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Abstract

The analysis of abandons times is a central issue in modeling and
simulating call centers due the strong impact of customer abandons on
the behavior of a queuing system. In this paper we propose an original
approach to estimate the distribution functions of the abandon times and
the times-to-service given the observed waiting time of each costumer
before either abandon or beginning of service. This approach can be used
to derive both parametric and non-parametric estimators. In the non-
parametric case it leads to a formula that corresponds to the well-known
Kaplan-Meier estimator if applied to untied data but differs when applied
to tied data. We also present two simulation examples that validate the
proposed estimators.

1 Introduction

This paper has been motivated by the need of analyzing and predicting waiting

times in a call center with the goal of improving the performance of the call

center. There are many studies in the literature devoted to analyze and possibly

improve the performance of a call center. See among others (Avramidis et al.,

2010; Brown et al., 2005; Gand et al., 2003).

In a call center customers arrive, possibly wait for service and sometimes

they abandon the queue before service. Besides, there are rules assigning calls

to particular operators. In order to design effective assignment rules, one has to

understand how the queuing system works. Of particular interest is the analysis

of abandon times and in this paper we focus on this aspect of the problem.

In principle each customer is not willing to wait for a too long time and

sooner or later will give up. In order to model this behavior we should be able to

observe each customer, but this is impossible since only a fraction of customers

abandons the queue. Similarly we wish to analyze the time-to-service, i.e., the

time a customer is supposed to spend in line in case he/she decides not to

abandon. Again we observe only partial data since only a fraction of customers

is served.
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If there are no abandons the time-to-service is just the waiting time, as it is

referred to in the queuing literature. The possibility of leaving the queue before

service makes the two concepts different.

Analyzing the abandon times is fundamental because a statistical knowledge

of the abandon times allows for a more accurate simulation of a queuing system.

The question of abandon times has been subject to an extensive treatment in

the recent literature (Aksin et al., 2013; Conley, 2013; Ibrahim & Witt, 2011;

Mandelbaum & Momčilović, 2012; Mandelbaum & Zeltyn, 2013). Also estimat-

ing the time-to-service is important. Although it is not necessary in case we

simulate a queuing system, since the time-to-service is indirectly determined

by the queue behavior, its knowledge is important if we want to have a direct

performance measure of the system without entering into a detailed analysis of

all components of the queuing system.

For each customer we observe the first occurrence of one of the two events:

either a service beginning or an abandon. The behavior of a queue depends on

both abandon times and times-to-service in an intricate way, since abandons

speed up the time-to-service of other customers and long times-to-service in-

crease the abandon rate. Furthermore, both events depend on the arrival times

of the customers.

However, we may just disregard the complex interactions that take place in a

queuing system and consider a generic customer provided with two independent

random variables, one related to the abandon time and the other one to the time-

to-service. This independence assumption, that can be justified theoretically

and is also validated experimentally, is crucial in developing the estimators since

it allows to infer the random variables via the theory of the so-called censored

data.

The research of parametric and non-parametric estimation techniques in case

of censored samples is a central issue of the Survival Analysis (for an extensive

overview of the main results of the theory we refer the reader to Aalen et al.

(2008); Rinne (2014); Cox & Oakes (1984) and the references therein). With no

doubts, the two more popular non-parametric estimators in the case of censored

data are the Kaplan-Meier (KM) (Kaplan & Meier, 1958) and the Nelson-Aalen

(NA) estimators (Aalen, 1976; Nelson, 1972). These two estimators have been

derived by following different points of view and indeed they are based on dif-

ferent formulas.

In particular, the KM-estimator has been proposed in Kaplan & Meier (1958)

to estimate the survival function, whereas the NA-estimator has been proposed

to estimate the cumulative hazard function. In principle either estimator can

be used to estimate the other function due to the strict analytical link between

2



the survival function and the cumulative hazard function (see (6)). However,

this transformation leads to formulas that do not have a direct justification and

interpretation, especially in the case of continuous random variables. So the

arguments used to derive the two estimators, their statistical properties and

the opportunity to adopt either one according to the application context rely

heavily on which of the two functions is taken into consideration.

In this paper we approach the estimation problem by first deriving formulas

for continuous random variables that can be used both in a parametric and in

a non-parametric way. Then we consider a non-parametric estimation based

on smoothing the functions derived from the observed data. Our approach

leads to a direct estimation of the cumulative hazard function and, via the

fundamental relation (6), to an estimation of the survival function and the

distribution function. It turns out that the final formula for the survival function

corresponds exactly to the KM estimator, although our estimation starts from

the cumulative hazard function instead of the survival function as has been done

in Kaplan & Meier (1958), and is based on different considerations.

Hence our approach sheds new light on the KM-estimator and seems to

further validate this estimator. In addition, our approach allows also to consider

in a natural way the case of tied times without resorting to the usual assumption

that, in case of ties, the event times occur just before the censored ones. By

following simple analytical considerations we arrive to a formula that is the

natural extension of the KM-estimator but is different from the one usually

suggested.

The paper is structured as follows. In Section 2 we provide a formal definition

of the various concepts. In Section 3 we introduce the theoretical formulas

to compute the distribution functions of the abandon times and the times-to-

service. In Section 4 we apply these formulas to the actual observations and

derive the estimators in the case of untied data. We extend the estimator to

the case of tied data in Section 5. In Section 6 we test the estimators by

simulating a M/M/1 queuing system with exponentially distributed abandon

times. While the abandon times are randomly generated, the times-to-service

are not directly generated but they are computed according to the simulated

interarrival times, service times and abandon times. For this particular queue a

theoretical expression for the time-to-service is available (computed in Section 8)

and therefore the estimated distribution functions can be directly compared to

the theoretical ones. We also provide another simulation in which the abandon

times are uniform on a given interval. In this case no theoretical expression is

available for the times-to-service and the estimated distribution of the times-

to-service is compared to the simulated time-to-service distribution obtained a
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posteriori. Finally some conclusions are reported in Section 7.

2 Definitions

For a generic customer of a call center, let A be the real–valued random variable

that denotes the maximum time the customer is willing to wait in the queue

without being served. When this time is reached and the customer is still in

the queue waiting for service, the customer abandons the queue. Let S be the

real–valued r.v. that denotes the time-to-service, i.e., the time the customer is

supposed to wait before being served, irrespective of the possibility that he/she

abandons the queue.

We assume that a generic customer is provided with the two random vari-

ables A and S. Clearly S depends on other r.v.’s of the system, i.e., the in-

terarrival times, the service times and the abandon times. The crucial issue

regards independence with respect to abandon times. We assume that the r.v.

S associated to a specific customer, while clearly dependent on the abandon

times of previous customers, is independent of the r.v. A associated to the same

customer, because a decision of leaving the queue has no effect on the time-

to-service of this particular customer. We also assume that customers have no

information when their service is supposed to start. Otherwise it is conceiv-

able that this information strongly conditions the decision of leaving the queue

or not. Hence we assume that A and S are independent. This allows for the

validity of the relation (2) in the sequel.

Let Q be the r.v. that denotes the actual time when the customer leaves the

queue. Since a costumer leaves the queue either because he/she abandons the

queue or because he/she starts being served we have

Q = min {A,S} . (1)

Let the respective distributions functions be

FA(t) = Pr {A ≤ t} , FS(t) = Pr {S ≤ t} , FQ(t) = Pr {Q ≤ t} ,

with corresponding density functions

fA(t) = F ′A(t), fS(t) = F ′S(t), fQ(t) = F ′Q(t).

Note that A and S are not directly observable, because for each customer

we can observe either A or S but not both. Our purpose is to infer both A and

S from the partial observations. By the independence of A and S and from (1)

we have

1− FQ(t) = (1− FA(t)) (1− FS(t)). (2)
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We assume FA(0) = 0. In other words, no customer leaves the queue in the

instant he/she joins the queue. This hypothesis excludes the case of customers

that don’t want to wait in the queue and therefore give up as soon as they

know there is a queue. Although this is not an uncommon behavior we may

just disregard these customers as not affecting the process. Indeed, by assum-

ing exponential interarrival times, which is a fairly reasonable assumption, the

random exclusion of some arrivals leaves the arrival process still exponential,

though with a smaller arrival rate, but it is this rate that we measure and take

into account. As a consequence, FQ(0) = FS(0).

Differently, we must consider the case FS(0) > 0, that corresponds to the

fraction of customers that are served without waiting in line because they find

an empty queue. In this case S exhibits a positive mass probability at t = 0

and we may express FS and fS as

FS(t) = FS(0)µ(t) + F̂S(t), fS(t) = FS(0) δ(t) + f̂S(t), (3)

where µ(t) is the Heaviside function

µ(t) :=
{

0 t < 0
1 t ≥ 0

,

δ(t) is the Dirac function for which

µ′(t) = δ(t), µ(t) =

∫ t

−∞
δ(τ) dτ

and F̂S(t), f̂S(t) are implicitly defined by (3).

The distributions of the r.v.’s A and S can be equivalently described in terms

of the hazard rate function and the cumulative hazard function. The hazard rate

function hA(t) of the continuous r.v. A has the form

hA(t) =
Pr {t ≤ A ≤ t+ dt | t ≤ A}

dt

so that hA(t) dt represents the probability that a costumer abandons in [t, t+dt]

conditioned to the fact that he/she has not abandoned the queue before t.

Therefore

hA(t) =
fA(t)

1− FA(t)
for t : FA(t) < 1. (4)

The associated cumulative hazard function HA(t) is defined as

HA(t) =

∫ t

0

hA(τ) dτ. (5)

Therefore

HA(t) =

∫ t

0

fA(τ)

1− FA(τ)
dτ = −

[
ln(1− FA(τ))

]t
0

= − ln(1− FA(t))
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so that

FA(t) = 1− e−H(t). (6)

Similar results hold for the hazard rate function hS(t) and the cumulative hazard

function HS(t) of the r.v. S.

3 Theoretical expressions for FA(t) and FS(t)

Let QA be the r.v. that denotes the time when the customer abandons the

queue, if this happens, and QS the r.v. that denotes the time spent in the

queue before being served, if this happens. The r.v.’s QA and QS are defective

because the event ‘abandon the queue’ may not happen and similarly the event

‘beginning of service’ may not happen. Let

GA(t) = Pr {QA ≤ t} , GS(t) = Pr {QS ≤ t} .

Hence GA(∞) < 1 is the fraction of customers that abandon and GS(∞) < 1 is

the fraction of customers that are served. In any case we have for any t

GA(t) +GS(t) = FQ(t). (7)

Note that GA(0) = 0, necessarily from FA(0) = 0, so that GS(0) = FQ(0) =

FS(0).

Differently from A and S, the r.v.’s Q, QA and QS are observable. Hence we

have to retrieve FA(t) and FS(t) from FQ(t), GA(t) and GS(t). The probability

that an abandon will be observed in the interval [t, t+ dt] is given by

G′A(t) dt = fA(t) (1− FS(t)) dt. (8)

Similarly, the probability that the beginning of a service will be observed in the

interval [t, t+ dt] is given by

G′S(t) dt = fS(t) (1− FA(t)) dt,

which is valid also for t = 0.

From (2), (4) and (8) we derive

hA(t) =
fA(t)

1− FA(t)
=

G′A(t)

1− FQ(t)
, (9)

that allows to express the hazard rate function hA(t) in terms of the observable

functions G′A(t) and FQ(t).

If there is a threshold TA beyond which no abandons will take place and a

threshold TS beyond which no services will start, then FQ(t) = 1 and G′A(t) = 0
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for t ≥ min {TA, TS}. Hence the ratio at the right in (9) is indeterminate for

t ≥ min {TA, TS}, whereas the hazard rate function is indeterminate for t ≥ TA.

Thus the identity (9) holds for t < min {TA, TS}.
By assuming t < min {TA, TS} (if such thresholds are defined) we can com-

pute the cumulative hazard function from (5) and (9) as

HA(t) =

∫ t

0

G′A(τ)

1− FQ(τ)
dτ (10)

and, by applying (6), we can retrieve FA(t). However, in view of the previous

observations, we can retrieve FA(t) only for t < min {TA, TS}. If, in particular,

TS < TA, no reconstruction is possible for TS ≤ t ≤ TA. This makes sense

because all customers wait at most a time TS to be served and thus no abandons

take place after TS .

We may carry out a similar computation for FS , but only for t > 0, and

obtain

hS(t) =
fS(t)

1− FS(t)
=

G′S(t)

1− FQ(t)
, t > 0, (11)

that allows to express the hazard rate function hS(t) in terms of the observable

functions G′S(t) and FQ(t). As before, the ratio at the right in (11) is indeter-

minate for t ≥ min {TA, TS} whereas the hazard rate function is indeterminate

for t ≥ TS . Thus the identity (11) holds for t < min {TA, TS}.
By integrating both sides of (11) and avoiding the discontinuity at t = 0 we

have

lim
t′→0+

∫ t

t′

G′S(τ)

1− FQ(τ)
dτ = lim

t′→0+

∫ t

t′

fS(τ)

1− FS(τ)
dτ =

− lim
t′→0+

[
ln(1− FS(τ))

]t
t′

= − ln
1− FS(t)

1− FS(0)
.

If we denote

HS(t) = lim
t′→0+

∫ t

t′

G′S(τ)

1− FQ(τ)
dτ, t > 0, (12)

we may write

FS(t) = 1− (1− FS(0)) e−HS(t). (13)

Again, we can reconstruct FS(t) from (13) only for t ≤ min {TA, TS}. If, in

particular, TA < TS , no reconstruction is possible for TA ≤ t ≤ TS . We see that

full reconstruction of both FA(t) and FS(t) is possible only if TA = TS (or they

are both infinite).

Example. We find it useful to show the various relations by referring to a simple

example. Assume that A is uniform on [0, T ] and that S = 0 with probability
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1/2 and otherwise uniform on [0, 2T ] with overall probability 1/2. Hence in this

case TA = T < TS = 2T and

FA(t) =
t

T
, 0 ≤ t ≤ T, FA(t) = 1, t ≥ T, fA(t) =

1

T
, 0 ≤ t ≤ T,

FS(t) =
1

2
(1 +

t

2T
), 0 ≤ t ≤ 2T, FS(t) = 1, t ≥ 2T,

fS(t) =
1

2
(δ(t) +

1

2T
), 0 ≤ t ≤ 2T,

We remark that these functions are unknown to the observer and his/her task

is to retrieve them. We assume that the observer knows the following functions

that he/she exactly infers from the observed data (while we derive them from

FA(t) and FS(t))

FQ(t) =
1

2
+

3

4

t

T
− 1

4

t2

T 2
, 0 ≤ t ≤ T, FQ(t) = 1, t > T,

fQ(t) =
1

2
δ(t) +

3

4

1

T
− 1

2

t

T 2
, 0 ≤ t ≤ T,

G′A(t) = fA(t) (1− FS(t)) =
1

2T
(1− t

2T
), 0 ≤ t ≤ T,

GA(t) :=

∫ t

0

1

2T
(1− τ

2T
) dτ =

t

2T
(1− t

4T
), 0 ≤ t ≤ T,

G′S(t) = fS(t) (1− FA(t)) dt =
1

2
(δ(t) +

1

2T
) (1− t

T
), 0 ≤ t ≤ T,

GS(t) =
1

2

∫ t

0

(δ(τ) +
1

2T
) (1− τ

T
) dτ =

1

2
+

1

4
(
t

T
− t2

2T 2
).

Given these functions the observer may compute the cumulative hazard function

according to (10) as

HA(t) =

∫ t

0

1

2T
(1− τ

2T
)

1

2
− 3

4

τ

T
+

1

4

τ2

T 2

dτ = − ln(1− t

T
), 0 ≤ t < T,

and retrieve the function FA(t) as

FA(t) = 1− e−HA(t) = 1− eln(1− t
T ) = 1− (1− t

T
) =

t

T
, 0 ≤ t < T.

Note that limt→T FA(t) = 1, i.e., full reconstruction of FA(t) has been possible.

As for the time-to-service we have according to (12)

HS(t) = lim
t′→0+

∫ t

t′

1

4T
(1− τ

T
)

1

2
− 3

4

τ

T
+

1

4

τ2

T 2

dτ = − ln(1− t

2T
), t < T,
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so that

FS(t) = 1− (1− FS(0)) e−HS(t) = 1− 1

2
(1− t

2T
) =

1

2
+

t

4T
, t < T.

In this case limt→T FS(t) = 3/4, and no reconstruction of FS(t) is possible for

t > T = TA because there are no data available after T .

4 Empirical computation of FA(t) and FS(t)

Our goal in this section is to estimate the functions FA(t) and FS(t) from the

observed data. As already remarked we may compute FA(t) from the HA(t)

which in turn can be derived from the knowledge of GA(t) and FQ(t).

We have chosen a non parametric method of inferring GA(t) and FQ(t) by ap-

proximating these functions with continuous quasi-stepwise functions, that are

obtained by smoothing the usual stepwise estimators in small intervals around

the observed time instants. The final estimator of HA(t) and FA(t) will be

obtained by shrinking these intervals to the time instants.

The smoothing of discrete estimators to have continuous probability distri-

bution functions is a well known and largely adopted technique (Rinne, 2014).

We initially smooth the functions in order to carry out some analytical compu-

tations that are otherwise not well defined. However, after having carried out

these computations we get back to the original sharp functions.

We consider a family of continuous quasi-stepwise functions δε(t), parame-

trized by ε > 0, continuous on −ε < t < ε, such that

δε(t) = 0 if |t| ≥ ε, δε(t) = δε(−t),
∫ +∞

−∞
δε(t) dt =

∫ +ε

−ε
δε(t) dt = 1.

Let µε(t) be the family of continuous functions such that

µε(t) =

∫ t

−∞
δε(τ) dτ =

∫ t

−ε
δε(τ) dτ.

Hence

µε(t) = 0, for t ≤ −ε, µε(t) = 1, for t ≥ ε, µε(0) =
1

2
,

dµε(t)

dt
= δε(t), for −ε < t < ε.

For ε→ 0, δε(t) tends to the Dirac function δ(t) and µε(t) tends to the Heaviside

function µ(t) with the convention µ(0) = 1/2. For instance we may take

δε(t) =
1

2 ε
, µε(t) =

t+ ε

2 ε
, −ε < t < ε.
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The rationale behind the use of this family of functions is that instead of

considering random variables that occur exactly at the observed time instants

we blur the picture and consider random variables that are equally likely in a

small neighborhood of the same time instants.

The observed data are the realizations of the random variableQ = min {A,S},
i.e., the observed values that we sort as q1, q2, . . . , qn. Moreover we know which

qi’s are realizations of QA and which qi’s are realizations of QS . Let a1, . . . , ap

be the sorted realizations of QA and s1, . . . , sr be the sorted realizations of QS .

Clearly both ap ≤ min {TA, TS} and sr ≤ min {TA, TS} must hold.

We approximate GA(t) by the quasi-stepwise function ḠA(t) defined as

ḠA(t) =
1

n

p∑
k=1

µε(t− ak),

from which

Ḡ′A(t) =
1

n

p∑
k=1

δε(t− ak).

Similarly, we approximate FQ(t) by the quasi-stepwise function

F̄Q(t) =
1

n

n∑
k=1

µε(t− qk), 1− F̄Q(t) =
1

n
(n−

n∑
k=1

µε(t− qk)).

Therefore we approximate the cumulative hazard function HA(t) in (10) with

the function

H̄A(t) =

∫ t

0

∑p
k=1 δε(τ − ak)

n−
∑n
k=1 µε(τ − qk)

dτ =

p∑
k=1

∫ t

0

δε(τ − ak)

n−
∑n
h=1 µε(τ − qh)

dτ =

p∑
k=1

∫ min{t,ak+ε}

min{t,ak−ε}

δε(τ − ak)

n−
∑n
h=1 µε(τ − qh)

dτ. (14)

Let us first assume that all qi’s are different, i.e., we have untied data. We

analyze the case of equal data in Section 5.

In case of non equal data, there exists ε > 0 such that for each k = 1, . . . , p,

no value qh, h 6= k, falls in the interval [ak − 2 ε, ak + 2 ε]. Consequently, for

τ ∈ [ak − ε, ak + ε], µε(τ − qh) = 1 if qh < ak and µε(τ − qh) = 0 if qh > ak.

This implies that for τ ∈ [ak − ε, ak + ε] we have

n−
n∑
h=1

µε(τ−qh) = n−| {h : ak > qh} |−µε(τ−ak) = | {h : ak ≤ qh} |−µε(τ−ak).

Since

d

dτ
(| {h : ak ≤ qh} | − µε(τ − ak)) = −δε(τ − ak), for ak − ε < τ < ak + ε
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we obtain∫ ak+ε

ak−ε

δε(τ − ak)

n−
∑n
h=1 µε(τ − qh)

dτ = −
[

ln(| {h : ak ≤ qh} | − µε(τ − ak))

]ak+ε

ak−ε
=

ln

(
| {h : ak ≤ qh} |
| {h : ak < qh} |

)
. (15)

Note that this expression is unbounded if k corresponds to the last observed

event and this is an abandon. This means that the function H̄A(t) tends to

infinity as t tends to ak + ε and ak is the last observed event. By denoting as

γk :=
1

| {h : ak < qh} |
(16)

the inverse of the number of customers that are still in the queue just after ak,

we may rewrite (15) as∫ ak+ε

ak−ε

δε(τ − ak)

n−
∑n
h=1 µε(τ − qh)

dτ = ln(1 + γk).

Note that this expression is independent of ε and therefore it remains invariant

when ε tends to zero. Furthermore, for ak − ε < t < ak + ε, we have∫ t

ak−ε

δε(τ − ak)

n−
∑n
h=1 µε(τ − qh)

dτ = ln

(
1 + γk

1 + γk − γk µε(t− ak)

)
.

In particular, if t = ak = ap = qn is the last observed event and thus γp = +∞,

the last expression is equal to ln 2 (due to our assumption µε(0) = 1/2).

Therefore the function H̄A(t) has a value independent of ε on all intervals

[ak−1 + ε, ak − ε]. If we let ε tend to zero, the function H̄A(t) becomes

H̄A(t) =



0 t < a1
k∑
h=1

ln(1 + γh)− ln(1 +
γk
2

) t = ak, k = 1, . . . , p

k∑
h=1

ln(1 + γh) ak < t < ak+1, k = 1, . . . , p− 1

p∑
h=1

ln(1 + γh) t > ap

(17)

and therefore, the approximated distribution function F̄A(t) = 1− e−H̄A(t) has
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the form

F̄A(t) =



0 t < a1

1−
k∏
h=1

(1 + γh)−1 (1 +
γk
2

) t = ak, k = 1, . . . , p

1−
k∏
h=1

(1 + γh)−1 ak < t < ak+1, k = 1, . . . , p− 1,

1−
p∏

h=1

(1 + γh)−1 t > ap.

(18)

If ap < qn = sr is the last abandon but not the last observed event, we

have that F̄A(t) is constant and strictly less than 1, for t ≥ ap. Therefore full

reconstruction of FA(t) is impossible beyond the last abandon in this case. If,

on the contrary, ap = qn is the last observed event and thus γp = +∞, we have

F̄A(t) = 1 for t > ap and full reconstruction is possible.

These considerations are consistent with the previous observations concern-

ing the time horizons TA and TS . Suppose that TA < TS . In this case events

close to TA will be abandons with larger probability than times-to-service. This

means that very likely we observe sr < ap = qn, i.e., full reconstruction (al-

though clearly approximate) of FA is possible and this is consistent with the

previous observation in Section 3 that in theory full reconstruction of FA is

possible only if TA < TS .

If on the contrary TS < TA, we very likely observe ap < sr = qn, i.e., full

reconstruction of FA is not possible. However, although no abandon data are

available beyond ap, we know that ap < sr ≤ TA and therefore there is a positive

probability for abandons up to sr at least. In other words, if a customer has

experienced a time-to-service equal to sr, this means that his abandon time was

at least as large as sr. Hence F̄A(ap) < F̄A(t) < 1 for ap < t < qn.

As a remarkable fact we observe that the estimator (18) coincides, apart

on the points ak, with the KM estimator proposed by Kaplan & Meier (1958).

However, it was derived with a totally different approach that directly estimate

the cumulative hazard function HA(t).

The function F̄A(t) obtained this way is a step-wise function. Its shape

depends on two independent factors. One is the order in which the events of

different type happen. This affects the height of the steps as apparent from

(18). In particular on passing from t < ak − ε to t > ak + ε the step height is

k−1∏
h=1

(1 + γh)−1 −
k∏
h=1

(1 + γh)−1 =

k−1∏
h=1

(1 + γh)−1 γk
1 + γk

and depends on how abandons and times-to-service are intertwined but does

not depend on when they happen. The other factor is the time interval between
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two abandons which is responsible for the length of the steps. The dependence

on the order of the events is crucial and heavily influences the estimation in case

of equal times as we shall see in Section 5.

For the computation of F̄S(t) let us assume that sk = 0 for 1 ≤ k ≤ r′ and

|sk+1 − sk| > 2 ε for r′ < k ≤ r. In this case we have to take into account

that FS(0) may be positive. Hence, by following the same approach as for the

abandon times, we may write

H̄S(t) = lim
t′→0+

∫ t

t′

∑r
k=1 δε(τ − sk)

n−
∑n
k=1 µε(τ − qk)

dτ =

r∑
k=1

lim
t′→0+

∫ t

t′

δε(τ − sk)

n−
∑n
h=1 µε(τ − qh)

dτ.

The limit in the integral implies that only the points for which sk > 0 must be

evaluated. Hence

H̄S(t) =

r∑
k>r′

∫ min{t,sk+ε}

min{t,sk−ε}

δε(τ − sk)

n−
∑n
h=1 µε(τ − qh)

dτ.

Let

ηk :=
1

n−
∑n
h=1 µ(sk − qh)

=
1

| {h : sk < qh} |
, r′ < k ≤ r. (19)

Then, by carrying out the same steps as for the abandon times, and taking into

account that

F̄S(0) = F̄Q(0) =
|sk : sk = 0|

n
=
r′

n
,

and, by (13), we end up with, for sk < t < sk+1,

F̄S(t) = 1−(1−F̄S(0)) e−H̄S(t) = 1−(1− r
′

n
)

k∏
h>r′

(1+ηh)−1, k = r′+1, . . . , r.

(20)

5 Computing F̄A(t) with equal data

We now address the issue of equal data, i.e., how the previous analysis changes

when the experimental data present a mix of equal abandon times and/or times-

to service. Although in our model the time is continuous and the probability of

equal data is zero, nonetheless it is useful to consider the possibility of equal data

for two reasons. For practical reasons, it is quite normal that time measurements

in data coming from real observations are discretized and it may happen that

some data are equal. This is a common situation when, as it happens for call-

centers, the samples are large and the time is measured in a rough unit, usually

seconds. For theoretical purposes, we would like an estimate to show some

continuity properties. In other words, if two events get closer we would like the

estimate to converge to the same estimate obtained by considering equal data.
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We limit ourselves to consider the estimator F̄A(t) for the abandon times.

In this case the occurrence of equal data that are all times-to-service does not

introduce any change in the analysis reported in Section 4. So we consider the

occurrence of equal data of both types, i.e., a mix of abandons and times-to-

service. The results for equal data that are all abandons will be deduced as a

particular case.

Let us first consider the general case and assume that there are rA abandons

and rS times-to-service with the same value qi = · · · = qi+r−1 where r = rA+rS .

For the sake of notational simplicity we assume that equal data occur only at

qi, but the analysis can be easily extended assuming there are multiple events

in other time instants. Let ak = qi and ak−1 < qi, so that all the abandon times

indexed from k up to k + rA − 1 are equal to qi.

We mimic the previous analysis with the only difference given by the r equal

data. As before, we assume that there exists ε > 0 such that no value qh, h < i

and h > i+ r− 1, falls in the interval [ak − 2 ε, ak + 2 ε]. As a consequence, for

τ ∈ [ak − ε, ak + ε], it holds µε(τ − qh) = 1 if qh < ak and µε(τ − qh) = 0 if

qh > ak, so that

n−
n∑
h=1

µε(τ−qh) = n−| {h : ak > qh} |−r µε(τ−ak) = | {h : ak ≤ qh} |−r µε(τ−ak).

Since
d

dτ
(| {h : ak ≤ qh} | − r µε(τ − ak)) = −r δε(τ − ak),

we obtain∫ ak+ε

ak−ε

δε(τ − ak)

n−
∑n
h=1 µε(τ − qh)

dτ = −1

r

[
ln(| {h : ak ≤ qh} |−r µε(τ−ak))

]ak+ε

ak−ε
=

1

r
ln

(
| {h : ak ≤ qh} |
| {h : ak ≤ qh} | − r

)
=

1

r
ln

(
| {h : ak ≤ qh} |
| {h : ak < qh} |

)
.

By defining as before

γk :=
1

| {h : ak < qh} |
we may rewrite the previous equality as∫ ak+ε

ak−ε

δε(τ − ak)

n−
∑n
h=1 µε(τ − qh)

dτ =
1

r
ln(1 + r γk). (21)

Since the expression (14) of H̄A(t) contains rA summands equal to (21), we

obtain for ε tending to 0

F̄A(t) = 1−
k−1∏
h=1

(1 + γh)−1 (1 + r γk)−rA/r ak < t < ak+r. (22)
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The occurrence of equal data is thus captured by the factor

(1 + r γk)−rA/r. (23)

Furthermore, for times t with ak − ε < t < ak + ε we have∫ t

ak−ε

δε(τ − ak)

n−
∑n
h=1 µε(τ − qh)

dτ =
1

r
ln

(
1 + r γk

1 + r γk − r γk µε(t− ak)

)
and for ε tending to 0

F̄A(ak) = 1−
k−1∏
h=1

(1 + γh)−1
( 1 + r γk

1 + r
2 γk

)−rA/r
.

In the particular case when the equal data are all abandons, i.e., rS = 0, the

factor (23) and the expression (22) become, respectively,

(1 + rA γk)−1 (24)

F̄A(t) = 1−
k−1∏
h=1

(1 + γh)−1 (1 + rA γk)−1 ak < t < ak+r. (25)

It is easy to see that formula (25) is the same one obtains in the hypothesis

that rA abandons occur on different (very close) times ak < · · · < ak+i < · · · <
ak+rA−1 without any time-to-service in between. Indeed, by directly applying

the expression (18) of F̄A(t), valid in the case of non equal data, for the values

γ′i =
1

1
γk

+ rA − i− 1
, i = 0, · · · , rA − 1,

one obtains, for ak < t < ak+r,

F̄A(t) = 1−
k−1∏
h=1

(1+γh)−1
rA−1∏
i=0

1 + (rA − i− 1) γk
1 + (rA − i) γk

= 1−
k−1∏
h=1

(1+γh)−1 (1+rA γk)−1.

Therefore the same formula holds both for very close data and for equal data.

In fact, it is not necessary that the events are close. The only thing that matters

is that there is a sequence of abandons without any time-to-service in between.

If the rA abandons are equal, the function F̄A(t) exhibits a step of height

k−1∏
h=1

(1 + γh)−1 rA γk
1 + rA γk

whereas if they are not equal, but there are no times-to-service in between, the

function exhibits rA steps of total height the same quantity.
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Unfortunately, the same continuity property does not hold in the case of

events of different types. Indeed, the formula one obtains by applying (18) in

the hypothesis that the times qi, t ≤ i ≤ t+r−1, are different (even if arbitrarily

close), strongly depends on the order in which the two types of events occur.

For instance, consider the two limit situations in which all abandons occur

first and then the times-to-service and the symmetric one in which all times-to-

service come first and then the abandons. In both cases we can apply the results

obtained for equal data of abandon type only. With regard to the first situation,

this requires to compute expression (24) for the value γ′k := 1/(1/γk + r − rA).

This leads to the factor
1 + (r − rA) γk

1 + r γk
. (26)

Clearly, (23) and (26) are different unless r = rA. The power series expansions

of (23) and (26) are

(1 + r γk)−rA/r ≈ 1− rA γk +
1

2
rA (r + rA) γ2 − 1

6
rA (2 r2 + 3 r rA + r2

A) γ3

1 + (r − rA) γk
1 + r γk

≈ 1− rA γk + r rA γ
2
k − r2 rA γ

3
k

from which we may see that (23) and (26) are equal only at the first order.

With regards to the second situation when all times-to-service precede the

abandons, we have simply to apply the factor (24)

(1 + rAγk)−1.

This expression is also different from (23). Its power series expansion is

(1 + rA γk)−1 ≈ 1− rA γk + r2
A γ

2
k − r3

A γ
3
k.

It can be shown that

(1 + rA γk)−1 < (1 + r γk)−rA/r <
1 + (r − rA) γk

1 + r γk
. (27)

If we mix together abandons and services in an arbitrary way we obtain an

expression in between the two extremes.

As observed before the order of the events is crucial. A different function

F̄A(t) is obtained for a different ordering of the events. Hence compressing

all events in a single time instant has the effect of loosing any ordering and

the expression we obtain is like an average. In the special case rA = rS the

intermediate term in (27) is the geometric average of the two extremes.

It is interesting to remark that Kaplan & Meier (1958) (see also Aalen et al.

(2008)) propose to deal with equal data of the two types by using the expression
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(26). Indeed the authors suggest to practically face such a situation as if all the

rA abandons would occur just before qi and all the rS services would occur just

after qi. However, this assumption is not justified theoretically. In fact they

also report some alternative formulas already proposed in the literature to deal

with the uncertainty regarding the ordering of the events occurring on a given

interval of time. One of these formulas, mentioned in Kaplan & Meier (1958) as

joint risk estimate is just the expression (23). Therefore, the approach proposed

in this paper shows that a natural generalization of the Kaplan-Meier estimator

to the case of equal data is provided by the expression (23) rather than (26).

The difference among the various formulas can be striking if the originally

different data are aggregated into large bunches. This will be shown on simu-

lated data in the next section.

With obvious modifications, the above analysis works also for the estimator

F̄S(t).

6 Two examples on simulated data

We now simulate a queue behavior so that FA(t) and FS(t) are known in ad-

vance and the validity of the above procedure can be checked by comparing

FA(t) with F̄A(t) and FS(t) with F̄S(t). Note that S in the simulation is not

directly generated but it is computed according to the arrivals, service times

and abandon times.

We simulate a queue M/M/1 with λ = 1, µ = 1.2 and n = 10, 000 customers.

The abandon times are exponential with rate α = 0.2, i.e., FA(t) = 1 − e−0.2 t

(see Fig. 1-(a)). This is equivalent to a M/M/1 queue modeled as a Markov

chain with transition rates µ + k α from state k + 1 to state k (and clearly λ

from k to k + 1). It is possible to prove that

FS(t) = FS(0)
(
1 + eλ/α

∑
h≥0

λh+1

(µ+ hα)

(−1)h

h!αh
(1− e−(µ+hα) t)

)
where FS(0), the probability that a generic customer finds an empty queue, can

be numerically computed from the Markov chain model. For the given data

we have FS(0) = 0.313611 and the distribution function FS(t) is shown in Fig.

1-(b). A derivation of the above formula is provided in the Appendix. The

formula can be also derived from the results in Tagaki (2014).

We observe the variables Q, QA and QS . In this simulation we have counted

1,752 abandons and 8,248 times-to-service. See in Fig. 1-(c,d) the functions

ḠA(t) and ḠS(t). Note that ḠS(0) > 0 because many customers in this simu-

lation find an empty queue.
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Figure 1: Exponential abandon times

The functions F̄A(t) and F̄S(t) we compute by the described procedure are

shown in Fig. 1-(e,f) in red plotted against the known values in black (shown

also on Fig. 1-(a,b) on a different scale).

We note a striking accuracy for the computed function F̄S(t), while the

accuracy for F̄A(t) is good for low values of time but is decreasing with time.

The reason is clear. For larger times we have less data available for a faithful

reconstruction of FA(t).

Furthermore, the accuracy in the estimation empirically shows the validity

of the assumption of stochastic independence between the abandon time and

the times-to-service of a particular costumer.

The second example is again a queue M/M/1 with λ = 1, µ = 1.2 and

n = 10, 000 customers. The abandon times are uniformly distributed between

a minimum value equal to 1 and a maximum value equal to 3, so that TA = 3.
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Figure 2: Uniform abandon times

(see Fig. 2-(a)). In this case an analytic expression for FS(t) is not available

and we use the empirical distribution function that can be inferred from the

simulation. This empirical FS(t) is shown in Fig. 2-(b). Note that TS = +∞.

In this simulation we have counted 1,781 abandons and 8,219 times-to-

service. See in Fig. 2-(c,d) the functions ḠA(t) and ḠS(t). The functions

F̄A(t) and F̄S(t) we compute by the described procedure are shown in Fig. 2-

(e,f) in red plotted against the known values in black (shown also on Fig. 2-(a,b)

on a different scale)

In this case both FA(t) and FS(t) are accurately reconstructed up to TA = 3.

Clearly no reconstruction is possible for FS(t) for t ≥ 3 because there are no

data for t ≥ 3. The good approximation of FA(t) on the whole range [0, TA], in

contrast to the previous example, is due to the availability of many data up to

TA.
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Figure 3: Different reconstructions of F̄A(t)

Now we use this second example to compare the three different factors ap-

pearing in (27) for the case of tied data. To this aim, we divide the time into

consecutive intervals of length 0.25 and round all the time values that fall in a

same interval to the same value, so that we loose the original ordering of these

events. We report in Fig. 3 the three step-wise functions F̄A(t) computed as ex-

plained in Section 5 according to the three factors. In particular the top function

(in green) corresponds to the case of considering first the times-to-service and

then the abandons. The bottom function (brown) corresponds to the opposite

case, and the middle function (blue) is obtained by our formula. The almost

straight function in black is the ‘true’ abandon distribution function and the

one in red is the abandon distribution function reconstructed by using the tools

of Section 4. The difference can be easily perceived. We have also computed the

mean squared errors of the three aggregated distribution functions with respect

to the reconstructed function (the red line). These are the mean squared errors:

2.1434 ·10−3 for our formula, 2.49861 ·10−3 for the formula obtained by putting

first the abandons and then the times-to-service, 2.32769 · 10−3 for the formula

obtained by putting first the times-to-service and then the abandons. So on this

example our formula provides a better estimate.

7 Conclusions

We have proposed an approach to compute the distribution functions of the

abandon times and the times-to-service for a call center queueing system. To

the best of our knowledge, the approch is new and leads to an estimator that

coincides with the Kaplan-Meier estimator in the case of observed untied data

but is different in the case of tied data. Experimental simulations seem to
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validate the proposed formulas.

8 Appendix

Consider a queue M/M/1 with fixed values λ and µ and abandon times that are

exponential with rate α, i.e., FA(t) = 1− e−α t. We want to find an expression

FS(t). This particular queue with abandons is equivalent to a M/M/1 queue

modeled as a Markov chain with transition rates µ + k α from state k + 1 to

state k and λ from k to k + 1. The stationary probabilities πk of the states

k = 0, 1, . . ., can therefore be computed numerically with negligible error from

πk λ = πk+1 (µ+ k α) (28)

In particular we can compute π0 = FS(0).

If a customer enters the system and finds k customers, we have to compute

its time-to-service by allowing only the other waiting customers to abandon the

queue. Hence the time-to-service is the sum of k exponential random variables,

with rates µ, µ + α, µ + 2α, . . ., µ + (k − 1)α. Let F kS (t) be the distribution

function of this sum. Note that F 0
S(t) = 1 for t ≥ 0. Then

FS(t) =
∑
k≥0

πk F
k
S (t).

Let F̃S(t) =
∑
k≥1 πk F

k
S (t). Since the Laplace transform of the density of an

exponential r.v. with rate µ is µ/(µ+ s), the Laplace transform of dF kS (t)/dt is

k−1∏
h=0

µ+ hα

µ+ hα+ s
,

and the Laplace transform of dF̃S(t)/dt is

∑
k≥1

πk

k−1∏
h=0

µ+ hα

µ+ hα+ s
.

We want to compute coefficients Ah,k such that

k−1∏
h=0

µ+ hα

µ+ hα+ s
=

k−1∑
h=0

Ah,k
µ+ hα

µ+ hα+ s
(29)

from which we have

F kS (t) =

k−1∑
h=0

Ah,k (1− e−(µ+hα) t)
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and therefore

FS(t) = π0+
∑
k≥1

πk

k−1∑
h=0

Ah,k (1−e−(µ+hα) t) = π0+
∑
h≥0

(1−e−(µ+hα) t)
∑

k≥h+1

πk Ah,k.

Let

Bh :=
∑

k≥h+1

πk Ah,k

So we may write

FS(t) = π0 +
∑
h≥0

Bh (1− e−(µ+hα) t)

To compute the coefficients Ah,k we use the standard tool of multiplying both

sides of (29) by µ+ j α+ s and substituting s = −µ− j α. We get

Aj,k =

k−1∏
h=0,h6=j

µ+ hα

(h− j)α
.

However, the coefficients Aj,k grow quickly with k and their direct computation

becomes numerically unstable. It is therefore convenient to work directly on the

terms πk Ah,k that vanish as k grows. From

Aj,k+1 = Aj,k
µ+ k α

(k − j)α
, k > j, πk+1 = πk

λ

µ+ k α
,

we have

πk+1Aj,k+1 = πk Aj,k
λ

(k − j)α
, k > j,

from which we have

πh+r Ah,h+r = πh+1Ah,h+1
λr−1

(r − 1)!αr−1
, r ≥ 1.

This leads to

Bh = πh+1Ah,h+1

∑
r≥1

λr−1

(r − 1)!αr−1
= πh+1Ah,h+1 e

λ/α.

Hence the only Ah,k coefficients that need to be computed are

Ah,h+1 =

h−1∏
j=0

µ+ j α

(j − h)α
=

(−1)h

h!αh

h−1∏
j=0

(µ+ j α).

From (28) we have

πh+1 =
λh+1∏h

j=0(µ+ j α)
π0
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and therefore

Bh =
λh+1

(µ+ hα)

(−1)h

h!αh
eλ/α π0

and finally

FS(t) = π0

(
1 + eλ/α

∑
h≥0

λh+1

(µ+ hα)

(−1)h

h!αh
(1− e−(µ+hα) t)

)
.

As a check, we have for α→ 0:

fS(t) = π0 δ(t) + π0 e
λ/α

∑
h≥0

λh+1 (−1)h

h!αh
e−(µ+hα) t) =

π0 δ(t) + π0 λ e
−µ t eλ/α

∑
h≥0

λh
(−1)h

h!αh
(e−α t)h) =

π0 δ(t) + π0 λ e
−µ t eλ/αe−λ e

−α t/α

By using the asymptotically valid approximation e−α t = 1−α t and the known

value for the M/M/1 queue with constant λ and µ, π0 = 1 − λ/µ, we get the

known formula

fS(t) = (1− λ

µ
) δ(t) +

λ

µ
(µ− λ) e−(µ−λ) t.

The only term that has to be numerically computed in the expression for FS(t)

is π0. It has to be stressed that the computation is numerically unstable for low

values of α because the Bh coefficients grow as α tends to zero and alternate in

sign. For the data of the first example in Section 6 we obtain

B0 = 38.7866, B1 = −166.228, B2 = 363.625, B3 = −538.703,

B4 = 606.041, B5 = −550.947, B6 = 420.862, B7 = −277.491,

B8 = 161.044, B9 = −83.5044, B10 = 39.1427, B11 = −16.7455,

B12 = 6.58968, B13 = −2.4011, B14 = 0.814658, B15 = −0.258622,

B16 = 0.0771456, B17 = −0.0217034, B18 = 0.00577752, B19 = −0.00145958

References

Aalen, O.: Nonparametric inference in connection with multiple decrement
models. Scandinavian Journal of Statistics 3, 15–27 (1976).

Aalen, O., Borgan, O. & Gjessing H.K.: Survival and event history analysis:
a process point of view, Springer - New York (2008).

Aksin, Z., Ata, B., Emadi, S.M., & Su, C-L: Structural estimation of callers’
delay sensitivity in call centers. Management Science 59, 2727–2746 (2013).

23



Avramidis, A. N., Chan, W., Gendreau, M., L’Ecuyer, P., & Pisacane, O.:
Optimizing daily agent scheduling in a multiskill call center. European Journal
of Operational Research 200, 822–832 (2010).

Brown, L., Gans, N., Mandelbaum, A., Sakov, A., Shen, H., Zeltyn, S., &
Zhao, L.: Statistical analysis of a telephone call center: a queueing-science
perspective. J. Amer. Statist. Assoc. 100, 36–50 (2005).

Conley, Q. D.: Simulating abandonment using Kaplan-Meir survival analysis
in a shared billing and claims center. in: R. Pasupathy, S.-H. Kim, A. Tolk,
R. Hill, and M. E. Kuhl (eds.) Proceedings of the 2013 Winter Simulation
Conference, 1805-1817 (2013).

Cox, D.R., & Oakes, D.: Analysis of Survival Data, Chapman and Hall (1984).

Gans N., Koole G., & Mandelbaum, A.: Telephone call centers: Tutorial,
review, and research prospects. Manufacturing & Service Operations Man-
agement 5, 79–141 (2003).

Ibrahim, R., & Whitt, W.: Wait-time predictors for customer service systems
with time–varying demand and capacity. Operations Research 59, 1106–1118
(2011).

Kaplan, E.L., & Meier,P.: Nonparametric estimation from incomplete obser-
vations. J. Amer. Statist. Assoc. 53, 457–481 (1958).

Mandelbaum, A., & Momčilović, P.: Queues with many servers and impatient
customers. Mathematics of Operations Research 37, 41–65 (2012).

Mandelbaum, A., & Zeltyn, S.: Data-stories about (im)patient customers in
tele-queues. Queueing Syst 75, 115-146 (2013).

Nelson, W.: Theory and applications of hazard plotting for censored failure
data. Technometrics 14, 945–966 (1972).

Rinne, H., The rate: Theory and inference (with
supplementary MATLAB-Programs), visited 2016,
http://geb.uni-giessen.de/geb/volltexte/2014/10793/ (2014).

Tagaki, H.: Waiting time in the M/M/m/(m + c) queue with impatient
customers. International Journal of Pure and Applied Mathematics 90, 519–
559 (2014).

24


