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Abstract

A crucial question for uninominal electoral systems concerns the dis-
crepancy between the vote percentages and the seat percentages across
the state. Apart from unfair district subdivision due to gerrymandering
it seems that uninominal electoral systems are inherently non propor-
tional. We show that even if the two parties have the same chances to get
any vote percentage, yet the vote percentage above 50% is amplified into
a larger seat percentage above 50%. We compute the amplification factor
for three different random variables. We compare these results with the
concept of Efficiency gap.

Keywords: electoral systems; uninominal systems; first-pass-the-post; majority vote;

gerrymandering.

1 Introduction

We consider a uninominal electoral system where a state is divided into several
districts and in each district a seat is assigned to the party that gets more votes
in that district. This system is also referred to as first-pass-the-post and is
used in UK to elect the members of the House of Commons and in US to elect
the members of the House of Representatives state by state. In this paper we
restrict the attention to the case of only two parties competing for the seats.

It is well known that there can be a large difference between the percent-
ages of votes and seats gained by one party all over the state. It may also
very well happen that a minority of votes turns into a majority of seats. Very
large discrepancies between the two percentages are usually attributed to an un-
fair district subdivision due to gerrymandering practice. This is certainly true.
However, it is inherent in the very mechanism of uninominal systems that, even
with a fair district subdivision and under partisan symmetry ([3, 5]), the per-
centage of votes above 50% is amplified into a larger percentage of seats above
50%.

In this note we show this fact by an elementary probabilistic analysis. If the
votes are uniformly distributed the amplification factor is 1.5, but if the votes
follow a gaussian distribution, a case closer to reality, the amplification factor
can reach the value 4.

It has been objected by several authors that the final seat outcome should
follow more closely the vote outcome across the state. For instance we may quote
the proposal by Balinski [1, 2] that invokes leaving the uninominal system in
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favor of the so called ‘Fair Majority Voting’. On the opposite side one might
argue that the amplification factor makes a winning party stronger thereby
providing a more stable majority in the House. However, in this paper we do
not deal with the political issue whether uninominal systems are fair or not. We
just point out the existence of this discrepancy between votes and seats even
under the best partisan symmetry.

The paper is organized as follows: in Section 2 we formally state the problem.
Then in Section 3 we prove the existence of the amplifcation factor for three
simple types of random variables if the two parties have the same strength. We
confirm the analytical results by using simulation in Section 4. In Section 5 we
compare the concept of Efficiency Gap [7] to the results of the paper. A hint
for an extension to three parties is outlined in Section 6. Finally we draw some
conclusions in Section 7.

2 Mathematical statement

A state is divided into n districts. Each district is assigned a seat, that is won by
the candidate who gets more votes. We assume that there are only two parties
A and B and two candidates associated to either party. Let Xi ∈ [0, 1] be a
random variable representing the fractions of votes party A receives in district
i and Yi ∈ {0, 1} a random variable denoting the gained or lost seat by party A
in district i, defined as

Yi =

{
0 if Xi ≤ 0.5
1 if Xi > 0.5

, i = 1, 2, . . . , n.

We assume that the variables X1, . . . , Xn are equally distributed with distribu-
tion function F (x) and density function f(x). Let X̄ and Ȳ be the expected
values of Xi and Yi respectively.

The expected value of the fraction of votes received by party A in the whole
state is also X̄. The expected value of the fraction of seats (with respect to the
n seats at stake) received by party A is given also by Ȳ .

We define the random variables X =
∑n
i Xi/n and Y =

∑n
i Yi/n. Clearly

their expected values are X̄ and Ȳ respectively. If all districts have the same
total number of expressed votes, X is also the fraction of votes received by
party A in the whole state (otherwise the overall fraction of votes is a weighted
average). We assume that each district has the same number of total votes so
that X is the fraction of votes received by party A in the whole state. The
results of this paper depend on this assumption. If the votes of each district
are almost the same, a situation that is considered desirable, the results hold
with very good approximation. If they differ consistently, say a district is two
or three times larger than another one, the amplification factor (see later) is
smaller.

We say that the two parties have the same strength if they have the same
probability of receiving a certain fraction x of votes, for any x, in each district.
For this to be possible we must have a symmetric density function, i.e., f(x) =
f(1− x). In this paper we assume that the two parties have the same strength.
Due to this assumption X̄ = 0.5 and Ȳ = 0.5.

We quote from [3]: ‘The [partisan] symmetry standard requires that the
electoral system treat similarly-situated parties equally, so that each receives
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the same fraction of legislative seats for a particular vote percentage as the
other party would receive if it had received the same percentage [of the vote]’.
If we translate the term ‘similarly-situated’ into ‘having the same probability
of receiving a certain fraction of votes’, we see that when two parties have the
same strength partisan symmetry is satisfied.

We are interested in the relationship between X − 0.5 and Y − 0.5, i.e., how
the excess percentage of votes, i.e., the fraction above 50%, in the whole state is
reflected in the excess percentage of seats (the two figures can be both negative,
but clearly in this case the excess percentage refers to the other party). More
exactly, we address the following question: given X = x, what it is the most
likely value of Y ?

Ideally the best prediction is E[Y |x], the expected value of Y conditioned
to the outcome X = x. In general this is a cumbersome computation. For Xi

uniformly distributed and n = 2 the computation is simple and one gets

E[Y |x] =


0 0 ≤ x ≤ 1

4 ,

1− 1
4 x

1
4 ≤ x ≤

1
2 ,

1
4 (1−x)

1
2 ≤ x ≤

3
4 ,

1 3
4 ≤ x ≤ 1.

This is not a linear function, although it can be fit, not too badly, by a
linear function in the range [0.25, 0.75]. For n = 3 and Xi uniformly distributed
an analytical expression for E[Y |x] is very complicated. We can carry out a
numerical computation and see that E[Y |x] is almost linear in x in the range
[1/6, 5/6]. A numerical computation for n = 4 and Xi uniformly distributed
displays an almost perfect linearity in the same range.

A theorem in probability ([6] pag. 243, Theorem 9.2, or [4] Section 4.3, pag.
143) states that if E[Y |x] is linear in x then

E[Y |x] = Ȳ +
σXY
σ2
X

(x− X̄) (1)

where σ2
X is the variance of X, σXY is the covariance of the pair (X,Y ). Due

to the simplicity of the expression (1), we approximate the best prediction by
assuming a linear model, at least in a restricted range around the mean X̄, and
define the best prediction as

Ŷ (x) = Ȳ +
σXY
σ2
X

(x− X̄) = Ȳ + α (x− X̄) (2)

where α is here defined as the ratio between σXY and σ2
X . Clearly the random

variable Ŷ (X) has the same expected value as Y and it can be easily proved
that Ŷ (X)− Y has minimum variance among all linear estimates. Since

α =
Ŷ (x)− 0.5

x− 0.5

we refer to α as an amplification factor, because the excess percentage of votes
is ‘amplified’ into a larger excess percentage of seats.

With only one district there is an obvious amplification in passing from
X − 0.5 to Y − 0.5 (and the ‘prediction’ is actually deterministic). However,
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Figure 1: The ratio α

with many districts and flat random variables Xi, we may wonder whether gains
and losses in the various districts can be compensated so that the overall excess
percentage of seats is almost the same as the overall excess percentage of votes,
i.e., the amplification factor is almost one. If the two parties have the same
strength, i.e., partisan symmetry is satisfied, the answer is negative, as we shall
see in the next section. The excess percentage of seats is always larger than the
excess percentage of votes by a factor of 1.5 or more.

3 Majority votes vs majority seats

In order to compute α we have to compute the covariance matrix of (X,Y ).
SinceX and Y are averages of independent random variables equally distributed,
the covariance matrix of (X,Y ) is the covariance matrix of (Xi, Yi) divided by
n. So we have

σ2
X =

1

n

∫ 1

0

f(x) (x− 1

2
)2 dx =

2

n

∫ 0.5

0

f(x) (x− 1

2
)2 dx, σ2

Y =
1

4n
,

σXY =
1

n

∫ 0.5

0

f(x) (x− 1

2
) (0− 1

2
) dx+

1

n

∫ 1

0.5

f(x) (x− 1

2
) (1− 1

2
) dx =

− 1

n

∫ 0.5

0

f(x) (x− 1

2
) dx.

Hence

α =
−
∫ 0.5

0
f(x) (x− 0.5) dx

2
∫ 0.5

0
f(x) (x− 0.5)2 dx

.

In Fig. 1 we see the plots of the functions −(x − 0.5) and 2 (x − 0.5)2. For a
constant function f(x), α is the ratio between the area under the segment and
the area under the parabola. For non constant f(x) the two areas are weighted
by f(x). It is clear that α is always larger than 1, unless f(x) is concentrated
on 0, 0.5 and 1. The value of α is larger for functions f(x) that are larger near
0.5. It is interesting to compute α in a few particular cases:

1) Xi is a flat unbiased random variable, i.e., f(x) = 1,
2) f(x) has a triangular shape. It is linearly raising between 0 and 0.5 and

decreasing with the same slope between 0.5 and 1, i.e.,

f(x) =
{

1− a+ 4 a x 0 ≤ x ≤ 0.5
1 + 3 a− 4 a x 0.5 ≤ x ≤ 1

(3)
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where 0 ≤ a ≤ 1 (note that case 1 falls into this more general case if a = 0),
3) Xi is a normal random variable without tails, i.e.,

f(x) = K
1√

2π σ2
e−(x−0.5)2/(2σ2), 0 ≤ x ≤ 1, (4)

where K is chosen so that the integral of f(x) over the interval [0, 1] is indeed 1.
For small values of σ, K is slightly larger than 1.

Case 1: It is immediate to compute σ2
X = 1/(12n) and σXY = 1/(8n) so

that

α =
3

2
.

Case 2: We get

σ2
X =

2− a
24n

, σXY =
3− a
24n

,

so that

α =
3− a
2− a

.

We see that for 0 ≤ a ≤ 1 we have 3/2 ≤ α ≤ 2. Note that the sharper the
function f(x) is the larger the amplification factor is.

Case 3: Note that nσ2
X < σ2 because the tails of the distribution outside

the interval [0, 1] are cut. For values σ ≤ 0.1, nσ2
X differs from σ2 less than

10−5. The computation of σXY gives

σXY = K σ
1− e−1/(8σ2)

n
√

2π
,

so that we have

α =
σXY
σ2
X

>
nσXY
σ2

= K
1− e−1/(8σ2)

σ
√

2π
.

For small values of σ, we may approximate

α ≈ 1

σ
√

2π
.

As apparent from the expression the amplification factor can be large. For
σ = 0.1 (a value that can closely fit a real situation) α is almost equal to 4.

This is an interesting conclusion if we know that the two parties not only have
the same strength but they are also very close to 50% of votes in all districts.
This circumstance blows up the amplification factor to large values.

4 Simulation

The previous analytical findings can be substantiated by simulation. In par-
ticular we consider the same three cases examined in Section 3: 1) f(x) = 1;
2) f(x) as in (3) with a = 1; 3) f(x) as in (4) with σ = 0.1 (actually we
have generated an approximate gaussian variable as the sum of twelve uniform
random variables).

We show the results of the simulation in two different ways. First we have
fixed the number of districts to 20 and we have performed 100,000 runs for each
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Figure 2: Simulation results

one of the three cases. For each run the Xi, i = 1, . . . , 20, random variables were
generated, the Yi were derived from the Xi variables and the pair (X,Y ) was
computed. Then, among the 100,000 generated pairs (X,Y ), we have selected
those pairs such that 0.01 k ≤ X − 0.5 ≤ 0.01 (k + 1), for k = 0, . . . , 25. This
means that we have selected those cases such that X − 0.5 is almost equal to
k%. For each value of k we have computed the averages (X̄, Ȳ ) of the selected
pairs (X,Y ) and then we have computed the ratio α = (Ȳ − 0.5)/(X̄ − 0.5).
In Fig. 2 (a) we show the values of α for each k (for which there exist selected
pairs) and for the three cases. We see a remarkable fitting of the simulated
data with the analytical values 1.5, 2 and 4, except for the gaussian variables
with X − 0.5 > 0.07 for which there are too few values to have a significative
simulation and also the values can be outside the linear range.

The second type of simulation shows the distribution of all generated pairs
(X,Y ). In this case we have generated only 500 runs in order to be able to see
the points in the figure. For each run the number of districts was uniformly
randomly chosen between 5 and 30 and then the Xi variable was generated for
each district. The Yi variables were derived from the Xi variables. For each
run the point (X,Y ) is shown in Fig. 2 (b), (c) and (d), according to the case.
Besides we have shown the ellipsis (x, y)TV −1 (x, y) = C, (with V the covariance
matrix of (X,Y )) and the eigenvectors of V . Also this simulation confirms the
analytical findings.
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5 Efficiency gap

Recently, in order to measure how fair the district subdivision is, the concept of
Efficiency gap has been introduced [7]. Let us briefly summarize the basic facts
about the Efficiency gap.

The votes above 50% in a particular district are considered ‘wasted’ for the
winner party because they are not necessary to win the seat. Also the votes of
the looser party are wasted because they don’t contribute to win the seat. The
concept of Efficiency gap takes into account the wasted votes in all districts by
both parties. Let WA and WB be these values. The Efficiency gap is defined as
|WA −WB | divided by the number of all votes in all districts. A subdivision is
declared fair if the Efficiency gap is zero, a circumstance that should correspond
to equal treatment of the two parties [7].

If we assume that the same number of votes is casted in each district it is
not difficult to show that zero Efficiency gap corresponds to

Y − 1

2
= 2 (X − 1

2
).

This means that, according to the concept of Efficiency gap, a fair district
subdivision implies an amplifying factor of two of the excess percentage of seats
with respect to the excess percentage of votes.

6 Extension to three parties

We may extend the previous analysis to the case of three parties competing for
the seats. The analysis is slightly more complex and we just provide details
for the case of uniform random variables. The fraction of votes received by
the three parties in districts i are three random variables X1

i , X2
i , X3

i , taking
values on the simplex

{
(x1, x2, x3) ≥ 0 :

∑
i x

i = 1
}

with a joint density function
φ(x1, x2, x3). We say that the parties have the same strength if φ is symmetric.
Let Xi = X1

i and

Yi =

{
1 if X1

i > X2
i and X1

i > X3
i

0 otherwise.

Let X =
∑
iXi/n and Y =

∑
i Yi/n. Let F (x) = Pr {X ≤ x}. If φ is uniform,

then F (x) = 2x − x2, and the density function is f(x) = 2 − 2x. Clearly
X̄ = Ȳ = 1/3. Then

σ2
X =

1

n

∫ 1

0

2 (1− x) (x− 1

3
)2 dx =

1

18n
.

To compute σXY note that Xi > 0.5 implies Yi = 1 and Xi < 1/3 implies
Yi = 0. If 1/3 ≤ Xi ≤ 0.5

Pr {Yi = 1 |Xi = x} =
3x− 1

1− x
,

Pr {Xi = x, Yi = 1} = Pr {Yi = 1 |Xi = x} Pr {Xi = x} = 2 (3x− 1),

Pr {Yi = 0 |Xi = x} = 1− 3x− 1

1− x
= 2

1− 2x

1− x
,
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Pr {Xi = x, Yi = 0} = Pr {Yi = 0 |Xi = x} Pr {Xi = x} = 4 (1− 2x).

From these expressions we may easily compute σXY = 5/(54n) and

σXY
σ2
X

=
5

3
,

that shows an amplifying factor larger than the value 3/2 obtained for two
parties. Note that for three parties the amplifying factor is respect to the ratio
(Ŷ (x)− 1/3)/(x− 1/3). We also get σ2

Y = 2/(9n).

7 Conclusions

In this paper we have carried out a probabilistic analysis of a uninominal elec-
toral system with two parties to understand how the vote percentage is turned
into a seat percentage when the two parties have the same probability of obtain-
ing any vote percentage. We have shown that the percentage of votes above 50%
turns into a larger percentage of seats above 50%. In particular for a uniform
vote distribution the amplification is 3/2, whereas for sharper density functions
the amplification factor is larger. Therefore a uninominal system seems to be
inherently non proportional, even if the district subdivision is fair and gerry-
mandering practice is banned.
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