput. Suppl., 6, 1988, 33–46.

[5] Jansson, C., “On self-validating methods for optimization problems”, Stud. Com-
put. Math., 5, 1993, 381–438.

[6] Lodwick, W. A. and K. D. Jamison, “Interval methods and fuzzy optimiza-
tion”, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, 5, 1997, 239–249.

[7] Pardalos, P.M. and N. Kovoor, “An algorithm for a single constrained class
of quadratic programs subject to upper and lower bounds”, Mathematical Programming,
46, 1990, 321-328.

[8] Rokne, J. G., “Interval arithmetic and interval analysis: an introduction”, Stud.
Fuzziness Soft. Comput., 70, 2001, 1–22.

9

