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Abstract

Given a set of points and distances between them, a basic problem in network design

calls for selecting a graph connecting them at minimum total routing cost, i.e., the sum over

all pairs of points of the length of their shortest path in the graph. In this paper we describe

some branch and bound algorithms for the exact solution of a relevant special case arising

when the graph has to be a tree. One of the enhancements to our algorithms is the use of \LP

shortcutting", which we introduce as a general purpose technique for speeding up the search.

Besides network design, we show how trees of small routing cost �nd useful application in

computational biology, where they can be used to determine good alignments of genomic

sequences. This leads to a novel alignment heuristic that we analyze in our computational

section.

Keywords: Network Design, Branch and Price, Computational Biology.

1 Introduction

The minimum communication cost network is a basic problem in network design, which can be

described as follows: n points (e.g. cities) have to be connected by a network (e.g. telephone
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lines). A given budget is available for the construction of the network, and each possible link has

a building cost (to be paid only once) and a length, representing its usage cost. For each pair of

points there is a demand, which is proportional to the expected usage of the best path between

the points in the �nal network (e.g., expected number of telephone calls between two cities). The

communication cost for a pair will be the length of the shortest path in the network, weighted

by the pair's demand. The objective is to design a network whose building cost is within the

budget and which minimizes the total communication cost.

The problem has been �rst studied by Scott [13] and Dionne and Florian [2] among others.

Johnson, Lenstra and Rinnooy Kan [7] have shown that the problem is NP-hard, even in case

all the demands are equal, all the building costs are 1, and the budget is n� 1, i.e., the solution

is a tree. This result justi�es the use of either enumerative approaches like branch and bound

([2]), or heuristics and approximation algorithms ([13, 16]).

Our paper focuses on the relevant special case of �nding a spanning tree of minimum com-

munication cost when all the demands are equal, a problem denoted as the optimum distance

spanning tree in Hu [6] and the minimum routing cost tree in Wong [16] and in Wu et al. [17].

We study exact algorithms for �nding a minimum routing cost tree. The most e�ective one

is a branch and bound procedure based on an integer programming formulation in which the

variables are associated with the paths in the solution. This clearly leads to an exponential

number of variables; however, we show how these variables can be considered only implicitly

and generated quickly when needed, via a well{known method in combinatorial optimization

called column generation. Besides an exponentially large number of variables, our formulation

has also a large (although polynomial) number of constraints. Again, the standard technique

to tackle problems of this size is the generation of rows at run time. In this paper we develop

some conditions, which we call LP shortcutting, that allow us to branch or fathom a search node

before completing the solution of the associated LP (needed to obtain the lower bound). This

technique is perfectly general and can be applied to any IP formulation with column and row

generation. The use of LP shortcutting can provide great savings on the �nal running time, as

reported in our computational results section.
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The study of the minimum routing cost tree problem is rather recent, as the original papers

of the 70s were mainly focusing on the more general version of the problem. The NP-hardness

proof in [7] constructs a graph whose edge lengths do not obey the triangle inequality. In [17],

Wu et al. show that the non{metric case can be indeed reduced to the metric case, hereby

proving NP-hardness for the latter case as well. They also report the �rst polynomial time

approximation scheme, which shows that the optimal solution can be approximated within a

factor of (k + 3)=(k + 1) by the best k{star (a tree with at most k internal vertices). This

result builds on previous studies on the approximability of the problem, due to Hu and Wong.

Hu [6] derives weak conditions under which the optimum routing cost tree is a star. Wong [16]

shows that a 2{approximation is obtained by simply taking the tree of shortest paths, choosing

the root vertex producing the minimum routing cost. This idea is exploited by Gus�eld [5] to

obtain the �rst approximation algorithm for an alignment problem in computational molecular

biology. It is suggested in [17] that the use of trees of small routing cost can in fact lead to

better alignment algorithms than Gus�eld's. In this paper we have implemented these ideas

for some real alignment problems. The results con�rm that optimizing the routing cost yields

better alignments than [5].

The remainder of the paper is organized as follows. Section 2 introduces some basic notation

and three integer programming formulations of the problem. The �rst two are equivalent (i.e.

give the same bound), but one has an exponential number of variables and the other is based

on multicommodity ows. The third formulation is much faster to solve, but produces weaker

bounds. In section 3 we investigate some combinatorial lower bounds. In section 4 we describe

the strategy of LP shortcutting. Section 5 discusses the main ingredients of our enumerative

procedure, namely a local search algorithm for �nding good feasible solutions, various branching

rules, and some valid inequalities. In section 6 we outline an application of minimum routing

cost trees to the problem of aligning a set of genomic sequences. Computational results are

reported in section 7. Some conclusions are drawn in section 8.
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2 Notation and Integer Programming Models

An instance of the Minimum Routing Cost Tree (MRCT) problem is speci�ed by an undirected

graph G = (V;E) with nonnegative lengths on the edges. We let jV j = n, jEj = m, and V =

f1; : : : ; ng. The length of an edge e = fi; jg will be denoted as de or d(i; j). We will assume de � 0

for all e 2 E. A pair of vertices is an edge of the complete graph Kn = (V;�). For a subgraph

G
0 of G and a pair fi; jg 2 � of vertices, d(i; j; G0) is the distance (i.e. shortest path length)

between i and j in G0. If G0 is a tree then d(i; j; G0) is the length of the unique path connecting

i and j. The routing cost of a spanning tree T is de�ned as rc(T ) :=
P

fi;jg2� d(i; j; T ). For a

tree T and an edge e 2 T , the load of e in T , denoted �(e; T ), is the number of paths using e,

i.e., jSj � jV � Sj, where S is one shore of the cut identi�ed by the removal of e from T . We can

rewrite the routing cost of a tree as rc(T ) =
P

e2T �(e; T )de.

For each pair h = fi; jg 2 �, we denote by Ph the set of (simple) paths in G between i and j.

The set of all paths in G will be denoted by P. Note that a path of cardinality 1 is (isomorphic

to) an edge, and hence E � P. For each path P 2 P, we let dP :=
P

e2P de.

The basic formulation

We can formulate the MRCT problem as a mixed{integer program with decision variables

xP , for P 2 P, used to select a path between each pair of vertices. The constraints are such

that, in a feasible solution, the set fe 2 E j xe = 1g de�nes a tree. The following is an integer

programming formulation of the minimum routing cost tree problem:

(IP1) min
X
P2P

dPxP

(1)

subject to
X
P2Ph

xP = 1 h 2 � (2)

X
P2Ph:P3e

xP � xe e 2 E; h 2 �� feg (3)
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X
e2E

xe = n� 1 (4)

xe � 0; integer; e 2 E; xP � 0; P 2 P �E: (5)

In this model there are exponentially many variables and (m+1) (n�1)n=2�m+1 = O(mn
2)

constraints. Constraints (2) force each pair to be connected. Constraints (3) say that only edges

in the tree can be used by a path. Because connection is given by (2), for the xe to induce a tree,

it is enough to have n� 1 edges, as required by (4). Note that we need not to impose integrality

on all the variables, but only on the ones associated with edges. Indeed, since in a tree there

is only one path for each pair of vertices, it can be easily seen that if the xe are binary for all

e 2 E, then the xP are binary for all P 2 P. One of the main diÆculties in the design of branch

and price algorithms is devising e�ective branching rules when the binary variables are priced

out at run-time. A typical problem is that there may be no easy way to forbid that a variable

that was �xed at 0 by branching, could still be a feasible solution for the pricing problem. This

issue can be avoided here, by pricing out only the path{variables associated with paths in P�E,

and keeping the variables xe; e 2 E, that are candidate for branching, always present in each

LP.

The LP relaxation of (IP1), called (LP1) in the sequel, can be solved exactly in polynomial

time by column{generation techniques. Therefore, we can use (LP1) to compute lower bounds.

To this end, we de�ne the following dual variables for (LP1), associated with the constraints

(2), (3), and (4) respectively: uh, for h 2 �; veh � 0, for e 2 E; h 2 �� feg; and w. The dual

of (LP1) has the following constraints:

ue +
X

h2��feg

veh + w � de e 2 E (6)

uh �

X
e2P

veh � dP h 2 �; P 2 P
h
; jP j � 2: (7)

A variable with negative reduced cost in (LP1) corresponds to a dual constraint violated by

the current dual solution. Assuming that the m columns for the edges are always present in the

LP formulation, the constraints (6) will never be violated. To check whether there are violated
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constraints (7) we proceed as follows. We rewrite constraints (7) as

X
e2P

(veh + de) � uh h 2 �; P 2 P
h
; jP j � 2: (8)

For a �xed h = fi; jg, de�ne d0
e
= veh + de for all e 2 E. Then the constraint is violated for

h if there exists an i{j path, other than h, whose length with respect to the costs d0 is shorter

than uh. This can be checked by �nding the shortest i{j path in E � fhg, with respect to the

costs d0. Since all costs are nonnegative, the shortest path can be found in polynomial time,

e.g., by Dijkstra's algorithm. If such a path P has d0
P
< uh, then xP can be added to the set of

primal variables for a new simplex iteration. On the other hand, if for all pairs h condition (8)

is satis�ed, the current LP solution is optimal. Note that, by a trivial modi�cation of Dijkstra's

labeling algorithm for the shortest path problem, we can retrieve not just the shortest path,

but possibly many paths of length d
0
P
< uh. This is advisable, as we noted that adding several

negative reduced cost variables at each iteration of the column generation results in a smaller

overall running time (see section 7).

An equivalent multicommodity ow formulation

The MRCT problem can alternatively be modeled as a multicommodity ow, in which each

vertex sends n � 1 units of ow, one to each remaining vertex. Let A be the set of oriented

arcs obtained by directing each edge of E in both possible ways. We de�ne real variables xh(i;j)

for each h = fu; vg 2 � and (i; j) 2 A, representing the ow from u to v along the arc (i; j).

Further, we have binary variables ye for e 2 E, which represent the edges of the tree. We obtain

the following formulation:

(MCF) min
X
h2�

X
(i;j)2A

d(i; j) xh(i;j)

(9)

subject to
X

(u;j)2A

x
h

(u;j) �

X
(j;u)2A

x
h

(j;u) = 1 h = fu; vg 2 �; u < v (10)
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X
(i;j)2A

x
h

(i;j) �

X
(j;i)2A

x
h

(j;i) = 0 h = fu; vg 2 �; i 2 V � fu; vg (11)

x
h

(i;j) + x
h

(j;i) � ye e = fi; jg 2 E; h 2 � (12)

X
e2E

ye = n� 1: (13)

There are m(n2 � n + 1) = O(mn
2) variables and (m + n � 1) (n � 1)n=2 + 1 = O(mn

2)

constraints. The constraints (10) and (11) (ow conservation) guarantee that all pairs are

connected; constraints (12) control edge activation, while (13) force the support graph of y to

be a tree. By the Flow Decomposition Theorem ([1],p. 80), any u{v ow can be decomposed

into a set of u{v paths, and conversely. As a consequence, it is easy to see that the formulations

(IP1) and (MCF) are equivalent, i.e. given a feasible solution to one of them, we can compute a

feasible solution to the other of the same value. In particular, the two relaxations give the same

lower bound, and hence the choice between them depends on how fast they can be solved and

the amount of memory required. In both respects, we have found that (IP1) is to be preferred

over (MCF).

Aggregate formulation

Here the idea is to bound the maximum number of paths that use an edge chosen in the tree.

Let L+
e
be an upper bound of the load of an edge e if included in an optimal solution. Clearly,

we can always set L+
e =

�
n

2

�
�

�
n

2

�
, but we can possibly use better bounds, depending on the

input graph and the incumbent solution (see section 5.2). The new model, called (IP2), is the

same as (1){(5), with constraints (3) replaced by

X
P2P :P3e

xP � L
+
e
xe e 2 E: (14)

This formulation has only O(n2) constraints. Let uh, h 2 �, be the dual variables associated

to (2), and let ve � 0, e 2 E, be the dual variables for (14). The dual constraints corresponding

to the variables xP , jP j � 2, are

uh �

X
e2P

ve � dP h 2 �; P 2 P
h
� fhg: (15)

7



As to variable pricing, for each e 2 E we de�ne d0e = de + ve and rewrite constraints (15) as

P
e2P d

0
e
� uh for all h 2 �; P 2 P

h. We can then use a shortest path algorithm to �nd violated

constraints (15).

The model (IP1) de�ned by (1){(5) is highly degenerate and hence the solution of its LP

relaxation is often unacceptably slow. For this reason, we have investigated the alternative

formulations (MCF) and (IP2), and also the generation of constraints at run time for (IP1).

Constraint generation requires the solution of several LPs, each of which can be solved faster

since it is smaller and less degenerate. We observed that, by generating both columns and rows,

the solution of (LP1) can be speeded up by a factor of 10.

According to our computational experiments, detailed in section 7, the best formulation is

(IP1) with generation of both columns and rows, enhanced by LP shortcutting and additional

cuts, as described in the following sections.

3 Lower bounds

In the branch and bound procedures studied in this paper, the integer decision variables corre-

spond to the edges in the solution. Accordingly, at each node of the search tree we have three

subsets of the edges, forming a partition of E. We denote by E0 the set of all forbidden edges

that are excluded from each solution at the node. E1 is the set of all included edges, i.e., edges

that must be in all solutions at the node. Finally, the set of free edges is Ex = E � (E0 [ E1).

It is always required that E1 is acyclic and E � E0 is connected, or otherwise the node cannot

contain any feasible solution. This partitioning scheme is independent of the approach used to

obtain the lower bounds.

In this section we describe valid lower bounds for the problem. These bounds can be com-

puted at each node of the search tree, and hence depend on G, E1 and E0. Let lIP1 = lMCF and

lIP2 denote the lower bounds given by the optimum value of the linear programming relaxations

of (IP1), (MCF) and (IP2), with respect to the given E0 and E1.

For all i and j in V , let d(i; j; E1) be the shortest path lengths in (V;E1). We distinguish two
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sets of vertex pairs: �C = ffi; jg 2 � j d(i; j; E1) < 1g, contains the pairs that are connected

in (V;E1), and �D = ���C those that are disconnected in (V;E1).

For fi; jg in �C , the length of the path in the �nal tree is already known. So, we only need

to bound the contribution for the pairs fi; jg in �D. For fi; jg in �D we denote by c1(i; j)

(respectively, c2(i; j)) a lower bound on the length of the path between i and j in a tree, in the

case where the path consists of 1 edge (respectively, 2 or more edges). Then c1(i; j) = d(i; j)

(possibly 1 if fi; jg =2 Ex) and c2(i; j) is the length of a shortest i{j path in E �E0 � ffi; jgg.

A trivial lower bound is given by the sum over all pairs of their shortest path distance:

lSUM =
X

fi;jg2�C

d(i; j; E1) +
X

fi;jg2�D

minfc1(i; j); c2(i; j)g: (16)

The trivial lower bound can be improved as follows. For all fi; jg 2 �D, de�ne Æ(i; j) :=

c2(i; j)� c1(i; j). Given any tree T = (V;E(T )) with E1 � E(T ) and E0 \E(T ) = ;, we denote

by X = E(T ) \ �D the set of pairs in �D that are connected by an edge of T , while all the

other pairs in �D are connected by a path of at least two edges. Then the routing cost of a tree

is at least
P

fi;jg2�C
d(i; j; E1) + minX��D

�P
fi;jg2X c1(i; j) +

P
fi;jg2�DnX

c2(i; j)
�
, which can

be rewritten as
P

fi;jg2�C
d(i; j; E1) +

P
fi;jg2�D

c2(i; j) �maxX��D

P
fi;jg2X Æ(i; j).

Dionne and Florian [2] strengthened this bound by constraining the size of X to be exactly

n� 1� jE1j, hence taking the n� 1� jE1j largest Æ(i; j)'s. We can do better by imposing that

X [E1 must be a tree, hence �nding the maximum (with respect to costs Æ(i; j)) spanning tree

T = (V;E(T )) with E1 � E(T ) and E0 \E(T ) = ;, and setting X = T �E1. This leads to the

combinatorial lower bound

lCOMB =
X

fi;jg2�C

d(i; j; E1) +
X

fi;jg2�D

c2(i; j) �
X

fi;jg2X

Æ(i; j): (17)

Quite surprisingly, this bound turns out to be very close to the bound given by the LP

relaxation of formulation (IP2) (see Table 2), although it is much faster to compute. However,

it is considerably weaker than lIP1 and it is not enough powerful to solve instances on complete

metric graphs with more than 15 vertices.
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A di�erent lower bound is based on dynamic programming, but has space and time complex-

ity which make it of little use for instances involving more than very few vertices. For a subset

S � V of vertices, let lDP(S) be the lower bound on the routing cost of a tree spanning the

vertices in S. Also, for i 2 S, let w(i; S) :=
P

j2S:fi;jg2�C
d(i; j; E1)+

P
j2S:fi;jg2�D

d(i; j; E nE0)

be the minimum total length for connecting i to all other vertices in S. Given a tree T over S,

any edge fi; jg 2 T splits T into two subtrees, one covering i over some S0 � S, and one covering

j over S00 = S n S
0. For each u 2 S

0 we must pay at least d(i; j) + w(j; S00) to connect u to all

the vertices in S00, and similarly for each v 2 S
00 we have to pay d(i; j) +w(i; S0) to connect v to

all vertices in S
0. Pairs that have both endpoints in S

0 or S00 are accounted for in lDP(S
0) and

lDP(S
00). We get the following recurrence:

lDP(S) = min
�
lDP(S

0) + lDP(S
00) + jS

0
jw(j; S00) + jS

00
jw(i; S0) + jS

0
jjS

00
jd(i; j)

	
(18)

where the minimum is taken over all ; � S
0
� S, i 2 S

0, j 2 S
00 := S n S

0 and fi; jg 2 �D.

Computing the bound lDP(V ) has space complexity O(n 2n) and time complexity O(n2 2n) which

is due to the dominating cost of computing all w(i; S). Note that solving the minimum routing

cost tree problem by complete enumeration has cost O(nn) since there are nn�2 trees and each

routing cost can be computed in time O(n2).

4 LP shortcut

For an LP-based branch and bound where both rows and columns are generated, the following

LP{shortcut strategy can be used to speed up the computation. Given an incumbent solution

of value u, the main use of an LP solution is to provide a lower bound l which is used to decide

whether to branch (l < u) or to fathom the current branching node (l � u). Now, if we know

lower and upper limits on l, i.e. l0 � l � l
00, we can branch, in a \preemptive" way, as soon as

l
00
< u, or fathom the node, in a \preemptive" way, as soon as l0 � u. We can obtain these limits

at the end of each phase of row and column generation. Indeed, whenever there are no violated

constraints (i.e. at the end of a phase of row generation), the optimal solution to the current
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Figure 1: LP{shortcut. Preemptive branching (left) and preemptive fathoming (right). Labels C and R

refer to column and row generation phases, respectively.

LP gives an upper bound on l. Analogously, after column generation we have an LP solution

which includes (implicitly) all variables, but possibly does not satisfy all constraints, hence its

value is a lower bound on l. Note that the values l0 and l00 computed this way are monotonically

approaching l from below and from above, respectively (assuming rows and columns are always

added and never removed). The situation is illustrated graphically in Figure 1. In the left

drawing, shortcutting implies that branching can be performed at time TS0, while the �nal

bound value l is obtained only at time TF. In the right drawing, the node can be fathomed at

time TS00. Although the idea of using intermediate bounds for fathoming the node is known, the

use of preemptive branching is (to the best of our knowledge) new. Note that, by adding novel

cuts to the LP, it is possible to improve the lower bound, hence preemptive branching could be

disadvantageous in the cases where additional cuts are considered. In practice, however, this

can be taken into account heuristically as follows: If at time TS0 the relative gap between the

current LP value and u is smaller than a given threshold �, then we do not apply shortcut and

keep optimizing the node, in the hope that the addition of cuts will be suÆcient to fathom the

problem. In our runs, we have used � = 0:5%.

We have implemented this idea in a general{purpose IP solver. For the solution of our

problem, LP{shortcut gives a global (over all nodes of the search tree) speed up of about 45%

with respect to the full LP solution at each node. It is worth noting that at a single node the
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speed up can be larger than 90%; however, the work saved at a node (e.g. generation of useful

columns) may be needed at a later time, so the overall saving is less impressive than the one

obtained, e.g., at the root node.

These observations can be developed further as follows. Denote by l0(i) the value of the LP

at the end of the i{th phase of column generation, where l0(i) is a lower bound for each i, and

l
0(i) � l

0(i+1). We have observed that the convergence of l0(i) to the actual best lower bound l

is quite slow, that is l0(i+1)� l0(i) decreases very rapidly, while the time needed to solve the LPs

increases due to the increased size. The key observation is that after few iterations (e.g., less

than 10) we have already a bound that is 99% of the best bound, while we have spent almost as

little as 20% of the total time. In other words, 80% of the time is actually spent in improving

the bound by at most 1%. On the instances that we used for our computational experiments,

we observed that six iterations gave a good trade o� between the quality of the bound and the

time needed to compute it. Hence, in our branch and bound we used the lower bound l0(6). This

way we have been able to solve problems otherwise unsolvable in reasonable time with the use

of the original lower bound. As observed before, a preemptive branching can be a disadvantage

in those cases where the actual best bound would have been suÆcient to fathom the node. To

contrast this drawback we keep optimizing the LP if the ratio between l
0(6) and u is smaller

than a given threshold � (heuristically set to 0.5%).

5 The branch{and{bound ingredients

5.1 A local{search heuristic

The procedure we use to obtain a good starting feasible solution is based on the standard local

search neighborhood for problems whose solution is a tree. We start with any tree T (e.g., the

best 2{star, which gives a 5
3
{approximation [17]). For each edge e =2 T , we try adding e to T ,

thus creating a cycle Ce that we break by removing the edge f 2 Ce for which rc(T �ffg[feg)

is minimum. Among all possible e =2 T , we choose to add to T that edge which gives the largest

decrement in the routing cost of the tree. If no e =2 T gives a decreased routing cost, we stop
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and output T ; otherwise, we update the tree and iterate the same procedure. This search is

very fast and is repeated from di�erent starting trees T . Notice that, for each attempted move,

the computation of the new routing cost can be done by only considering the edges of the cycle,

the load of all the other edges remaining una�ected by the move. Further, to update the loads,

it is enough to store for each edge the sizes of the two shores of the cut identi�ed by it. When

implemented this way, with a suitable data structure, the search takes only linear time per

move. Hence the convergence to a local optimum is usually very fast (e.g., less than 1 second

for n = 30).

From our experiments, it appears that this heuristic is extremely e�ective on graphs of the

size tackled by our program (up to 30 vertices), and, iterated for 100 starting trees, yielded the

optimal solution on most instances in our test{bed.

5.2 Node tightening

At any node of the branch and bound tree we have a set E1 � E of edges that have been included

in the solution and a set E0 � E of edges that are forbidden from being in the solution. We

enlarge these sets by adding to E0 any edge e 2 Ex which creates a cycle in E1. As a result, every

e 2 Ex has its endpoints in di�erent connected components of (V;E1). Furthermore, we add to

E1 any edge e that is the unique edge of Ex in the cutset de�ned by one connected component of

E1. We then try to �x some more edges by using the value u of the current incumbent solution.

In particular, we compute for each e 2 E �E0 an upper bound Le on the load that e can have

in an optimal solution corresponding to the current node and, if Le = 0, we add e to E0 (in case

E �E0 becomes disconnected, we fathom the node).

To be more speci�c, for each a = fi; jg 2 E �E0 let ni and nj be the sizes of the connected

components containing i and j in (V;E1�fag); without loss of generality, assume ni � nj. The

forest load Fa of a, de�ned as ni � (n � ni), is the smallest possible load that a can have in

the �nal tree. For any e 2 E � E0 and an integer \tentative" load Le, consider the minimum

spanning tree T 0 of E � E0, with E1 [ feg � T
0, computed with respect to costs ca = Fada

for each a 2 E � (E0 [ feg) and cost ce = Lede for edge e. Let c(T 0) =
P

a2T 0 ca be its
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overall cost. Then, e can have load Le or more only if c(T 0) < u. In fact, the routing cost of a

tree T containing E1 [ feg and with load at least Le on e is
P

a2T�feg �(a; T )da +�(e; T )de �

P
a2T�feg Fada + Lede = c(T ) � c(T 0). Accordingly, we �nd a value k 2 1; : : : ; bn=2c such that

for Le = k (n � k) we have c(T 0) � u while for Le = (k � 1)(n � k + 1) we have c(T 0) < u. If

k = 1, then 0 is the maximum load for e, hence this edge can be added to E0. This in turn may

imply further tightening of loads for other edges, so we cycle through this procedure as long as

some edges get deleted. The above reduction criterion is often e�ective and can be used in all

our formulations. In addition, values Le > 0 can be used in the formulation (IP2) to strengthen

constraints (14).

5.3 Branching

At each node we can branch on a fractional \edge"{variable x
�
e, e 2 E, by �xing it to 0 or

1. There are many general criteria to choose the branching variable, as described, e.g., in

Savelsbergh [?]. As to problem{speci�c rules, one can choose the branching variable so as to let

E1 grow as a forest (similarly to Kruskal's algorithm for the MST). Alternatively, one can always

choose it in the cut de�ned by the component of fa 2 E : x�a = 1g containing vertex 1, this way

trying to grow a single tree like in Prim's algorithm for the MST. Our computational tests have

shown that the greater freedom allowed by the �rst strategy gives a better performance. When

choosing the branching edge we use one of the following criteria.

Fixed order criteria: The edges are sorted according to some rule at the end of the root

node. Then they are always scanned in this order, and we branch on the �rst fractional variable

encountered. Ordering rules are explained below.

F1: Smaller length. Edges are sorted by nondecreasing length.

F2: Larger length. Edges are sorted by nonincreasing length.

F3: Based on heuristic solution. Edges are sorted according to how critical they are in the

heuristic solution TH at the root node (which is usually optimal). An edge e is considered

to be more critical than a if �(e; TH) > �(a; TH) or �(e; TH ) = �(a; TH ) and d(e) � d(a).
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Variable order criteria: We look at the current subproblem and its solution, and choose the

branching edge according to one of the following criteria.

V1: Most fractional. The standard choice for 0{1 variables.

V2: Smaller load � length. We compute the forest load Fe of all edges (de�ned in 5.2) and

branch on the fractional edge with minimum Fe de.

V3, V4, V5: Best expected lower bounds (max min, max max, max di�). These rules are

based on the following idea. Assume we knew the lower bounds LB(e; 0) and LB(e; 1)

that we would get by �xing xe to 0 and 1 respectively, for all e 2 Ex. Then, we may

want to branch on an edge for which minfLB(e; 0); LB(e; 1)g is maximum, trying to get

as high as possible lower bounds for both subproblems. Alternatively, we may want to

maximize maxfLB(e; 0); LB(e; 1)g so that at least one of the two subproblems is likely

to be fathomed. A �nal idea is that of maximizing jLB(e; 0) � LB(e; 1)j, i.e. trying to

make one of them promising and the other unappealing. Computing lIP1 for all e is too

expensive, hence we use the very fast combinatorial lower bound lCOMB (roughly equivalent

to lIP2).

We found branching to be of crucial importance. Indeed, some rules are consistently quite

faster than some others. In particular, F2 is much worse than F1, and V3 much worse of V4,

which is similar to V5. According to our computational results, reported in [4], the rules F3 and

V2 outperform all other rules.

5.4 Valid inequalities

In this section we discuss some valid inequalities for our model. It should be remarked that the

solution of our LP's is itself quite time{demanding, so our strategy of shortcutting implies that

most of the times we do not solve optimally the LP nor add valid inequalities. However, on

small instances (or when the lower bound is very close to the value of the incumbent solution)

we do solve the LP optimally and try to improve the bound by using valid cuts.
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~Lij
~Di

~Dj ~xij

0
1
1

n� 2

1
n� 2
1

0

n� 1

0
1
0

n� 2

1
0

n� 2
0

1

2(n� 2)
1
1

n� 3

1
n� 3
1

1

k(n� k)

1
1

n� k � 1
k � 1

n� k � 1
1

k � 1

1
n� k � 1

1
n� k � 1
k � 1
k � 1
1

1

Table 1: All cases for extreme feasible vectors (~Lij ; ~Di; ~Dj ; ~xij).

All the standard tree-inequalities on the xe variables, e 2 E, are valid for our model, but

some of them are already implied as, e.g., the valid inequality
P

e2Æ(S) xe � 1 for S � V . On

the other hand, the inequalities

X
e2E(S)

xe � jSj � 1 S � V (19)

are non{redundant, and can be separated by using a standard technique based on maximum

ow computations [8].

We also studied a family of inequalities derived by considering a small portion of a tree

and the relationship between the variables involved. In particular, consider an edge fi; jg, and

denote by Lij its variable load, i.e., Lij :=
P

P3fi;jg xP . The basic inequality we start with is

(n� 1)xij � Lij �

�
n

2

� �
n

2

�
xij : (20)

To strengthen this inequality we use information on the degree of i and j (e.g., if either i or

j is a leaf, then Lij must be equal to n � 1). De�ne Di :=
P

e2Æ(i) xe � xij as the number of

neighbors of i in a solution (excluding j), and let Dj be de�ned similarly. We want to derive a
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general valid inequality that links the variables Lij , Di, Dj , and xij , the most general form of

which will be �Lij + �Di + Dj + �xij � � for some unknown real coeÆcients �, �, , � and

�. Given a fractional solution (L�
ij
; D

�
i
;D

�
j
; x

�
ij
) the most violated valid inequality of the above

type can be found by solving the linear program:

max
�1��;�;;�;��1

�L
�
ij
+ �D

�
i
+ D

�
j
+ �x

�
ij
� � (21)

subject to

�~Lij + � ~Di +  ~Dj + �~xij � � for all extreme feasible vectors (~Lij ; ~Di;
~Dj ; ~xij); (22)

where the �nitely{many extreme feasible vectors (~Lij ; ~Di;
~Dj ; ~xij) can easily be obtained by

enumeration, as illustrated in Table 1. An alternative way for �nding these inequalities, consists

of analyzing o�{line the facets of the polyhedron whose extreme points are listed in Table 1. In

order to do this, we used the package porta [9] to compute the facets of the convex hull of all

extreme feasible vectors (~Lij ; ~Di;
~Dj ; ~xij) for various values of n and then we derived the form

of general valid inequalities which de�ne some of these facets. An example of such inequality is:

Lij �

�
n

2

� �
n

2

�
xij �

�
n� 2

2

� �
n� 2

2

�
(2�Di �Dj): (23)

To show this inequality is valid, �rst we observe that it can be tight only if xij = 1 and

Di +Dj � 1, i.e., i or j is a leaf. In such case, the inequality simply states that Lij � n� 1.

6 An application to computational biology

Comparing genomic sequences drawn from individuals of the same or di�erent species is one of

the fundamental problems in molecular biology. These comparisons can suggest evolutionary

relationships, identify highly conserved DNA regions, spot fatal mutations, etc. Therefore, the

mathematical formulation and solution of the so{called Multiple Sequence Alignment problem

constitutes a fundamental challenge for computational molecular biologists.

A genomic sequence is a string over the 4{symbols alphabet of nucleotides or the 20{symbols

alphabet of amino acids. Aligning a set of sequences consists in arranging them in a matrix
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having each sequence in a row. This is obtained by possibly inserting gaps (represented by the

`-' character) in each sequence so that they all result of the same length. The goal of identifying

common patterns is pursued by attempting as much as possible to place the same character in

every column. The following is a simple example of an alignment of the sequences ATTCGAC,

TTCCGTG and ATCGTC:

A T T - C G A - C

- T T C C G - T G

A - T - C G - T C

The multiple sequence alignment problem has been formalized as an optimization prob-

lem. The most popular objective function for multiple alignment generalizes ideas from opti-

mally aligning two sequences. This problem, called pairwise alignment, is formulated as follows:

Given symmetric costs c(a; b) for replacing a symbol a with a symbol b and costs c(a;�) for

deleting/inserting symbol a, �nd a minimum{cost set of symbol operations that turn a sequence

S
0 into a sequence S00. It is well known that this problem can be solved by dynamic programming

in time and space O(l2), where l is the maximum length of the two sequences. The value of an

optimal solution is called the edit distance of S0 and S
00 and is denoted by d(S0; S00).

An alignment A of two or more sequences is an array having the (gapped) sequences as rows.

The value dA(S
0
; S

00) of an alignment of two sequences S and S
0 is obtained by adding up the

costs for the pairs of characters in corresponding positions, and d(S0; S00) = minA dA(S
0
; S

00). In

the Sum{of{Pairs (SP) score, the cost of an alignment of many sequences is obtained by adding

the costs of the symbols matched up at the same positions, over all the pairs of sequences, i.e.,

SP (A) :=
P

fS0;S00g dA(S
0
; S

00) (where it is assumed that c(�;�) = 0).

Pioneering work of Sanko� and co-authors [11, 12] led to an exponential-time dynamic pro-

gramming solution to the SP-alignment problem. A straightforward implementation takes time

proportional to 2nln, for a problem with n sequences each of length at most l. In typical real{life

instances, while n is usually fairly small, l is in the order of several hundreds, and the dynamic

programming approach turns out to be infeasible for all but tiny problems. In fact, constructing

optimal alignments was shown to be computationally expensive (Wang and Jiang [15]).
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Due to the complexity of the alignment problem, most existing algorithms are heuristics

based on the so called \progressive" approach: The alignment is incrementally built by con-

sidering the sequences one at a time. E�ective progressive alignment methods proceed by �rst

�nding a heuristic tree spanning the sequences, and then by using the tree as a guide for aligning

them iteratively, as described in the following section.

6.1 Tree-based Progressive Alignments

A popular approach to multiple alignments is due to Feng and Doolittle [3] who showed how to

use any tree to align a set of n sequences. The appeal of the approach is that for n� 1 out of

n(n � 1)=2 pairs, the pairwise alignment induced is in fact optimal. Indeed, they showed that

for any tree T over a set of sequences (viewed as vertices in a graph), there exists a multiple

alignment A(T ) of the sequences such that dA(T )(S
0
; S

00) = d(S0; S00) for all the pairs of sequences

(S0; S00) connected by an edge of T . This can be readily understood with the help of Figure 2.

The �nal alignment is built as follows: (i) pick an edge of the tree and align recursively the

sequences on both sides of the cut; (ii) align optimally the two sequences at the endpoints of the

edge; (iii) use this optimal alignment to merge the sub{alignments into a complete solution, by

inserting columns of gaps in a sub{alignment wherever the optimal pairwise alignment inserts

a gap in one of the two sequences. This way, the cost in the resulting alignment for the two

sequences at the endpoints of the edge is their edit distance, as claimed.

Typically, the cost function obeys the triangle inequality, and then the edit distance induces

a metric over the space of all sequences. Hence, it is easy to compute upper bounds on the

distance in the �nal alignment for pairs that are not endpoints of a tree edge: by the triangle

inequality, dA(T )(S
0
; S

00) � d(S0; S00; T ), where d(S0; S00; T ) is length of the path in T between two

sequences S0 and S
00. This inequality suggests that, if we want to minimize the total pairwise

distance in the resulting multiple alignment, a good tree to use is one which minimizes the

routing cost.

The idea of relating routing cost and SP value is exploited in the �rst approximation al-

gorithm for the SP-alignment problem, due to Gus�eld [5], which has a performance ratio of
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Figure 2: Feng and Doolittle's progressive alignment.

2 � 2
n
. Gus�eld's approximation algorithm for the SP-alignment problem is based on Wong's

2-approximation for minimum routing cost trees [16]. Wong's algorithm considers, in turn, the

shortest path tree rooted at every vertex, the best one having routing cost at most twice as

large as the total cost of the graph itself. For complete metric graphs, every shortest path tree

is isomorphic to a star. Furthermore, in this case, the cost of the graph is the sum of pairwise

edit distances between sequences, which is a lower bound on the best SP{alignment cost. It

then follows that a multiple alignment derived from the best star gives a 2{approximation for

the SP{alignment problem [5].

In this paper we have pushed this idea further, by considering alignment trees of minimum

routing cost (not necessarily stars). This approach has two immediate advantages over star

alignments. First, an unrestricted tree may be more relevant than a star from an evolutionary

point of view. Second, Gus�eld reports that his approximation algorithm is not suited for

families of very dissimilar sequences. In these cases, our alignment heuristic is preferable since

for graphs with very dissimilar edge lengths, the minimum routing cost tree is almost never a

star.

By the same argument as before, aligning via the minimum routing cost tree still gives a

worst case performance guarantee of 2. However, as reported by Gus�eld, this bound is really

pessimistic and even the star alignment performs much better in practice (Gus�eld reports
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solutions within 15% of the lower bound, on average). In our computational results section

we will show how choosing a better tree than a star typically yields an improvement of several

percentage points on the average quality of the heuristic.

7 Computational results

Here we report on the extensive experiments carried out to evaluate all the ideas outlined in

the paper. Since we have identi�ed several aspects which can a�ect the �nal running time

signi�cantly (e.g., generation of columns, rows, LP{shortcut, branching rule, cut generation,

etc.), trying out all the combinations of settings would result in a huge number of possibilities.

Hence, we have chosen to evaluate them separately, when possible, in order to identify the best

combination. For most options, there is a very sharp cut between one setting and another,

clearly identifying the best choice. In some other cases (e.g. choice of the branching rule) the

best setting is not completely clear. In the remainder of this section we �rst address these

issues separately, so as to identify the best setting of all parameters. Then, we report on the

computational results for the algorithm when all parameters are set to their best value. In

the �nal part of the section, we describe the computational results for the multiple alignment

problem. All algorithms were coded in C and run on a Pentium Celeron PC, 300 MHz with 64

MByte RAM, under Linux RedHat 6.0, and LP solver CPLEX 5.0.

7.1 Branch and Bound

� Instance generation. To test our algorithms, we have used two types of graphs, namely

Euclidean and random graphs. A Euclidean graph on n vertices is obtained by choosing n points

uniformly at random in the unit square. The lengths of the edges coincide with the Euclidean

distances multiplied by n
2 and rounded to the nearest integer. In a random graph, the lengths

of the edges are random integers in the range f1; : : : ; n2g. To generate a graph with m edges,

we �rst pick a spanning tree uniformly at random, and then add m � (n � 1) random edges

uniformly chosen among the remaining edges. In our tests we have used complete graphs with
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n lIP1 lIP2 lCOMB lDP lSUM UB
10 1.000 .958 .955 .963 .834 1.015
10 1.000 .960 .961 .968 .886 1.000
10 1.000 .967 .940 .960 .888 1.011
10 1.000 .997 .979 .997 .929 1.000
10 1.000 .898 .892 .913 .820 1.000
10 1.000 .875 .864 .961 .775 1.031
10 1.000 .909 .910 .944 .884 1.023
10 1.000 .904 .900 .918 .848 1.000
15 1.000 .875 .862 .928 .836 1.047
15 1.000 .878 .872 .896 .824 1.040
15 1.000 .867 .867 .902 .810 1.065
15 1.000 .866 .861 .876 .807 1.050
15 1.000 .894 .895 .924 .858 1.076
15 1.000 .869 .867 .892 .804 1.036
15 1.000 .871 .867 .907 .821 1.031
15 1.000 .895 .891 .902 .847 1.034
20 1.000 .889 .890 .914 .865 1.088
20 1.000 .875 .875 .899 .843 1.064
20 1.000 .893 .893 .917 .873 1.066
20 1.000 .870 .870 .915 .842 1.060

Table 2: Comparisons of various lower bounds and primal heuristic.

m =
�
n

2

�
, dense graphs with m = maxf

�
n

2

�
=3; 4ng and sparse graphs with m = 3n. From our

results, it appears that complete Euclidean graphs provide the most diÆcult instances.

� Choice of the formulation.

To choose the best algorithm, we started with a comparison of lower bounds. In Table 2 we

report in each row the value of our �ve lower bounds (see section 3) and of our initial heuristic

solution for 20 complete Euclidean graphs on 10, 15 and 20 vertices. The values are normalized

so as lIP1 = 1:0. From this table it appears that lIP1 is a much better bound than lIP2, while

lIP2 and lCOMB are comparable (their ratio is 1.005 on average). The bound lDP is the second

best, but its use is restricted to very small problems; in fact, on our hardware its computation

required about 1 second for n = 10, 5 seconds for n = 12, 4 minutes for n = 15, and 18 hours

for n = 20.

The bound lCOMB is an improvement over Dionne and Florian's bound [2] for the minimum

communication cost network, when applied to routing trees. In [2], the only complete graphs

solved had 10 vertices and no description is given on how they were generated. Further, the
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problem was to minimize the communication cost of a generic network, which generalizes our

MRCT. We have therefore used our implementation of Dionne and Florian's bound for MRCT,

and it turned out that this bound is too weak to solve even Euclidean complete graphs of 15

vertices within 1 hour of CPU time. From Table 2 it appears that the gap UB � lCOMB at the

root node is of the order of 20 percent, which is too large to be �lled quickly by branch and

bound (where UB is computed by the local search heuristic described in section 5.1).

The same comments apply to our model (IP2), which is not appropriate for complete graphs

of more than 15 vertices. In fact, although the LPs are much faster to solve than for model

(IP1), the bound is weaker and pruning occurs only very deeply down the search tree, so that

the overall running time is very large. We also investigated possible strengthenings of (IP2)

given by the inclusion of constraints that force a minimum number of paths to use an edge in

the tree. However, the involved overhead was not compensated for by the increased value of the

bound.

Hence the only choice for the best model is between (IP1) and (MCF). Model (MCF) can

be very slow to solve, because of its large number of rows and columns. The time for solving

the LP at the root node, for complete graphs on 15 vertices, was 890 seconds (on average) by

using primal simplex on (MCF). With the feature NETOPT of CPLEX (speci�cally designed

for problems whose constraint matrix is related to a network), this time decreased to just 40

seconds. However, this is still worse than the time needed when using formulation (IP1), which

is 31 seconds on average. Furthermore, because of a larger memory requirement, there were

several instances (including all instances with n � 25) that ran out of memory with (MCF) but

were solved with (IP1). Hence, a branch and bound method based on the model (IP1) seems to

be the best algorithm among the ones we studied, so we concentrate on it in the sequel.

� Dealing with degeneracy. As we observed in section 2, our LP model is very degenerate.

The presence of all rows causes two types of problems during column generation. First, each LP

is very expensive because of its size. Second, we may go through long runs of LPs in which the

objective function value does not change. An example of this behavior is the following. For a

complete Euclidean graph on 20 vertices, 19 pricings and 1066 seconds were needed before the
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�rst change, of 0.06%, in the LP value, which arose after generating 2245 columns, with full row

size. The �nal LP value, at the end of column generation, was 93.8% of the starting one, and

was obtained after 2631 seconds and 144 LPs. The same bound was obtained in 351 seconds

and 359 LPs with column and row generation, the �nal LP having 3342 rows instead of 36291.

We also solved 5 Euclidean instances of sizes 10, 15, 20 and 25 vertices each. For each instance

we ran the LP with only column generation, and with both row and column generation. The

results were roughly the same for each size: the running time with row generation is within

10%{20% of the time without row generation, and the �nal number of rows is about 10% of the

total. The number of LPs solved when all rows are present is about 40% of the number of LPs

solved with row generation.

Given that generating both rows and columns is the best way to go, we then determined

the most e�ective way of doing so. Given a current LP solution, pricing is the procedure which

checks if all variables price{out correctly, and, if not, returns a set of new variables to add to

the LP. Similarly, separation is the procedure which checks if all constraints are satis�ed, and,

if not, returns a set of violated constraints. A pricing (separation) is called successful if it �nds

new variables (constraints) to add to the LP. If the last procedure called was a successful pricing

(separation) then the next one will also be pricing (separation) if we loop through columns (rows),

or otherwise it will be separation (pricing). Hence, there are four possible ways of proceeding,

depending on looping through column (LC) and looping through rows (LR) being true or false.

On the same instances as before, we obtained comparable results for all sizes. For instance, for

n = 20 we found the average values reported in Table 3 for total number of rows r, columns

c, LPs l and time t (all entries are normalized so as to be 1.0 for LC = LR = FALSE). The

strategy of LP-shortcutting requires to use LC=LR=TRUE. This setting, in combination with

LP{shortcutting, outperforms the setting LC=TRUE, LR=FALSE, resulting about twice as

fast, amortized over all nodes of the search tree. Hence we have used LC=LR=TRUE.

� LP shortcutting. As explained in section 4, the scheme of alternating the generation of

variables and constraints provides us with a family of lower bounds l0(k) at the end of each

k{th phase of column generation. The quality of these bounds improves very rapidly at the
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LC=FALSE LC=TRUE
r c l t r c l t

LR = FALSE 1.00 1.00 1.00 1.00 0.91 0.99 1.14 0.60
LR = TRUE 1.02 0.99 1.49 1.07 1.01 1.04 1.39 0.89

Table 3: Looping through columns and/or rows.

k n = 20 n = 20 n = 25 n = 25
l
0(k) t l

0(k) t l
0(k) t l

0(k) t

1 0.912 0.02 0.937 0.01 0.908 0.00 0.923 0.00
2 0.939 0.06 0.961 0.02 0.927 0.00 0.943 0.00
3 0.960 0.11 0.972 0.05 0.948 0.01 0.959 0.01
4 0.971 0.17 0.981 0.09 0.967 0.02 0.972 0.03
5 0.982 0.24 0.988 0.16 0.977 0.05 0.980 0.06
6 0.989 0.31 0.993 0.25 0.983 0.09 0.986 0.12
7 0.995 0.43 0.995 0.38 0.989 0.14 0.990 0.16
8 0.998 0.61 0.997 0.47 0.993 0.23 0.994 0.23
9 0.999 0.70 0.999 0.62 0.995 0.30 0.997 0.32
10 0.999 0.88 0.999 0.71 0.997 0.39 0.998 0.43
1 1.000 1.00 1.000 1.00 1.000 1.00 1.000 1.00

Table 4: Trade{o� between lower bound value and time to compute it.

beginning, while later the improvements are quite slow and costly. In Table 4 we show various

lower bounds l0(k) and time to compute them as a function of k, for four Euclidean graphs,

two on 20 and two on 25 vertices. With LP-shortcutting active, we use the bound l
0(6), unless

the relative distance to the incumbent solution is less than 0.5%, in which case we use l0(1).

LP{shortcutting implies also preemptive branching whenever the lower bound is provably not

strong enough to fathom the node. We have tested LP-shortcutting on 100 problems of the most

diÆcult type (complete, Euclidean graphs) with 10 to 25 vertices. All problems were solved more

quickly with shortcutting active. The average saving in solving a problem with shortcutting was

44%. The maximum saving was 91% (achieved on 3 problems), the minimum 28% (on just one

problem).

� Variables and cuts. A typical behavior of column{generation algorithms is that the running

time and number of LPs solved is inversely proportional to the number of columns generated per

iteration. This behavior was observed also in our case. For instance, solving a typical Euclidean

problem on 15 vertices takes more than 600 seconds and more than 2500 LPs when only one
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column is generated at a time. Generating 5 columns at a time already halves these numbers.

Since in our model we �nd shortest paths for each pair, we can generate up to
�
n

2

�
columns at a

time: by generating as many paths as possible at each pricing, the problem is solved in about

100 seconds. Finally, to be able to generate even more than
�
n

2

�
columns at each pricing call,

we modi�ed Dijkstra's algorithm as follows. In section 2 we showed that a variable xP with

P 2 P
ij has negative reduced cost if d0(P ) < uij. Thus, whenever in Dijkstra's algorithm j is

labeled with a value smaller than uij, we have found a good column to generate. Hence, we do

not only keep track of the shortest path, but also of other paths of negative reduced cost. With

this enhancement, the running time and number of LPs went down, on average, of an extra 3%.

As far as the cutting planes are concerned, the most e�ective ones are the subtour{elimination

constraints (19). We ran 20 instances with and without the use of these cuts, and observed that

the average number of nodes of the search tree decreased by 8% when using (19). The running

time, however, decreased only by 4.5%, because of the extra work implied by cut separation.

For the instances of our test{bed, instead, no signi�cant improvement is achieved by using the

other families of cuts.

� Final performance. We �nally ran the algorithm with the above optimal settings. These

include column generation with Dijkstra variant for generating a maximum number of columns,

row generation, LP{shortcut with � = 0:5%, use of cutting planes (19), and branching rule

V2 with choice of the branching variable according to the Kruskal{like scheme. In Table 5 we

report the results for 210 graphs on 10, 15, 20, 25, 30, 40 and 50 vertices. For each size we

have generated 5 Euclidean and 5 random (complete, dense, and sparse) graphs. We set a time

limit of 3600 CPU{seconds. Each row reports the number of problems solved (out of 5). For

the problems solved to proven optimality, we report the average (maximum) number of nodes

of the search tree, number of LPs solved, and running time in seconds. As anticipated, it turns

out that Euclidean problems are more diÆcult than random ones: we can solve them for up to

size 30 vertices within the one{hour time limit. For random problems we can solve instances

up to size 40 and, rarely, size 50. In our runs we found a large variance in the hardness of

the problems, expecially for the random ones, which are very sensitive to the range in which
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n Euclidean rnd
solved nodes lps time solved nodes lps time

C 10 5/5 5 (9) 36 (58) 0 (1) 5/5 1 (1) 7 (9) 0 (0)
C 15 5/5 19 (31) 363 (523) 96 (155) 5/5 7 (15) 92 (153) 6 (16)
C 20 5/5 91 (277) 1784 (5404) 587 (1476) 5/5 5 (9) 206 (312) 84 (136)
C 25 4/5 44 (52) 2017 (2415) 1832 (2028) 5/5 15 (23) 316 (419) 335 (531)
C 30 2/5 31 (40) 583 (658) 2918 (3341) 5/5 45 (119) 896 (2181) 885 (2320)
C 40 0/5 - - - 3/5 19 (26) 546 (853) 2962 (3501)
C 50 0/5 - - - 0/5 - - -

D 10 5/5 1 (3) 10 (22) 0 (0) 5/5 1 (1) 8 (19) 0 (0)
D 15 5/5 65 (125) 566 (972) 34 (63) 5/5 12 (27) 108 (254) 6 (18)
D 20 5/5 32 (59) 345 (621) 86 (159) 5/5 17 (61) 252 (838) 52 (191)
D 25 4/5 23 (65) 484 (1212) 256 (631) 5/5 25 (46) 411 (727) 262 (570)
D 30 5/5 101 (157) 586 (2313) 1995 (2412) 5/5 21 (27) 348 (465) 408 (632)
D 40 0/5 - - - 3/5 18 (23) 768 (1117) 2614 (3421)
D 50 0/5 - - - 1/5 15 (15) 759 (759) 3419 (3419)

S 10 5/5 1 (1) 3 (6) 0 (0) 5/5 2 (5) 15 (24) 0 (0)
S 15 5/5 20 (71) 131 (435) 7 (27) 5/5 1 (3) 13 (24) 0 (0)
S 20 5/5 14 (22) 154 (225) 30 (40) 5/5 14 (45) 177 (489) 45 (161)
S 25 5/5 21 (59) 275 (621) 109 (259) 5/5 10 (17) 180 (275) 96 (162)
S 30 4/5 33 (51) 726 (1061) 1904 (2334) 5/5 22 (29) 388 (583) 369 (493)
S 40 1/5 9 (9) 413 (413) 3291 (3291) 3/5 8 (15) 207 (411) 868 (1020)
S 50 0/5 - - - 1/5 11 (11) 952 (952) 3021 (3021)

Table 5: Results for Complete (C), Dense (D), and Sparse (S), graphs.

the random numbers are chosen. The instances of Table 5 were generated with lengths in

the interval f1; : : : ; n2g. To investigate further how the complexity of the problem depends

on the variability of edge{lengths, we performed the following experiment. We generated 100

problems, for complete random graphs of n = 30 vertices. The problems are divided into 10

classes of 10 instances each. Each class contains graphs with edge weights drawn in the interval

dmin = 10k; : : : ; dmax = 10k+i for k = 0; : : : ; 3 and i = k + 1; : : : ; 4. The results are reported

in Table 6. Each instance was given a 2 hours maximum time. In the column \solved" we

report the total number of instances solved and how many were solved during the 2nd hour of

computation. From Table 6 one can colnclude that the complexity of the prblems decreases as

the ratio dmax=dmin increases.

7.2 Alignment problems

As outlined in section 6, we have developed a multiple alignment heuristic based on the minimum

routing cost tree on the graph of sequences weighted by the edit distances. The heuristic has been
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dmin dmax solved nodes lps time
1 10 4,3 135 (212) 4843 (6758) 4996 (6792)
1 100 9,0 38 (170) 872 (3707) 482 (2486)
1 1000 10,0 43 (95) 899 (2022) 411 (1184)
1 10000 10,0 22 (43) 392 (767) 173 (499)
10 100 5,2 80 (136) 3252 (4127) 4314 (6469)
10 1000 10,1 119 (376) 2154 (6239) 1210 (3716)
10 10000 10,0 28 (65) 601 (1734) 329 (1060)
100 1000 6,4 66 (103) 4032 (5663) 4810 (6857)
100 10000 10,1 42 (118) 1126 (3646) 1061 (5001)
1000 10000 6,4 94 (117) 2839 (3493) 4214 (6194)

Table 6: Comparisons of various lower bounds and primal heuristic.

tested on several families of proteins obtained from the public{domain data base PRINTS [10].

Each family contains from 10 to 20 sequences, each with 200 to 600 amino acids. The results

are reported in Table 7. For each instance we report the routing cost of the best star and of

the best tree (this latter found by our MRCT algorithm), and the value of the �nal alignment

obtained by using these trees within Gus�eld's heuristic framework outlined in section 6. The

score matrix used is due to Taylor [14]. The values have been normalized so that, for each

instance, the SP cost of the best star alignment is 1000. Each MRCT instance was solved within

a time limit of 10 minutes. From Table 7 we see that a reduction of roughly 10% in the routing

cost of a MRCT solution with respect to the best star, corresponds to a proportional (about 6%

on average) reduction in the alignment cost. By comparing the alignment value to some simple

lower bound, we found that our heuristic value is within 8% from the optimum, on average.

8 Conclusions

In this paper we have developed, implemented and tested several algorithms for the minimum

routing cost tree problem. Further, we have devised techniques for speeding up the search, which

have proved very e�ective in practice. The problem, however, seems particularly hard to solve

exactly, and the size of graphs which can be e�ectively attacked within 1 hour of computing

time on a PC, is roughly 30{40 vertices. Beyond this size, the formulations are still useful, in
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instance best star best rc tree
rc value SP value rc value SP value

ABHYDRO 1398 1000 1263 941
AOTCASE 1259 1000 1232 979
BARWIN 1189 1000 1063 864
CAT-I 1191 1000 1074 814
CAT-II 1186 1000 1142 848
CAT-III 1428 1000 972 859
CAT-IV 1260 1000 856 749
CAT-V 1230 1000 946 789
CAT-VI 1175 1000 1078 876
CAT-VII 1241 1000 1115 900
CAT-VIII 1200 1000 1042 861
CRB1 1370 1000 1158 1002
CRB2 1420 1000 1280 983
DHFR1 1427 1000 1242 972
EGF-I 1268 1000 1176 965
EGF-II 1276 1000 1197 982
EGFTGF 1329 1000 1207 973
FUM 1335 1000 1275 911
GPROT 1203 1000 1159 999
HTHRSR 1441 1000 1434 995
KRINGLE 1356 1000 1253 990
LYZL1 1136 1000 1054 922
LYZL2 1451 1000 1292 981
MC582-12 1404 1000 1395 1001
MC586-10 1363 1000 1359 984
NGF 1273 1000 1217 998
NIT 1372 1000 1309 976
POTX1 1140 1000 1112 985
POTX2 1320 1000 1240 939
RIBO 1171 1000 1156 936
STRO1 1298 1000 1261 990
STRO2 1308 1000 1267 986
STRO3 1178 1000 1008 975
STRO4 1311 1000 1126 924
VACATP 1246 1000 1221 986

Table 7: Alignment problems from the data base PRINTS.

conjunction with local search heuristics, to provide an upper bound on the approximation error.

Since the lower bound is reasonably tight, after one hour we can stop the search and have a

solution which is, on average, within 1% from optimality.

The IP models described here can be extended to the more general case of minimum com-

munication cost network.

Finally, our application to Computational Biology shows, once more, the usefulness of Op-

timization and Mathematical Programming techniques when applied to di�erent domains. We

believe that these methodologies can lead to the design of powerful new alignment programs.
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